conv_op_xpu.cc 6.7 KB
Newer Older
X
xiaoting 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/conv_op.h"
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/platform/cudnn_workspace_helper.h"
#ifdef PADDLE_WITH_XPU
namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
class GemmConvXPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
    // The filter will be reshaped in the calculations,
    // so here use an assignment operation,
    // that avoids modifying the variable in the Scope.
    Tensor filter = *context.Input<Tensor>("Filter");
    Tensor* output = context.Output<Tensor>("Output");
    output->mutable_data<T>(context.GetPlace());
    int groups = context.Attr<int>("groups");
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
    const std::string data_format = context.Attr<std::string>("data_format");
    const std::string padding_algorithm =
        context.Attr<std::string>("padding_algorithm");

    PADDLE_ENFORCE_EQ(data_format == "NHWC" || data_format == "NDHWC", false,
                      platform::errors::InvalidArgument(
                          ("XPU do support data_format is NCHW in conv op.")));

    framework::DDim in_data_dims =
        framework::slice_ddim(input->dims(), 2, input->dims().size());
    framework::DDim filter_data_dims =
        framework::slice_ddim(filter.dims(), 2, filter.dims().size());
    std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

X
xiaoting 已提交
51 52 53 54 55 56
    const int batch_size = static_cast<int>(input->dims()[0]);
    const int img_c = static_cast<int>(input->dims()[1]);
    const int img_h = static_cast<int>(input->dims()[2]);
    const int img_w = static_cast<int>(input->dims()[3]);
    const int f = static_cast<int>(filter.dims()[0]);
    auto& dev_ctx = context.template device_context<DeviceContext>();
57 58
    int r = xpu::conv2d<float, float, float, int16_t>(
        dev_ctx.x_context(), input->data<float>(), filter.data<float>(),
59
        output->data<float>(), batch_size, img_c, img_h, img_w, f, ksize,
60 61 62 63 64
        strides, paddings, dilations, groups, nullptr, nullptr, nullptr, true);
    PADDLE_ENFORCE_EQ(
        r, XPU_SUCCESS,
        platform::errors::External("XPU conv kernel return wrong value[%d %s]",
                                   r, XPUAPIErrorMsg[r]));
X
xiaoting 已提交
65 66
  }
};
67

X
xiaoting 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
template <typename DeviceContext, typename T>
class GemmConvGradXPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
    const Tensor* output_grad =
        context.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad =
        context.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad =
        context.Output<Tensor>(framework::GradVarName("Filter"));
    // The filter and filter_grad will be reshaped in the calculations,
    // so here use an assignment operation,
    // that avoids modifying the variable in the Scope.
    Tensor filter = *context.Input<Tensor>("Filter");
    if (!input_grad && !filter_grad) return;
    int groups = context.Attr<int>("groups");
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
    const std::string data_format = context.Attr<std::string>("data_format");
    const std::string padding_algorithm =
        context.Attr<std::string>("padding_algorithm");

    PADDLE_ENFORCE_EQ(
        data_format == "NHWC" || data_format == "NDHWC", false,
        platform::errors::InvalidArgument(
            ("XPU do support data_format is NCHW in conv grad op.")));

    framework::DDim in_data_dims =
        framework::slice_ddim(input->dims(), 2, input->dims().size());
    framework::DDim filter_data_dims =
        framework::slice_ddim(filter.dims(), 2, filter.dims().size());
    std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

X
xiaoting 已提交
105 106 107 108 109 110 111 112 113 114 115 116
    const int batch_size = static_cast<int>(input->dims()[0]);
    const int img_c = static_cast<int>(input->dims()[1]);
    const int img_h = static_cast<int>(input->dims()[2]);
    const int img_w = static_cast<int>(input->dims()[3]);
    const int f = static_cast<int>(filter.dims()[0]);
    if (input_grad) {
      input_grad->mutable_data<T>(context.GetPlace());
    }
    if (filter_grad) {
      filter_grad->mutable_data<T>(context.GetPlace());
    }
    auto& dev_ctx = context.template device_context<DeviceContext>();
117 118 119 120
    int r = xpu::conv2d_grad<float, float, float, int16_t>(
        dev_ctx.x_context(), input->data<T>(), filter.data<T>(),
        output_grad->data<T>(), input_grad ? input_grad->data<T>() : nullptr,
        filter_grad ? filter_grad->data<T>() : nullptr, batch_size, img_c,
121
        img_h, img_w, f, ksize, strides, paddings, dilations, groups, nullptr,
122 123 124 125 126
        nullptr, nullptr, nullptr, nullptr, true);
    PADDLE_ENFORCE_EQ(
        r, XPU_SUCCESS,
        platform::errors::External("XPU conv kernel return wrong value[%d %s]",
                                   r, XPUAPIErrorMsg[r]));
X
xiaoting 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139
  }
};
}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(
    depthwise_conv2d,
    ops::GemmConvXPUKernel<paddle::platform::XPUDeviceContext, float>);
REGISTER_OP_XPU_KERNEL(
    conv2d, ops::GemmConvXPUKernel<paddle::platform::XPUDeviceContext, float>);
REGISTER_OP_XPU_KERNEL(
    conv2d_grad,
    ops::GemmConvGradXPUKernel<paddle::platform::XPUDeviceContext, float>);
140 141 142
REGISTER_OP_XPU_KERNEL(
    depthwise_conv2d_grad,
    ops::GemmConvGradXPUKernel<paddle::platform::XPUDeviceContext, float>);
X
xiaoting 已提交
143
#endif