lstm_op.cc 11.4 KB
Newer Older
D
dangqingqing 已提交
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

D
dangqingqing 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
D
dangqingqing 已提交
6

D
dangqingqing 已提交
7
http://www.apache.org/licenses/LICENSE-2.0
D
dangqingqing 已提交
8

D
dangqingqing 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dangqingqing 已提交
14

D
dangqingqing 已提交
15
#include "paddle/operators/lstm_op.h"
D
dangqingqing 已提交
16 17 18 19 20 21 22 23

namespace paddle {
namespace operators {

class LSTMOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

24
  void InferShape(framework::InferShapeContext* ctx) const override {
D
dangqingqing 已提交
25 26 27 28
    PADDLE_ENFORCE(ctx->HasInput("Input"),
                   "Input(Input) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Hidden"),
                   "Output(Hidden) of LSTM should not be null.");
29
    PADDLE_ENFORCE(ctx->HasOutput("Cell"),
D
dangqingqing 已提交
30
                   "Output(Cell) of LSTM should not be null.");
31 32 33 34
    PADDLE_ENFORCE(ctx->HasOutput("BatchGate"),
                   "Output(BatchGate) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("BatchCellPreAct"),
                   "Output(BatchGate) of LSTM should not be null.");
D
dangqingqing 已提交
35

D
dangqingqing 已提交
36 37
    auto in_dims = ctx->GetInputDim("Input");
    PADDLE_ENFORCE_EQ(in_dims.size(), 2, "Input(X)'s rank must be 2.");
D
dangqingqing 已提交
38 39 40 41 42 43 44 45 46 47 48 49

    if (ctx->HasInput("H0")) {
      PADDLE_ENFORCE(ctx->HasInput("C0"),
                     "Input(Cell) and Input(Hidden) of LSTM should not "
                     "be null at the same time.");
      auto h_dims = ctx->GetInputDim("H0");
      auto c_dims = ctx->GetInputDim("C0");
      PADDLE_ENFORCE(h_dims == c_dims,
                     "The dimension of Input(H0) and Input(C0) "
                     "should be the same.");
    }

D
dangqingqing 已提交
50
    int frame_size = in_dims[1] / 4;
D
dangqingqing 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
    auto w_dims = ctx->GetInputDim("Weight");
    PADDLE_ENFORCE_EQ(w_dims.size(), 2,
                      "The rank of Input(Weight) should be 2.");
    PADDLE_ENFORCE_EQ(w_dims[0], frame_size,
                      "The first dimension of Input(Weight) "
                      "should be %d.",
                      frame_size);
    PADDLE_ENFORCE_EQ(w_dims[1], 4 * frame_size,
                      "The second dimension of Input(Weight) "
                      "should be 4 * %d.",
                      frame_size);
    auto b_dims = ctx->GetInputDim("Bias");
    PADDLE_ENFORCE_EQ(b_dims.size(), 2, "The rank of Input(Bias) should be 2.");
    PADDLE_ENFORCE_EQ(b_dims[0], 1,
                      "The first dimension of Input(Bias) should be 1.");
66
    if (ctx->Attrs().Get<bool>("usePeepholes")) {
D
dangqingqing 已提交
67 68 69 70 71 72 73
      PADDLE_ENFORCE_EQ(b_dims[1], 7 * frame_size,
                        "The second dimension of Input(Bias) should be "
                        "7 * %d if enable peepholes connection",
                        frame_size);
    } else {
      PADDLE_ENFORCE_EQ(b_dims[1], 4 * frame_size,
                        "The second dimension of Input(Bias) should be "
Y
Yu Yang 已提交
74
                        "4 * %d if disable peepholes connection",
D
dangqingqing 已提交
75 76
                        frame_size);
    }
D
dangqingqing 已提交
77 78 79 80 81
    framework::DDim out_dims({in_dims[0], frame_size});
    ctx->SetOutputDim("Hidden", out_dims);
    ctx->SetOutputDim("Cell", out_dims);
    ctx->SetOutputDim("BatchGate", in_dims);
    ctx->SetOutputDim("BatchCellPreAct", out_dims);
D
dangqingqing 已提交
82 83 84
    ctx->ShareLoD("Input", "Hidden");
    ctx->ShareLoD("Input", "Cell");
  }
85 86 87 88 89 90 91

 protected:
  framework::DataType IndicateDataType(
      const framework::ExecutionContext& ctx) const override {
    return framework::ToDataType(
        ctx.Input<framework::LoDTensor>("Input")->type());
  }
D
dangqingqing 已提交
92 93 94 95 96 97 98 99 100
};

class LSTMOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  LSTMOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("Input",
             "(LoDTensor) the first input is a LodTensor, which support "
             "variable-time length input sequence. The underlying tensor in "
D
dangqingqing 已提交
101
             "this LoDTensor is a matrix with shape (T X 4D), where T is the "
D
dangqingqing 已提交
102 103 104 105
             "total time steps in this mini-batch, D is the hidden size.");
    AddInput("H0",
             "(Tensor, optional) the initial hidden state is an optional "
             "input. This is a tensor with shape (N x D), where N is the "
106 107
             "batch size, D is the hidden size.")
        .AsDispensable();
D
dangqingqing 已提交
108 109 110
    AddInput("C0",
             "(Tensor, optional) the initial cell state is an optional "
             "input. This is a tensor with shape (N x D), where N is the "
111 112
             "batch size. `H0` and `C0` can be NULL but only at the same time")
        .AsDispensable();
D
dangqingqing 已提交
113 114
    AddInput("Weight",
             "(Tensor) the learnable hidden-hidden weights."
D
dangqingqing 已提交
115 116
             " - The shape is (D x 4D), where D is the hidden size. "
             " - Weight = {W_ch, W_ih, W_fh, W_oh}");
D
dangqingqing 已提交
117 118 119
    AddInput("Bias",
             "(Tensor) the learnable weights, which contains two parts: "
             "input-hidden bias weight and peephole connections weight if "
D
dangqingqing 已提交
120
             "setting `usePeepholes` True. "
121
             "1. `usePeepholes = False` "
D
dangqingqing 已提交
122 123
             " - The shape is (1 x 4D). "
             " - Bias = {b_c, b_i, b_f, b_o}."
124
             "2. `usePeepholes = True` "
D
dangqingqing 已提交
125
             " - The shape is (1 x 7D). "
126 127
             " - Bias = {b_c, b_i, b_f, b_o, W_ic, W_fc, W_oc}.")
        .AsDispensable();
D
dangqingqing 已提交
128
    AddOutput("Hidden",
D
dangqingqing 已提交
129 130
              "(LoDTensor) the hidden state of LSTM operator. "
              "The shape is (T x D), and lod is the same with the `Input`.");
D
dangqingqing 已提交
131
    AddOutput("Cell",
D
dangqingqing 已提交
132 133
              "(LoDTensor) the cell state of LSTM operator. "
              "The shape is (T x D), and lod is the same with the `Input`.");
134 135
    AddOutput("BatchGate",
              "(LoDTensor) This LoDTensor contains input gate, forget gate "
Y
Yu Yang 已提交
136
              "and output gate after the nonlinear computation. This "
137
              "LoDTensor has the same shape with the reorganized input, which "
D
dangqingqing 已提交
138
              "is also be called batch input. The LoD size is 2. The first "
139 140 141
              "LoD is the batch offsets and the second LoD contains the "
              "indexes, which denote the position of reorganized sequence "
              "in the raw input.")
D
dangqingqing 已提交
142
        .AsIntermediate();
D
dangqingqing 已提交
143
    AddOutput("BatchCellPreAct",
D
dangqingqing 已提交
144
              "(LoDTensor) This LoDTensor is got in the forward and used "
D
dangqingqing 已提交
145 146
              "in the backward.")
        .AsIntermediate();
147
    AddAttr<bool>("usePeepholes",
D
dangqingqing 已提交
148 149 150
                  "(bool, defalut: True) "
                  "whether to enable diagonal/peephole connections.")
        .SetDefault(true);
151
    AddAttr<bool>("isReverse",
D
dangqingqing 已提交
152 153
                  "(bool, defalut: False) "
                  "whether to compute reversed LSTM.")
154
        .SetDefault(false);
D
dangqingqing 已提交
155
    AddAttr<std::string>(
156
        "gateActivation",
Y
Yu Yang 已提交
157
        "(string, default: sigmoid)"
D
dangqingqing 已提交
158
        "The activation for input gate, forget gate and output "
Y
Yu Yang 已提交
159
        "gate, `sigmoid` by default.")
D
dangqingqing 已提交
160
        .SetDefault("sigmoid");
161
    AddAttr<std::string>("cellActivation",
Y
Yu Yang 已提交
162
                         "(string, default: tanh)"
D
dangqingqing 已提交
163 164
                         "The activation for cell output, `tanh` by defalut.")
        .SetDefault("tanh");
165
    AddAttr<std::string>("candidateActivation",
Y
Yu Yang 已提交
166
                         "(string, default: tanh)"
D
dangqingqing 已提交
167
                         "The activation for candidate hidden state, "
Y
Yu Yang 已提交
168
                         "`tanh` by default.")
D
dangqingqing 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
        .SetDefault("tanh");
    AddComment(R"DOC(Long-Short Term Memory (LSTM) Operator

The defalut implementation is diagonal/peephole connection [1], the formula is
as follows

    i_t = \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + W_{ic}c_{t-1} + b_i)

    f_t = \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + W_{fc}c_{t-1} + b_f)

    \tilde{c_t} = act_g(W_{cx}x_t + W_{ch}h_{t-1} + b_c)

    o_t = \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + W_{oc}c_t + b_o)

    c_t = f_t ⊙ c_{t-1} + i_t ⊙ \tilde{c_t}

    h_t = o_t ⊙ act_h(c_t)

where the W terms denote weight matrices (e.g. \f$W_{xi}\f$ is the matrix
of weights from the input gate to the input), \f$W_{ic}, W_{fc}, W_{oc}\f$
are diagonal weight matrices for peephole connections. In our implenmention,
We use vectors to reprenset these diagonal weight matrices. The b terms
denote bias vectors (\f$b_i\f$ is the input gate bias vector), \f$\sigma\f$
is the non-line actications, such as logistic sigmoid function, and
\f$i, f, o\f$ and \f$c\f$ are respectively the input gate, forget gate,
output gate and cell activation vectors, all of which are the same size as
the cell output activation vector \f$h\f$.

The ⊙ is the element-wise product of the vectors, \f$act_g\f$ and \f$act_h\f$
are the cell input and cell output activation functions, `tanh` is usually
used for them. \f$\tilde{c_t}\f$ is also called candidate hidden state,
which is computed based on the current input and the previous hidden state.

202
Set `usePeepholes` False to disable peephole connection [2]. The formula
D
dangqingqing 已提交
203 204 205
is omitted here.

@note These \f$W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}\f$
D
dangqingqing 已提交
206 207
operations on the input x_{t} were NOT included in this operator.
Users can choose to use fully-connect operator before LSTM operator.
D
dangqingqing 已提交
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223

[1] Hasim Sak, Andrew Senior, and Francoise Beaufays. Long short-term memory
recurrent neural network architectures for large scale acoustic modeling.
INTERSPEECH, 2014.

[2] S. Hochreiter and J. Schmidhuber. Long Short-Term Memory.
Neural Computation, 9(8):1735-1780, 1997.

)DOC");
  }
};

class LSTMGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

224
  void InferShape(framework::InferShapeContext* ctx) const override {
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
    PADDLE_ENFORCE(ctx->HasInput("Input"),
                   "Input(Input) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Hidden"),
                   "Input(Hidden) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Cell"),
                   "Input(Cell) of LSTM should not be null.");

    PADDLE_ENFORCE(ctx->HasInput("BatchGate"),
                   "Input(BatchGate) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("BatchCellPreAct"),
                   "Input(BatchGate) of LSTM should not be null.");

    auto in_g_name = framework::GradVarName("Input");
    if (ctx->HasOutput(in_g_name))
      ctx->SetOutputDim(in_g_name, ctx->GetInputDim("Input"));

    auto w_g_name = framework::GradVarName("Weight");
    if (ctx->HasOutput(w_g_name))
      ctx->SetOutputDim(w_g_name, ctx->GetInputDim("Weight"));

    auto b_g_name = framework::GradVarName("Bias");
    if (ctx->HasOutput(b_g_name))
      ctx->SetOutputDim(b_g_name, ctx->GetInputDim("Bias"));
D
dangqingqing 已提交
248
  }
249 250 251 252 253 254 255

 protected:
  framework::DataType IndicateDataType(
      const framework::ExecutionContext& ctx) const override {
    return framework::ToDataType(
        ctx.Input<framework::LoDTensor>("Input")->type());
  }
D
dangqingqing 已提交
256 257 258 259 260 261 262 263 264 265 266 267
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP(lstm, ops::LSTMOp, ops::LSTMOpMaker, lstm_grad, ops::LSTMGradOp);
REGISTER_OP_CPU_KERNEL(lstm, ops::LSTMKernel<paddle::platform::CPUPlace, float>,
                       ops::LSTMKernel<paddle::platform::CPUPlace, double>);
REGISTER_OP_CPU_KERNEL(lstm_grad,
                       ops::LSTMGradKernel<paddle::platform::CPUPlace, float>,
                       ops::LSTMGradKernel<paddle::platform::CPUPlace, double>);