reduce_op.h 30.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
guosheng 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
guosheng 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
guosheng 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
guosheng 已提交
14 15 16

#pragma once

17
#include <algorithm>
18
#include <set>
19
#include <string>
W
whs 已提交
20
#include <vector>
21
#include "paddle/fluid/framework/data_type_transform.h"
22
#include "paddle/fluid/framework/tensor_util.h"
23
#include "paddle/fluid/operators/cast_op.h"
W
Wu Yi 已提交
24
#include "paddle/fluid/operators/reduce_ops/reduce_op_function.h"
25
#include "paddle/pten/kernels/funcs/math_function.h"
26 27 28

// only can include the headers in paddle/pten/api dirs
#include "paddle/pten/api/lib/utils/tensor_utils.h"
29
#include "paddle/pten/kernels/cpu/reduce.h"
30

31
#if defined(__HIPCC__) || defined(__NVCC__)
32
#include "paddle/pten/kernels/gpu/reduce.h"
33
#include "paddle/pten/kernels/gpu/reduce_grad.h"
34
#endif
G
guosheng 已提交
35 36 37 38

namespace paddle {
namespace operators {

39 40
#define HANDLE_DIM(NDIM, RDIM)                                            \
  if (ndim == NDIM && rdim == RDIM) {                                     \
41 42
    paddle::operators::ReduceFunctor<DeviceContext, OutT, NDIM, RDIM,     \
                                     Functor>(                            \
43 44
        context.template device_context<DeviceContext>(), *input, output, \
        dims, keep_dim);                                                  \
W
whs 已提交
45 46
  }

47
using Tensor = framework::Tensor;
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
using DDim = framework::DDim;

inline void GetShuffledDim(const DDim& src_dims, DDim* dst_dims,
                           const std::vector<int>& reduced_dims,
                           std::vector<int>* perm_axis) {
  // check if it's a reduced dim
  std::vector<bool> src_dims_check(src_dims.size(), false);
  size_t src_size = src_dims.size();
  size_t reduce_size = reduced_dims.size();
  for (size_t i = 0; i < reduce_size; ++i) {
    dst_dims->at(src_size - reduce_size + i) = src_dims[reduced_dims[i]];
    (*perm_axis)[src_size - reduce_size + i] = reduced_dims[i];
    src_dims_check[reduced_dims[i]] = true;
  }

  size_t offset = 0;
  for (size_t i = 0; i < src_dims_check.size(); ++i) {
    bool is_reduced = src_dims_check[i];
    if (!is_reduced) {
      (*perm_axis)[offset] = i;
      dst_dims->at(offset++) = src_dims[i];
    }
  }
}

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
static inline std::vector<int> GetReduceDim(const std::vector<int>& dims,
                                            int dim_size, bool reduce_all) {
  std::vector<int> reduce_dims;
  if (reduce_all) {
    reduce_dims.resize(dim_size);
    int reduce_size = reduce_dims.size();
    for (int i = 0; i < reduce_size; ++i) {
      reduce_dims[i] = i;
    }
  } else {
    for (auto e : dims) {
      PADDLE_ENFORCE_LT(e, dim_size,
                        paddle::platform::errors::InvalidArgument(
                            "ReduceOp: invalid axis, when x_dims is %d, "
                            "axis[i] should less than x_dims, but got %d.",
                            dim_size, e));
      reduce_dims.push_back(e >= 0 ? e : e + dim_size);
    }
  }
  return reduce_dims;
}
94 95 96 97 98 99 100 101 102 103 104
template <typename DeviceContext, typename OutT>
void GetShuffledInput(const framework::ExecutionContext& context,
                      const Tensor* input, Tensor* shuffled_input,
                      const std::vector<int>& dims) {
  DDim shuffled_dims(input->dims());
  std::vector<int> perm_axis(input->dims().size());
  GetShuffledDim(input->dims(), &shuffled_dims, dims, &perm_axis);

  shuffled_input->Resize(shuffled_dims);
  shuffled_input->mutable_data<OutT>(context.GetPlace());

105
  pten::funcs::TransposeNormal<DeviceContext, OutT> trans;
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
  trans(context.template device_context<DeviceContext>(), *input,
        shuffled_input, perm_axis);
}

inline void GetOriginDimFromShuffled(const DDim& src_dim,
                                     const std::vector<int>& dims,
                                     std::vector<int>* origin_dim) {
  DDim shuffled_dims(src_dim);
  size_t n = src_dim.size();
  std::vector<int> perm_axis(n);
  GetShuffledDim(src_dim, &shuffled_dims, dims, &perm_axis);
  for (size_t i = 0; i < n; ++i) {
    (*origin_dim)[perm_axis[i]] = i;
  }
}

template <typename DeviceContext, typename OutT, typename Functor>
void HandleLargeDim(const framework::ExecutionContext& context,
                    const Tensor* input, Tensor* output,
                    const std::vector<int>& dims, bool keep_dim) {
  //  shuffle the reduced dim to the end
  Tensor shuffled_input;
  GetShuffledInput<DeviceContext, OutT>(context, input, &shuffled_input, dims);

  // transpose to 2D tensor whose shape is {unreduced, reduced}.
  const int64_t unreduced = output->numel();
  const int64_t reduced = shuffled_input.numel() / unreduced;
  shuffled_input.Resize({unreduced, reduced});
  DDim output_dim = output->dims();
  output->Resize({unreduced});
136
  paddle::operators::ReduceFunctor<DeviceContext, OutT, 2, 1, Functor>(
137 138 139 140 141 142 143 144 145 146
      context.template device_context<DeviceContext>(), shuffled_input, output,
      {1}, keep_dim);
  output->Resize(output_dim);
}

template <typename DeviceContext, typename T, typename Functor>
void HandleLargeDimGrad(const framework::ExecutionContext& context,
                        const framework::Tensor* x,
                        const framework::Tensor* out,
                        const framework::Tensor* dout, framework::Tensor* dx,
147
                        Functor functor, const std::vector<int>& dims) {
148 149 150 151 152 153 154 155 156 157 158 159 160
  const int64_t unreduced = out->numel();
  const int64_t reduced = x->numel() / unreduced;
  DDim out_dim(out->dims());
  DDim x_dim(x->dims());
  // transpose and reshape X
  Tensor shuffled_x;
  GetShuffledInput<DeviceContext, T>(context, x, &shuffled_x, dims);
  DDim shuffled_dim = shuffled_x.dims();
  shuffled_x.Resize({unreduced, reduced});
  // reshape dX {unreduced, reduced}
  dx->Resize({unreduced, reduced});
  ReduceGradFunctor<DeviceContext, T, 2, Functor>(
      context.template device_context<DeviceContext>(), shuffled_x, *out, *dout,
161
      dx, functor, {1});
162 163 164 165 166 167 168
  // transpose dX
  std::vector<int> origin_axis(x_dim.size());
  GetOriginDimFromShuffled(x_dim, dims, &origin_axis);
  Tensor dx_tmp;
  framework::TensorCopy(*dx, context.GetPlace(), &dx_tmp);
  dx_tmp.Resize(shuffled_dim);
  dx->Resize(x_dim);
169
  pten::funcs::TransposeNormal<DeviceContext, T> trans;
170 171 172
  trans(context.template device_context<DeviceContext>(), dx_tmp, dx,
        origin_axis);
}
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

template <typename DeviceContext, typename T, typename Functor>
struct ReduceKernelFunctor {
  const Tensor* input;
  Tensor* output;
  std::vector<int> dims;
  bool keep_dim;
  bool reduce_all;
  const framework::ExecutionContext& context;
  ReduceKernelFunctor(const Tensor* input, Tensor* output,
                      const std::vector<int>& dims, bool keep_dim,
                      bool reduce_all,
                      const framework::ExecutionContext& context)
      : input(input),
        output(output),
        dims(dims),
        keep_dim(keep_dim),
        reduce_all(reduce_all),
        context(context) {}

  template <typename OutT>
  void apply() const {
    output->mutable_data<OutT>(context.GetPlace());
    if (reduce_all) {
      // Flatten and reduce 1-D tensor
      auto x = EigenVector<OutT>::Flatten(*input);
      auto out = EigenScalar<OutT>::From(*output);
      auto& place =
          *context.template device_context<DeviceContext>().eigen_device();
      auto reduce_dim = Eigen::array<int, 1>({{0}});
      Functor functor;
      functor(place, &x, &out, reduce_dim);
    } else {
      int ndim = input->dims().size();
      int rdim = dims.size();
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
      if (ndim > 6) {
        HandleLargeDim<DeviceContext, OutT, Functor>(context, input, output,
                                                     dims, keep_dim);
      } else {
        HANDLE_DIM(6, 5);
        HANDLE_DIM(6, 4);
        HANDLE_DIM(6, 3);
        HANDLE_DIM(6, 2);
        HANDLE_DIM(6, 1);
        HANDLE_DIM(5, 4);
        HANDLE_DIM(5, 3);
        HANDLE_DIM(5, 2);
        HANDLE_DIM(5, 1);
        HANDLE_DIM(4, 3);
        HANDLE_DIM(4, 2);
        HANDLE_DIM(4, 1);
        HANDLE_DIM(3, 2);
        HANDLE_DIM(3, 1);
        HANDLE_DIM(2, 1);
        HANDLE_DIM(1, 1);
      }
229 230 231
    }
  }
};
Q
QI JUN 已提交
232
template <typename DeviceContext, typename T, typename Functor>
Y
Yu Yang 已提交
233
class ReduceKernel : public framework::OpKernel<T> {
234 235 236 237 238 239 240 241
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    bool reduce_all = context.Attr<bool>("reduce_all");
    auto* output = context.Output<Tensor>("Out");
    auto dims = context.Attr<std::vector<int>>("dim");
    bool keep_dim = context.Attr<bool>("keep_dim");
    int out_dtype = context.Attr<int>("out_dtype");
    framework::proto::VarType::Type cast_out_dtype;
242
    auto* input = context.Input<Tensor>("X");
243

244 245
    if (out_dtype < 0) {
      cast_out_dtype =
246
          static_cast<framework::proto::VarType::Type>(input->type());
247 248 249
    } else {
      cast_out_dtype = static_cast<framework::proto::VarType::Type>(out_dtype);
    }
250 251 252 253 254 255 256 257 258

    auto& dev_ctx = context.device_context<DeviceContext>();
    output->mutable_data(
        dev_ctx.GetPlace(),
        static_cast<framework::proto::VarType::Type>(cast_out_dtype));

    std::vector<int64_t> tmp_dims(dims.begin(), dims.end());

    // call new kernel
W
Wilber 已提交
259 260 261 262
    pten::Reduce<typename framework::ConvertToPtenContext<DeviceContext>::TYPE,
                 T, Functor>(
        static_cast<const typename framework::ConvertToPtenContext<
            DeviceContext>::TYPE&>(dev_ctx),
263 264
        *input, reduce_all, tmp_dims, keep_dim,
        pten::TransToPtenDataType(cast_out_dtype), output);
265 266 267 268
  }
};
template <typename DeviceContext, typename OutT, typename Functor>
class BoolReduceKernel : public framework::OpKernel<OutT> {
G
guosheng 已提交
269 270
 public:
  void Compute(const framework::ExecutionContext& context) const override {
271
    bool reduce_all = context.Attr<bool>("reduce_all");
272 273
    auto* input = context.Input<Tensor>("X");
    auto* output = context.Output<Tensor>("Out");
274
    output->mutable_data<OutT>(context.GetPlace());
275 276 277 278

    auto dims = context.Attr<std::vector<int>>("dim");
    bool keep_dim = context.Attr<bool>("keep_dim");

279 280 281 282 283 284 285 286 287 288 289 290
    // The dims has full dim, set the reduce_all is True
    const auto& input_dim_size = context.Input<Tensor>("X")->dims().size();
    std::set<int> dims_set(dims.begin(), dims.end());
    bool full_dim = true;
    for (auto i = 0; i < input_dim_size; i++) {
      if (dims_set.find(i) == dims_set.end()) {
        full_dim = false;
        break;
      }
    }
    reduce_all = (reduce_all || full_dim);

291 292
    if (reduce_all) {
      // Flatten and reduce 1-D tensor
293 294
      auto x = EigenVector<OutT>::Flatten(*input);
      auto out = EigenScalar<OutT>::From(*output);
295 296 297 298
      auto& place =
          *context.template device_context<DeviceContext>().eigen_device();
      auto reduce_dim = Eigen::array<int, 1>({{0}});
      Functor functor;
299
      functor(place, &x, &out, reduce_dim);
300
    } else {
301 302
      int ndim = input->dims().size();
      int rdim = dims.size();
303
      // comments for accelerating compiling temporarily.
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
      if (ndim > 6) {
        HandleLargeDim<DeviceContext, OutT, Functor>(context, input, output,
                                                     dims, keep_dim);
      } else {
        HANDLE_DIM(6, 5);
        HANDLE_DIM(6, 4);
        HANDLE_DIM(6, 3);
        HANDLE_DIM(6, 2);
        HANDLE_DIM(6, 1);
        HANDLE_DIM(5, 4);
        HANDLE_DIM(5, 3);
        HANDLE_DIM(5, 2);
        HANDLE_DIM(5, 1);
        HANDLE_DIM(4, 3);
        HANDLE_DIM(4, 2);
        HANDLE_DIM(4, 1);
        HANDLE_DIM(3, 2);
        HANDLE_DIM(3, 1);
        HANDLE_DIM(2, 1);
        HANDLE_DIM(1, 1);
      }
G
guosheng 已提交
325 326 327
    }
  }
};
328

329 330 331 332 333
template <typename DeviceContext, typename T, typename Functor>
void LaunchReduceGradKernel(const framework::ExecutionContext& context,
                            const framework::Tensor* input0,
                            const framework::Tensor* input1,
                            const framework::Tensor* input2,
334
                            paddle::framework::Tensor* output, Functor functor,
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
                            const std::vector<int>& dims,
                            bool reduce_all = false) {
  if (reduce_all) {
    auto x = EigenVector<T>::Flatten(*input0);
    auto x_reduce = EigenVector<T>::Flatten(*input1);
    auto x_reduce_grad = EigenVector<T>::Flatten(*input2);
    auto x_grad = EigenVector<T>::Flatten(*output);
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
    auto broadcast_dim =
        Eigen::array<int, 1>({{static_cast<int>(input0->numel())}});
    functor(place, &x, &x_reduce, &x_grad, &x_reduce_grad, broadcast_dim,
            broadcast_dim[0]);
  } else {
    int rank = input0->dims().size();
    switch (rank) {
      case 1:
        ReduceGradFunctor<DeviceContext, T, 1, Functor>(
            context.template device_context<DeviceContext>(), *input0, *input1,
354
            *input2, output, functor, dims);
355 356 357 358
        break;
      case 2:
        ReduceGradFunctor<DeviceContext, T, 2, Functor>(
            context.template device_context<DeviceContext>(), *input0, *input1,
359
            *input2, output, functor, dims);
360 361 362 363
        break;
      case 3:
        ReduceGradFunctor<DeviceContext, T, 3, Functor>(
            context.template device_context<DeviceContext>(), *input0, *input1,
364
            *input2, output, functor, dims);
365 366 367 368
        break;
      case 4:
        ReduceGradFunctor<DeviceContext, T, 4, Functor>(
            context.template device_context<DeviceContext>(), *input0, *input1,
369
            *input2, output, functor, dims);
370 371 372 373
        break;
      case 5:
        ReduceGradFunctor<DeviceContext, T, 5, Functor>(
            context.template device_context<DeviceContext>(), *input0, *input1,
374
            *input2, output, functor, dims);
375 376 377 378
        break;
      case 6:
        ReduceGradFunctor<DeviceContext, T, 6, Functor>(
            context.template device_context<DeviceContext>(), *input0, *input1,
379
            *input2, output, functor, dims);
380 381
        break;
      default:
382 383
        HandleLargeDimGrad<DeviceContext, T, Functor>(
            context, input0, input1, input2, output, functor, dims);
384 385 386 387 388
        break;
    }
  }
}

389 390
template <typename DeviceContext, typename T, typename Functor,
          bool kNoNeedBufferX = false, bool kNoNeedBufferY = false>
Y
Yu Yang 已提交
391
class ReduceGradKernel : public framework::OpKernel<T> {
G
guosheng 已提交
392
 public:
393 394
  void ComputeFromInput(const Tensor* input2,
                        const framework::ExecutionContext& context) const {
395
    bool reduce_all = context.Attr<bool>("reduce_all");
396 397 398
    auto dims = context.Attr<std::vector<int>>("dim");
    auto* input0 = context.Input<Tensor>("X");
    auto* input1 = context.Input<Tensor>("Out");
399

400 401 402
    auto* output = context.Output<Tensor>(framework::GradVarName("X"));
    output->mutable_data<T>(context.GetPlace());

403 404 405 406 407 408 409 410 411 412 413
    // The dims has full dim, set the reduce_all is True
    const auto& input_dim_size = context.Input<Tensor>("X")->dims().size();
    std::set<int> dims_set(dims.begin(), dims.end());
    bool full_dim = true;
    for (auto i = 0; i < input_dim_size; i++) {
      if (dims_set.find(i) == dims_set.end()) {
        full_dim = false;
        break;
      }
    }
    reduce_all = (reduce_all || full_dim);
414 415 416 417 418 419 420 421 422 423 424
    // NOTE: EigenTensor::From() uses tensor->data()
    // if op has NoNeedBufferVarsInferer, the corresponding kNoNeedBufferX or
    // kNoNeedBufferY should set true
    // and use fake var that has same dims.
    if (kNoNeedBufferX) {
      input0 = output;
    }
    if (kNoNeedBufferY) {
      input1 = input2;
    }

425 426
    const std::vector<int> const_dims = dims;

L
lvmengsi 已提交
427 428 429
    // NOTE(dengkaipeng): Out is unnecessary in some reduce kernel and
    // not be set as Input in grad Maker, use Out_grad to replace here
    if (!input1) input1 = input2;
430 431 432 433
    Functor functor;
    LaunchReduceGradKernel<DeviceContext, T, Functor>(context, input0, input1,
                                                      input2, output, functor,
                                                      const_dims, reduce_all);
G
guosheng 已提交
434
  }
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454

  void Compute(const framework::ExecutionContext& context) const override {
    int in_dtype = context.Attr<int>("in_dtype");
    if (in_dtype >= 0) {
      Tensor tmp_tensor;
      auto* pre_input = context.Input<Tensor>(framework::GradVarName("Out"));
      auto in_kernel_type =
          framework::OpKernelType(pre_input->type(), context.GetPlace());
      auto out_kernel_type = framework::OpKernelType(
          static_cast<framework::proto::VarType::Type>(in_dtype),
          context.GetPlace());
      framework::TransDataType(in_kernel_type, out_kernel_type, *pre_input,
                               &tmp_tensor);
      ComputeFromInput(&tmp_tensor, context);

    } else {
      auto* input2 = context.Input<Tensor>(framework::GradVarName("Out"));
      ComputeFromInput(input2, context);
    }
  }
455
};
G
guosheng 已提交
456

457 458 459
class ReduceOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
G
guosheng 已提交
460

461
  void InferShape(framework::InferShapeContext* ctx) const override {
462 463
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "ReduceOp");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "ReduceOp");
464 465 466
    auto x_dims = ctx->GetInputDim("X");
    auto x_rank = x_dims.size();
    auto dims = ctx->Attrs().Get<std::vector<int>>("dim");
467 468 469 470 471 472
    PADDLE_ENFORCE_GT(dims.size(), 0,
                      platform::errors::InvalidArgument(
                          "The input dim dimensions of ReduceOp "
                          "should be greater than 0. But received the dim "
                          "dimesions of Reduce = %d.",
                          dims.size()));
473

474
    for (size_t i = 0; i < dims.size(); ++i) {
475
      PADDLE_ENFORCE_LT(dims[i], x_rank,
476 477 478 479 480
                        platform::errors::InvalidArgument(
                            "The reduce dim index %d should be in the "
                            "range [-dimension(X), dimension(X)] "
                            "which dimesion = %d. But received dim index = %d.",
                            i, x_rank, dims[i]));
481 482 483 484 485 486
      PADDLE_ENFORCE_GE(dims[i], -x_rank,
                        platform::errors::InvalidArgument(
                            "The reduce dim index %d should be in the "
                            "range [-dimension(X), dimension(X)] "
                            "which dimesion = %d. But received dim index = %d.",
                            i, x_rank, dims[i]));
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
      if (dims[i] < 0) dims[i] = x_rank + dims[i];
    }
    sort(dims.begin(), dims.end());
    bool reduce_all = ctx->Attrs().Get<bool>("reduce_all");
    bool keep_dim = ctx->Attrs().Get<bool>("keep_dim");
    if (reduce_all) {
      if (keep_dim)
        ctx->SetOutputDim(
            "Out", framework::make_ddim(std::vector<int64_t>(x_rank, 1)));
      else
        ctx->SetOutputDim("Out", {1});
    } else {
      auto dims_vector = vectorize(x_dims);
      if (keep_dim) {
        for (size_t i = 0; i < dims.size(); ++i) {
          dims_vector[dims[i]] = 1;
        }
      } else {
        const int kDelFlag = -2;
        for (size_t i = 0; i < dims.size(); ++i) {
          dims_vector[dims[i]] = kDelFlag;
        }
        dims_vector.erase(
            remove(dims_vector.begin(), dims_vector.end(), kDelFlag),
            dims_vector.end());
      }
513 514 515
      if (!keep_dim && dims_vector.size() == 0) {
        dims_vector.push_back(1);
      }
516 517
      auto out_dims = framework::make_ddim(dims_vector);
      ctx->SetOutputDim("Out", out_dims);
518
      if (dims.size() > 0 && dims[0] != 0) {
519 520 521 522 523
        // Only pass LoD when not reducing on the first dim.
        ctx->ShareLoD("X", /*->*/ "Out");
      }
    }
  }
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");

    if (ctx.Input<paddle::framework::LoDTensor>("X")->dims().size() > 5)
      return framework::OpKernelType(input_data_type, ctx.GetPlace());

#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif

    if (input_data_type == framework::proto::VarType::FP16) {
F
furnace 已提交
542 543 544
      PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx.GetPlace()) ||
                            platform::is_npu_place(ctx.GetPlace()),
                        true,
545
                        platform::errors::InvalidArgument(
F
furnace 已提交
546
                            "float16 can only be used on GPU or NPU place"));
547 548 549
    }
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
550 551
};

G
Guo Sheng 已提交
552 553 554 555 556 557 558 559 560 561 562 563 564
class ReduceOpUseInputPlace : public ReduceOp {
 public:
  using ReduceOp::ReduceOp;

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    framework::OpKernelType kt = OperatorWithKernel::GetExpectedKernelType(ctx);
    kt.place_ = ctx.Input<framework::LoDTensor>("X")->place();
    return kt;
  }
};

565 566 567
class ReduceGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
W
whs 已提交
568

569
  void InferShape(framework::InferShapeContext* ctx) const override {
570 571 572
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "ReduceOp");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   "Out@GRAD", "ReduceOp");
573 574 575
    auto x_dims = ctx->GetInputDim("X");
    auto x_rank = x_dims.size();
    auto dims = ctx->Attrs().Get<std::vector<int>>("dim");
W
whs 已提交
576
    for (size_t i = 0; i < dims.size(); ++i) {
577
      PADDLE_ENFORCE_LT(dims[i], x_rank,
578 579 580 581 582
                        platform::errors::InvalidArgument(
                            "The reduce dim index %d should be in the "
                            "range [-dimension(X), dimension(X)], "
                            "which dimesion = %d. But received dim index = %d.",
                            i, x_rank, dims[i]));
W
whs 已提交
583
      if (dims[i] < 0) dims[i] = x_rank + dims[i];
584 585 586 587 588 589
    }
    sort(dims.begin(), dims.end());
    auto x_grad_name = framework::GradVarName("X");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
      ctx->ShareLoD("X", /*->*/ x_grad_name);
W
whs 已提交
590
    }
591
  }
592 593 594 595

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
596
    int out_dtype = ctx.Attr<int>("out_dtype");
J
jakpiase 已提交
597
    auto input_data_type =
598 599 600 601
        (out_dtype >= 0)
            ? static_cast<framework::proto::VarType::Type>(out_dtype)
            : OperatorWithKernel::IndicateVarDataType(
                  ctx, framework::GradVarName("Out"));
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
#ifdef PADDLE_WITH_MKLDNN
    auto CanMKLDNNReduceGradBeUsed = [&]() {
      auto dx_dims = ctx.Input<Tensor>("X")->dims();

      if (dx_dims.size() > 5) return false;  // max 5D tensor is supported

      return true;
    };
    if (this->CanMKLDNNBeUsed(ctx, input_data_type) &&
        CanMKLDNNReduceGradBeUsed()) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif

    return framework::OpKernelType(input_data_type, ctx.GetPlace());
619
  }
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
};

class ReduceOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() final {
    AddInput("X",
             "(Tensor) The input tensor. Tensors with rank at most 6 are "
             "supported.");
    AddOutput("Out", "(Tensor) The result tensor.");
    AddAttr<std::vector<int>>(
        "dim",
        "(list<int>, default {0}) The dimensions to reduce. "
        "Must be in the range [-rank(input), rank(input)). "
        "If `dim[i] < 0`, the dims[i] to reduce is `rank + dims[i]`. "
        "Note that reducing on the first dim will make the LoD info lost.")
        .SetDefault({0});
    AddAttr<bool>("keep_dim",
                  "(bool, default false) "
                  "If true, retain the reduced dimension with length 1.")
        .SetDefault(false);
    AddAttr<bool>("reduce_all",
                  "(bool, default false) "
                  "If true, output a scalar reduced along all dimensions.")
        .SetDefault(false);
644 645 646 647 648 649 650 651 652 653
    AddAttr<int>("in_dtype",
                 "(int, default -1)"
                 "The dtype of input, default value is -1, the user could not "
                 "set this value.")
        .SetDefault(-1);
    AddAttr<int>(
        "out_dtype",
        "(int, default -1)"
        "The dtype of output, default value is -1, the dtype is same as intput")
        .SetDefault(-1);
654 655
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
656 657
        .SetDefault(false)
        .AsExtra();
658 659
    AddComment(string::Sprintf(R"DOC(
%s Operator.
W
whs 已提交
660

661 662 663
This operator computes the %s of input tensor along the given dimension.
The result tensor has 1 fewer dimension than the input unless keep_dim is true.
If reduce_all is true, just reduce along all dimensions and output a scalar.
W
whs 已提交
664

665 666
)DOC",
                               GetOpType(), GetName()));
G
guosheng 已提交
667
  }
668 669 670 671

 protected:
  virtual std::string GetName() const = 0;
  virtual std::string GetOpType() const = 0;
G
guosheng 已提交
672 673
};

674
#if defined(__HIPCC__) || defined(__NVCC__)
675 676
template <typename T, template <typename> class ReduceOp,
          template <typename, typename> class TransformOp>
677 678 679 680 681 682 683 684 685
class ReduceCudaKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    bool reduce_all = context.Attr<bool>("reduce_all");
    const Tensor* input = context.Input<Tensor>("X");
    Tensor* output = context.Output<Tensor>("Out");
    auto out_dtype = context.Attr<int>("out_dtype");
    std::vector<int> dims = context.Attr<std::vector<int>>("dim");

686 687
    auto& dev_ctx = context.cuda_device_context();

688
    if (out_dtype >= 0) {
689 690 691
      output->mutable_data(
          dev_ctx.GetPlace(),
          static_cast<framework::proto::VarType::Type>(out_dtype));
692
    } else {
693 694 695
      output->mutable_data(
          dev_ctx.GetPlace(),
          static_cast<framework::proto::VarType::Type>(input->type()));
696
    }
697 698 699 700 701 702

    std::vector<int64_t> dims_int64{dims.begin(), dims.end()};

    auto pt_out_dtype = pten::TransToPtenDataType(
        static_cast<framework::proto::VarType::Type>(out_dtype));

703 704
    pten::Reduce<T, ReduceOp, TransformOp>(
        dev_ctx, *input, reduce_all, dims_int64, false, pt_out_dtype, output);
705 706
  }
};
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755

template <typename T, template <typename, typename> class TransformOp>
class ReduceCudaGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    bool reduce_all = context.Attr<bool>("reduce_all");
    std::vector<int> dims = context.Attr<std::vector<int>>("dim");
    auto* in_x = context.Input<Tensor>("X");
    auto* d_out =
        context.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* d_x = context.Output<framework::Tensor>(framework::GradVarName("X"));
    auto out_dtype = context.Attr<int>("in_dtype");
    // get reduce_dim and reduce_num for reduce_mean_grad
    int dim_size = in_x->dims().size();
    std::vector<int> reduce_dims = GetReduceDim(dims, dim_size, reduce_all);
    auto update_dims = vectorize(d_x->dims());
    int reduce_num = 1;
    for (auto i : reduce_dims) {
      reduce_num *= (in_x->dims())[i];
      update_dims[i] = 1;
    }
    // make new tensor
    framework::Tensor new_d_out(d_out->type());
    new_d_out.ShareDataWith(*d_out);
    new_d_out.Resize(paddle::framework::make_ddim(update_dims));
    auto& dev_ctx = context.cuda_device_context();
    if (out_dtype > 0) {
      d_x->mutable_data(
          dev_ctx.GetPlace(),
          static_cast<framework::proto::VarType::Type>(out_dtype));
    } else {
      d_x->mutable_data(
          dev_ctx.GetPlace(),
          static_cast<framework::proto::VarType::Type>(d_out->type()));
    }
    auto pt_d_out = paddle::experimental::MakePtenDenseTensor(new_d_out);
    auto pt_d_x = paddle::experimental::MakePtenDenseTensor(*d_x);
    auto pt_out_dtype = pten::TransToPtenDataType(
        static_cast<framework::proto::VarType::Type>(out_dtype));
    if (out_dtype <= 0) {
      pt_out_dtype = pten::TransToPtenDataType(
          static_cast<framework::proto::VarType::Type>(d_out->type()));
    }
    using MPType = typename kps::details::MPTypeTrait<T>::Type;
    pten::ReduceGrad<T, TransformOp<T, MPType>>(
        dev_ctx, pt_d_out.get(), pt_d_x.get(), pt_out_dtype,
        TransformOp<T, MPType>(reduce_num));
  }
};
756 757
#endif

G
guosheng 已提交
758 759
}  // namespace operators
}  // namespace paddle
760

761 762
namespace ops = paddle::operators;

H
hong 已提交
763 764 765 766 767 768 769 770 771 772 773 774 775 776
#define REGISTER_REDUCE_OP(op_name)                                           \
  class __##op_name##Maker__ : public ops::ReduceOpMaker {                    \
   protected:                                                                 \
    virtual std::string GetName() const { return #op_name; }                  \
    virtual std::string GetOpType() const { return "Reduce " #op_name; }      \
  };                                                                          \
  REGISTER_OPERATOR(                                                          \
      op_name, ops::ReduceOp, __##op_name##Maker__,                           \
      paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>, \
      paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase,       \
                                            true>);                           \
  REGISTER_OPERATOR(op_name##_grad, ops::ReduceGradOp)

#define REGISTER_REDUCE_OP_WITHOUT_GRAD(op_name, ...)                    \
777 778 779 780 781
  class __##op_name##Maker__ : public ops::ReduceOpMaker {               \
   protected:                                                            \
    virtual std::string GetName() const { return #op_name; }             \
    virtual std::string GetOpType() const { return "Reduce " #op_name; } \
  };                                                                     \
H
hong 已提交
782 783 784 785
  REGISTER_OPERATOR(                                                     \
      op_name, ops::ReduceOp##__VA_ARGS__, __##op_name##Maker__,         \
      paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,    \
      paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);