Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
3d8b6ebc
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
3d8b6ebc
编写于
10月 24, 2017
作者:
D
dangqingqing
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add LSTM backward implenmentation.
上级
3f1062d7
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
237 addition
and
45 deletion
+237
-45
paddle/operators/lstm_op.cc
paddle/operators/lstm_op.cc
+37
-19
paddle/operators/lstm_op.h
paddle/operators/lstm_op.h
+189
-25
paddle/operators/math/sequence2batch.h
paddle/operators/math/sequence2batch.h
+11
-1
未找到文件。
paddle/operators/lstm_op.cc
浏览文件 @
3d8b6ebc
...
...
@@ -21,7 +21,6 @@ class LSTMOp : public framework::OperatorWithKernel {
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Input"
),
"Input(Input) of LSTM should not be null."
);
...
...
@@ -30,8 +29,8 @@ class LSTMOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Cell"
),
"Output(Cell) of LSTM should not be null."
);
auto
x
_dims
=
ctx
->
GetInputDim
(
"Input"
);
PADDLE_ENFORCE_EQ
(
x
_dims
.
size
(),
2
,
"Input(X)'s rank must be 2."
);
auto
in
_dims
=
ctx
->
GetInputDim
(
"Input"
);
PADDLE_ENFORCE_EQ
(
in
_dims
.
size
(),
2
,
"Input(X)'s rank must be 2."
);
if
(
ctx
->
HasInput
(
"H0"
))
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"C0"
),
...
...
@@ -44,7 +43,7 @@ class LSTMOp : public framework::OperatorWithKernel {
"should be the same."
);
}
int
frame_size
=
x
_dims
[
1
]
/
4
;
int
frame_size
=
in
_dims
[
1
]
/
4
;
auto
w_dims
=
ctx
->
GetInputDim
(
"Weight"
);
PADDLE_ENFORCE_EQ
(
w_dims
.
size
(),
2
,
"The rank of Input(Weight) should be 2."
);
...
...
@@ -71,9 +70,11 @@ class LSTMOp : public framework::OperatorWithKernel {
"4 * %d if disable peepholes connection"
,
frame_size
);
}
ctx
->
SetOutputDim
(
"Hidden"
,
{
x_dims
[
0
],
frame_size
});
ctx
->
SetOutputDim
(
"Cell"
,
{
x_dims
[
0
],
frame_size
});
ctx
->
SetOutputDim
(
"BatchGate"
,
x_dims
);
framework
::
DDim
out_dims
({
in_dims
[
0
],
frame_size
});
ctx
->
SetOutputDim
(
"Hidden"
,
out_dims
);
ctx
->
SetOutputDim
(
"Cell"
,
out_dims
);
ctx
->
SetOutputDim
(
"BatchGate"
,
in_dims
);
ctx
->
SetOutputDim
(
"BatchCellPreAct"
,
out_dims
);
ctx
->
ShareLoD
(
"Input"
,
"Hidden"
);
ctx
->
ShareLoD
(
"Input"
,
"Cell"
);
}
...
...
@@ -86,7 +87,7 @@ class LSTMOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"Input"
,
"(LoDTensor) the first input is a LodTensor, which support "
"variable-time length input sequence. The underlying tensor in "
"this LoDTensor is a matrix with shape (T X 4D), where
,
T is the "
"this LoDTensor is a matrix with shape (T X 4D), where T is the "
"total time steps in this mini-batch, D is the hidden size."
);
AddInput
(
"H0"
,
"(Tensor, optional) the initial hidden state is an optional "
...
...
@@ -110,21 +111,25 @@ class LSTMOpMaker : public framework::OpProtoAndCheckerMaker {
"2. `usePeepholes = True` "
" - The shape is (1 x 7D). "
" - Bias = {b_c, b_i, b_f, b_o, W_ic, W_fc, W_oc}."
);
AddOutput
(
"Hidden"
,
"(LoDTensor) the hidden state lod tensor of LSTM operator. "
"The shape and lod is the same with the `Input`."
);
AddOutput
(
"Cell"
,
"(LoDTensor) the cell state lod tensor of LSTM operator. "
"The shape and lod is the same with the `Input`."
);
AddOutput
(
"BatchGate"
,
"(LoDTensor) This LoDTensor contains input gate, forget gate "
"and output gate after the nonlinear computation. This "
"LoDTensor has the same shape with the reorganized input, which "
"
wa
s also be called batch input. The LoD size is 2. The first "
"
i
s also be called batch input. The LoD size is 2. The first "
"LoD is the batch offsets and the second LoD contains the "
"indexes, which denote the position of reorganized sequence "
"in the raw input."
)
.
AsIntermediate
();
AddOutput
(
"Hidden"
,
"(LoDTensor) the hidden state lod tensor of LSTM operator. "
"The shape and lod is the same with the `Input`."
);
AddOutput
(
"Cell"
,
"(LoDTensor) the cell state lod tensor of LSTM operator. "
"The shape and lod is the same with the `Input`."
);
AddOutput
(
"BatchCellPreAct"
,
"(LoDTensor) This LoDTensor is get in the forward and used "
"in the backward."
)
.
AsIntermediate
();
AddAttr
<
bool
>
(
"usePeepholes"
,
"(bool, defalut: True) "
"whether to enable diagonal/peephole connections."
)
...
...
@@ -202,15 +207,28 @@ class LSTMGradOp : public framework::OperatorWithKernel {
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Hidden"
)),
"Input(Hidden@GRAD) should not be null"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Cell"
)),
"Input(Cell@GRAD) should not be null"
);
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Weight"
),
ctx
->
GetInputDim
(
"Weight"
));
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Bias"
),
ctx
->
GetInputDim
(
"Bias"
));
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Input"
),
ctx
->
GetInputDim
(
"Input"
));
if
(
ctx
->
HasInput
(
"Weight"
))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Weight"
),
ctx
->
GetInputDim
(
"Weight"
));
}
if
(
ctx
->
HasInput
(
"Bias"
))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Bias"
),
ctx
->
GetInputDim
(
"Bias"
));
}
if
(
ctx
->
HasInput
(
"H0"
))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"H0"
),
ctx
->
GetInputDim
(
"H0"
));
}
if
(
ctx
->
HasInput
(
"C0"
))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"C0"
),
ctx
->
GetInputDim
(
"C0"
));
}
}
};
...
...
paddle/operators/lstm_op.h
浏览文件 @
3d8b6ebc
...
...
@@ -21,8 +21,9 @@ limitations under the License. */
namespace
paddle
{
namespace
operators
{
using
framework
::
LoDTensor
;
using
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenMatrix
=
framework
::
EigenMatrix
<
T
,
MajorType
,
IndexType
>
;
...
...
@@ -31,15 +32,15 @@ template <typename Place, typename T>
class
LSTMKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
input
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Input"
);
auto
*
weight
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Weight"
);
auto
*
bias
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Bias"
);
auto
*
input
=
ctx
.
Input
<
LoDTensor
>
(
"Input"
);
auto
*
weight
=
ctx
.
Input
<
Tensor
>
(
"Weight"
);
auto
*
bias
=
ctx
.
Input
<
Tensor
>
(
"Bias"
);
auto
*
batch_gate
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"BatchGate"
);
auto
*
batch_gate
=
ctx
.
Output
<
LoDTensor
>
(
"BatchGate"
);
batch_gate
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
hidden_out
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Hidden"
);
auto
*
hidden_out
=
ctx
.
Output
<
LoDTensor
>
(
"Hidden"
);
hidden_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
cell_out
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Cell"
);
auto
*
cell_out
=
ctx
.
Output
<
LoDTensor
>
(
"Cell"
);
cell_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
// Now the function ShareLoD in InferShape is not implemented.
...
...
@@ -49,7 +50,8 @@ class LSTMKernel : public framework::OpKernel<T> {
bool
is_reverse
=
ctx
.
Attr
<
bool
>
(
"isReverse"
);
math
::
LoDTensor2BatchFunctor
<
Place
,
T
>
to_batch
;
to_batch
(
ctx
.
device_context
(),
*
input
,
*
batch_gate
,
is_reverse
);
auto
&
device_ctx
=
ctx
.
device_context
();
to_batch
(
device_ctx
,
*
input
,
*
batch_gate
,
true
,
is_reverse
);
auto
in_dims
=
input
->
dims
();
int
frame_size
=
static_cast
<
int
>
(
in_dims
[
1
]
/
4
);
...
...
@@ -69,15 +71,23 @@ class LSTMKernel : public framework::OpKernel<T> {
}
math
::
LstmMetaValue
<
T
>
lstm_value
;
T
*
bias_data
=
const_cast
<
T
*>
(
bias
->
data
<
T
>
());
// the code style in LstmMetaValue will be updated later.
lstm_value
.
checkIg
=
bias_data
+
4
*
frame_size
;
lstm_value
.
checkFg
=
lstm_value
.
checkIg
+
frame_size
;
lstm_value
.
checkOg
=
lstm_value
.
checkFg
+
frame_size
;
if
(
bias
)
{
T
*
bias_data
=
const_cast
<
T
*>
(
bias
->
data
<
T
>
());
// the code style in LstmMetaValue will be updated later.
lstm_value
.
checkIg
=
bias_data
+
4
*
frame_size
;
lstm_value
.
checkFg
=
lstm_value
.
checkIg
+
frame_size
;
lstm_value
.
checkOg
=
lstm_value
.
checkFg
+
frame_size
;
}
else
{
lstm_value
.
checkIg
=
nullptr
;
lstm_value
.
checkFg
=
nullptr
;
lstm_value
.
checkOg
=
nullptr
;
}
lstm_value
.
prevStateValue
=
nullptr
;
framework
::
LoDTensor
batch_out
,
batch_cell
,
batch_cell_pre_act
;
batch_out
.
mutable_data
<
T
>
(
dims
,
ctx
.
GetPlace
());
// Use the local variable as here.
LoDTensor
batch_hidden
,
batch_cell
;
auto
batch_cell_pre_act
=
*
(
ctx
.
Output
<
LoDTensor
>
(
"BatchCellPreAct"
));
batch_hidden
.
mutable_data
<
T
>
(
dims
,
ctx
.
GetPlace
());
batch_cell
.
mutable_data
<
T
>
(
dims
,
ctx
.
GetPlace
());
batch_cell_pre_act
.
mutable_data
<
T
>
(
dims
,
ctx
.
GetPlace
());
...
...
@@ -92,7 +102,7 @@ class LSTMKernel : public framework::OpKernel<T> {
int
bend
=
static_cast
<
int
>
(
batch_starts
[
n
+
1
]);
Tensor
gate_t
=
batch_gate
->
Slice
(
bstart
,
bend
);
Tensor
out_t
=
batch_
out
.
Slice
(
bstart
,
bend
);
Tensor
out_t
=
batch_
hidden
.
Slice
(
bstart
,
bend
);
Tensor
cell_t
=
batch_cell
.
Slice
(
bstart
,
bend
);
Tensor
cell_pre_act_t
=
batch_cell_pre_act
.
Slice
(
bstart
,
bend
);
...
...
@@ -101,9 +111,9 @@ class LSTMKernel : public framework::OpKernel<T> {
if
(
n
!=
0
)
{
int
pre_h_start
=
static_cast
<
int
>
(
batch_starts
[
n
-
1
]);
int
pre_h_end
=
pre_h_start
+
cur_batch_size
;
auto
pre_hidden_t
=
batch_
out
.
Slice
(
pre_h_start
,
pre_h_end
);
math
::
matmul
<
Place
,
T
>
(
ctx
.
device_context
(),
pre_hidden_
t
,
false
,
*
weight
,
false
,
static_cast
<
T
>
(
1.0
),
&
gate_t
,
auto
pre_hidden_t
=
batch_
hidden
.
Slice
(
pre_h_start
,
pre_h_end
);
math
::
matmul
<
Place
,
T
>
(
device_ctx
,
pre_hidden_t
,
false
,
*
weigh
t
,
false
,
static_cast
<
T
>
(
1.0
),
&
gate_t
,
static_cast
<
T
>
(
1.0
));
}
// else if : FIXME support the initial hidden and cell
...
...
@@ -112,27 +122,181 @@ class LSTMKernel : public framework::OpKernel<T> {
lstm_value
.
outputValue
=
out_t
.
data
<
T
>
();
lstm_value
.
stateValue
=
cell_t
.
data
<
T
>
();
lstm_value
.
stateActiveValue
=
cell_pre_act_t
.
data
<
T
>
();
math
::
LstmUnitFunctor
<
Place
,
T
>::
compute
(
ctx
.
device_context
()
,
lstm_value
,
math
::
LstmUnitFunctor
<
Place
,
T
>::
compute
(
device_ctx
,
lstm_value
,
frame_size
,
cur_batch_size
,
gate_act
,
cell_act
,
cand_act
);
lstm_value
.
prevStateValue
=
lstm_value
.
stateValue
;
}
math
::
Batch2LoDTensorFunctor
<
Place
,
T
>
to_seq
;
batch_
out
.
set_lod
(
batch_gate
->
lod
());
batch_
hidden
.
set_lod
(
batch_gate
->
lod
());
// restore the output hidden in LoDTensor from the batch hidden
to_seq
(
ctx
.
device_context
(),
batch_out
,
*
hidden_out
);
to_seq
(
device_ctx
,
batch_hidden
,
*
hidden_out
);
batch_cell
.
set_lod
(
batch_gate
->
lod
());
// restore the output cell state in LoDTensor from the batch cell
to_seq
(
ctx
.
device_context
()
,
batch_cell
,
*
cell_out
);
to_seq
(
device_ctx
,
batch_cell
,
*
cell_out
);
}
};
template
<
typename
Place
,
typename
T
>
class
LSTMGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{}
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
input
=
ctx
.
Input
<
LoDTensor
>
(
"Input"
);
auto
*
weight
=
ctx
.
Input
<
Tensor
>
(
"Weight"
);
auto
*
bias
=
ctx
.
Input
<
Tensor
>
(
"Bias"
);
auto
*
hidden_out
=
ctx
.
Input
<
LoDTensor
>
(
"Hidden"
);
auto
*
cell_out
=
ctx
.
Input
<
LoDTensor
>
(
"Cell"
);
auto
*
batch_gate
=
ctx
.
Input
<
LoDTensor
>
(
"BatchGate"
);
auto
*
batch_cell_pre_act
=
ctx
.
Input
<
LoDTensor
>
(
"BatchCellPreAct"
);
auto
*
hidden_g
=
ctx
.
Input
<
LoDTensor
>
(
framework
::
GradVarName
(
"Hidden"
));
auto
*
cell_g
=
ctx
.
Input
<
LoDTensor
>
(
framework
::
GradVarName
(
"Cell"
));
auto
*
in_g
=
ctx
.
Output
<
LoDTensor
>
(
framework
::
GradVarName
(
"Input"
));
auto
*
weight_g
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Weight"
));
auto
*
bias_g
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Bias"
));
auto
&
device_ctx
=
ctx
.
device_context
();
if
(
weight_g
)
{
math
::
SetConstant
<
Place
,
T
>
zero
;
zero
(
device_ctx
,
weight_g
,
static_cast
<
T
>
(
0.0
));
}
auto
in_dims
=
input
->
dims
();
auto
out_dims
=
hidden_g
->
dims
();
int
frame_size
=
static_cast
<
int
>
(
in_dims
[
1
]
/
4
);
PADDLE_ENFORCE_EQ
(
frame_size
,
out_dims
[
1
]);
math
::
LstmMetaValue
<
T
>
lstm_value
;
if
(
bias
)
{
T
*
bias_data
=
const_cast
<
T
*>
(
bias
->
data
<
T
>
());
lstm_value
.
checkIg
=
bias_data
+
4
*
frame_size
;
lstm_value
.
checkFg
=
lstm_value
.
checkIg
+
frame_size
;
lstm_value
.
checkOg
=
lstm_value
.
checkFg
+
frame_size
;
}
else
{
lstm_value
.
checkIg
=
nullptr
;
lstm_value
.
checkFg
=
nullptr
;
lstm_value
.
checkOg
=
nullptr
;
}
math
::
LstmMetaGrad
<
T
>
lstm_grad
;
if
(
bias
&&
bias_g
)
{
T
*
bias_g_data
=
const_cast
<
T
*>
(
bias_g
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()));
lstm_grad
.
checkIgGrad
=
bias_g_data
+
4
*
frame_size
;
lstm_grad
.
checkFgGrad
=
lstm_grad
.
checkIgGrad
+
frame_size
;
lstm_grad
.
checkOgGrad
=
lstm_grad
.
checkFgGrad
+
frame_size
;
}
else
{
lstm_grad
.
checkIgGrad
=
nullptr
;
lstm_grad
.
checkFgGrad
=
nullptr
;
lstm_grad
.
checkOgGrad
=
nullptr
;
}
math
::
LoDTensor2BatchFunctor
<
Place
,
T
>
to_batch
;
// use the local variable as here.
LoDTensor
batch_hidden
;
batch_hidden
.
mutable_data
<
T
>
(
out_dims
,
ctx
.
GetPlace
());
batch_hidden
.
set_lod
(
batch_gate
->
lod
());
to_batch
(
device_ctx
,
*
hidden_out
,
batch_hidden
,
false
);
LoDTensor
batch_hidden_g
;
batch_hidden_g
.
mutable_data
<
T
>
(
out_dims
,
ctx
.
GetPlace
());
batch_hidden_g
.
set_lod
(
batch_gate
->
lod
());
to_batch
(
device_ctx
,
*
hidden_g
,
batch_hidden_g
,
false
);
LoDTensor
batch_cell
;
batch_cell
.
mutable_data
<
T
>
(
out_dims
,
ctx
.
GetPlace
());
batch_cell
.
set_lod
(
batch_gate
->
lod
());
to_batch
(
device_ctx
,
*
cell_out
,
batch_cell
,
false
);
LoDTensor
batch_cell_g
;
batch_cell_g
.
mutable_data
<
T
>
(
out_dims
,
ctx
.
GetPlace
());
batch_cell_g
.
set_lod
(
batch_gate
->
lod
());
to_batch
(
device_ctx
,
*
cell_g
,
batch_cell_g
,
false
);
LoDTensor
batch_gate_g
;
batch_gate_g
.
mutable_data
<
T
>
(
batch_gate
->
dims
(),
ctx
.
GetPlace
());
batch_gate_g
.
set_lod
(
batch_gate
->
lod
());
auto
gate_act
=
ctx
.
Attr
<
std
::
string
>
(
"gateActivation"
);
auto
cell_act
=
ctx
.
Attr
<
std
::
string
>
(
"cellActivation"
);
auto
cand_act
=
ctx
.
Attr
<
std
::
string
>
(
"candidateActivation"
);
auto
batch_starts
=
batch_gate
->
lod
()[
0
];
size_t
num_batch
=
batch_starts
.
size
()
-
1
;
for
(
int
n
=
static_cast
<
int
>
(
num_batch
);
n
>=
0
;
n
--
)
{
int
bstart
=
static_cast
<
int
>
(
batch_starts
[
n
]);
int
bend
=
static_cast
<
int
>
(
batch_starts
[
n
+
1
]);
Tensor
gate
=
batch_gate
->
Slice
(
bstart
,
bend
);
Tensor
cell
=
batch_cell
.
Slice
(
bstart
,
bend
);
Tensor
cell_pre_act
=
batch_cell_pre_act
->
Slice
(
bstart
,
bend
);
lstm_value
.
gateValue
=
gate
.
data
<
T
>
();
lstm_value
.
stateValue
=
cell
.
data
<
T
>
();
lstm_value
.
stateActiveValue
=
cell_pre_act
.
data
<
T
>
();
Tensor
out_g
=
batch_hidden_g
.
Slice
(
bstart
,
bend
);
Tensor
gate_g
=
batch_gate_g
.
Slice
(
bstart
,
bend
);
Tensor
cell_g
=
batch_cell_g
.
Slice
(
bstart
,
bend
);
lstm_grad
.
stateGrad
=
cell_g
.
data
<
T
>
();
lstm_grad
.
gateGrad
=
gate_g
.
data
<
T
>
();
lstm_grad
.
outputGrad
=
out_g
.
data
<
T
>
();
if
(
n
!=
0
)
{
int
bstart_pre
=
static_cast
<
int
>
(
batch_starts
[
n
-
1
]);
Tensor
cell_pre
=
batch_cell
.
Slice
(
bstart_pre
,
bstart
);
Tensor
cell_pre_g
=
batch_cell_g
.
Slice
(
bstart_pre
,
bstart
);
lstm_value
.
prevStateValue
=
cell_pre
.
data
<
T
>
();
lstm_grad
.
prevStateGrad
=
cell_pre_g
.
data
<
T
>
();
}
else
{
lstm_value
.
prevStateValue
=
nullptr
;
lstm_grad
.
prevStateGrad
=
nullptr
;
}
int
cur_batch_size
=
bend
-
bstart
;
math
::
LstmUnitGradFunctor
<
Place
,
T
>::
compute
(
device_ctx
,
lstm_value
,
lstm_grad
,
frame_size
,
cur_batch_size
,
gate_act
,
cell_act
,
cand_act
);
if
(
n
!=
0
)
{
int
pre_h_start
=
static_cast
<
int
>
(
batch_starts
[
n
-
1
]);
int
pre_h_end
=
pre_h_start
+
cur_batch_size
;
auto
pre_hidden_g
=
batch_hidden_g
.
Slice
(
pre_h_start
,
pre_h_end
);
math
::
matmul
<
Place
,
T
>
(
device_ctx
,
gate_g
,
false
,
*
weight
,
true
,
static_cast
<
T
>
(
1.0
),
&
pre_hidden_g
,
static_cast
<
T
>
(
1.0
));
if
(
weight_g
)
{
/* backward weight */
auto
pre_hidden
=
batch_hidden
.
Slice
(
pre_h_start
,
pre_h_end
);
math
::
matmul
<
Place
,
T
>
(
device_ctx
,
pre_hidden
,
true
,
gate_g
,
false
,
static_cast
<
T
>
(
1.0
),
weight_g
,
static_cast
<
T
>
(
1.0
));
}
}
}
math
::
Batch2LoDTensorFunctor
<
Place
,
T
>
to_seq
;
if
(
in_g
)
{
/* backward data */
to_seq
(
device_ctx
,
batch_gate_g
,
*
in_g
);
}
if
(
bias
&&
bias_g
)
{
/* backward bias */
bias_g
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
bias_g_e
=
EigenMatrix
<
T
>::
From
(
*
bias_g
);
auto
gate_g_e
=
EigenMatrix
<
T
>::
From
(
batch_gate_g
);
Eigen
::
array
<
int
,
2
>
extents
({{
1
,
4
*
frame_size
}});
Eigen
::
array
<
int
,
2
>
offsets
({{
0
,
0
}});
auto
bg
=
bias_g_e
.
slice
(
offsets
,
extents
)
.
reshape
(
Eigen
::
array
<
int
,
2
>
({{
1
,
frame_size
*
4
}}));
bg
.
device
(
ctx
.
GetEigenDevice
<
Place
>
())
=
gate_g_e
.
sum
(
Eigen
::
array
<
int
,
1
>
({{
0
}}));
}
}
};
}
// namespace operators
...
...
paddle/operators/math/sequence2batch.h
浏览文件 @
3d8b6ebc
...
...
@@ -53,7 +53,17 @@ class LoDTensor2BatchFunctor {
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
LoDTensor
&
lod_tensor
,
framework
::
LoDTensor
&
batch
,
bool
is_reverse
)
const
{
framework
::
LoDTensor
&
batch
,
bool
is_cal_batch_lod
,
bool
is_reverse
=
false
)
const
{
if
(
!
is_cal_batch_lod
)
{
auto
lods
=
batch
.
lod
();
PADDLE_ENFORCE_EQ
(
lods
.
size
(),
2UL
);
PADDLE_ENFORCE_EQ
(
lods
[
1
].
size
(),
lod_tensor
.
dims
()[
1
]);
CopyMatrixRowsFunctor
<
Place
,
T
>
to_batch
;
to_batch
(
context
,
lod_tensor
,
lods
[
1
].
data
(),
batch
,
true
);
return
;
}
auto
lods
=
lod_tensor
.
lod
();
PADDLE_ENFORCE_EQ
(
lods
.
size
(),
1UL
,
"Only support one level sequence now."
);
auto
lod
=
lods
[
0
];
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录