conv_op_xpu.cc 5.5 KB
Newer Older
X
xiaoting 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/conv_op.h"
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/platform/cudnn_workspace_helper.h"
#ifdef PADDLE_WITH_XPU
namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
class GemmConvXPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
    // The filter will be reshaped in the calculations,
    // so here use an assignment operation,
    // that avoids modifying the variable in the Scope.
    Tensor filter = *context.Input<Tensor>("Filter");
    Tensor* output = context.Output<Tensor>("Output");
    output->mutable_data<T>(context.GetPlace());
    int groups = context.Attr<int>("groups");
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
    const int batch_size = static_cast<int>(input->dims()[0]);
    const int img_c = static_cast<int>(input->dims()[1]);
    const int img_h = static_cast<int>(input->dims()[2]);
    const int img_w = static_cast<int>(input->dims()[3]);
    const int f = static_cast<int>(filter.dims()[0]);
    const int win_h = static_cast<int>(filter.dims()[2]);
    const int win_w = static_cast<int>(filter.dims()[3]);
    auto& dev_ctx = context.template device_context<DeviceContext>();
43 44 45 46 47 48 49 50 51 52 53
    std::vector<int> k_size;
    k_size.push_back(win_h);
    k_size.push_back(win_w);
    int r = xpu::conv2d<float, float, float, int16_t>(
        dev_ctx.x_context(), input->data<float>(), filter.data<float>(),
        output->data<float>(), batch_size, img_c, img_h, img_w, f, k_size,
        strides, paddings, dilations, groups, nullptr, nullptr, nullptr, true);
    PADDLE_ENFORCE_EQ(
        r, XPU_SUCCESS,
        platform::errors::External("XPU conv kernel return wrong value[%d %s]",
                                   r, XPUAPIErrorMsg[r]));
X
xiaoting 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
  }
};
template <typename DeviceContext, typename T>
class GemmConvGradXPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
    const Tensor* output_grad =
        context.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad =
        context.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad =
        context.Output<Tensor>(framework::GradVarName("Filter"));
    // The filter and filter_grad will be reshaped in the calculations,
    // so here use an assignment operation,
    // that avoids modifying the variable in the Scope.
    Tensor filter = *context.Input<Tensor>("Filter");
    if (!input_grad && !filter_grad) return;
    int groups = context.Attr<int>("groups");
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
    const int batch_size = static_cast<int>(input->dims()[0]);
    const int img_c = static_cast<int>(input->dims()[1]);
    const int img_h = static_cast<int>(input->dims()[2]);
    const int img_w = static_cast<int>(input->dims()[3]);
    const int f = static_cast<int>(filter.dims()[0]);
    const int win_h = static_cast<int>(filter.dims()[2]);
    const int win_w = static_cast<int>(filter.dims()[3]);
    if (input_grad) {
      input_grad->mutable_data<T>(context.GetPlace());
    }
    if (filter_grad) {
      filter_grad->mutable_data<T>(context.GetPlace());
    }
    auto& dev_ctx = context.template device_context<DeviceContext>();
90 91 92 93 94 95 96 97 98 99 100 101 102
    std::vector<int> k_size;
    k_size.push_back(win_h);
    k_size.push_back(win_w);
    int r = xpu::conv2d_grad<float, float, float, int16_t>(
        dev_ctx.x_context(), input->data<T>(), filter.data<T>(),
        output_grad->data<T>(), input_grad ? input_grad->data<T>() : nullptr,
        filter_grad ? filter_grad->data<T>() : nullptr, batch_size, img_c,
        img_h, img_w, f, k_size, strides, paddings, dilations, groups, nullptr,
        nullptr, nullptr, nullptr, nullptr, true);
    PADDLE_ENFORCE_EQ(
        r, XPU_SUCCESS,
        platform::errors::External("XPU conv kernel return wrong value[%d %s]",
                                   r, XPUAPIErrorMsg[r]));
X
xiaoting 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115
  }
};
}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(
    depthwise_conv2d,
    ops::GemmConvXPUKernel<paddle::platform::XPUDeviceContext, float>);
REGISTER_OP_XPU_KERNEL(
    conv2d, ops::GemmConvXPUKernel<paddle::platform::XPUDeviceContext, float>);
REGISTER_OP_XPU_KERNEL(
    conv2d_grad,
    ops::GemmConvGradXPUKernel<paddle::platform::XPUDeviceContext, float>);
116 117 118
REGISTER_OP_XPU_KERNEL(
    depthwise_conv2d_grad,
    ops::GemmConvGradXPUKernel<paddle::platform::XPUDeviceContext, float>);
X
xiaoting 已提交
119
#endif