reduce_op.h 28.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
guosheng 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
guosheng 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
guosheng 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
guosheng 已提交
14 15 16

#pragma once

17
#include <algorithm>
18
#include <set>
19
#include <string>
W
whs 已提交
20
#include <vector>
21
#include "paddle/fluid/framework/data_type_transform.h"
22
#include "paddle/fluid/framework/tensor_util.h"
23
#include "paddle/fluid/operators/cast_op.h"
24
#include "paddle/fluid/operators/math/math_function.h"
W
Wu Yi 已提交
25
#include "paddle/fluid/operators/reduce_ops/reduce_op_function.h"
26 27 28 29 30

// only can include the headers in paddle/pten/api dirs
#include "paddle/pten/api/lib/utils/tensor_utils.h"
#include "paddle/pten/include/core.h"
#include "paddle/pten/include/math.h"
C
Chen Weihang 已提交
31
#include "paddle/pten/kernels/hybird/general/reduce_impl.h"
32

33
#if defined(__HIPCC__) || defined(__NVCC__)
34
#include "paddle/pten/kernels/hybird/cuda/reduce/reduce.h"
35
#endif
G
guosheng 已提交
36 37 38 39

namespace paddle {
namespace operators {

40 41
#define HANDLE_DIM(NDIM, RDIM)                                            \
  if (ndim == NDIM && rdim == RDIM) {                                     \
42
    ReduceFunctor<DeviceContext, OutT, NDIM, RDIM, Functor>(              \
43 44
        context.template device_context<DeviceContext>(), *input, output, \
        dims, keep_dim);                                                  \
W
whs 已提交
45 46
  }

47
using Tensor = framework::Tensor;
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
using DDim = framework::DDim;

inline void GetShuffledDim(const DDim& src_dims, DDim* dst_dims,
                           const std::vector<int>& reduced_dims,
                           std::vector<int>* perm_axis) {
  // check if it's a reduced dim
  std::vector<bool> src_dims_check(src_dims.size(), false);
  size_t src_size = src_dims.size();
  size_t reduce_size = reduced_dims.size();
  for (size_t i = 0; i < reduce_size; ++i) {
    dst_dims->at(src_size - reduce_size + i) = src_dims[reduced_dims[i]];
    (*perm_axis)[src_size - reduce_size + i] = reduced_dims[i];
    src_dims_check[reduced_dims[i]] = true;
  }

  size_t offset = 0;
  for (size_t i = 0; i < src_dims_check.size(); ++i) {
    bool is_reduced = src_dims_check[i];
    if (!is_reduced) {
      (*perm_axis)[offset] = i;
      dst_dims->at(offset++) = src_dims[i];
    }
  }
}

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
static inline std::vector<int> GetReduceDim(const std::vector<int>& dims,
                                            int dim_size, bool reduce_all) {
  std::vector<int> reduce_dims;
  if (reduce_all) {
    reduce_dims.resize(dim_size);
    int reduce_size = reduce_dims.size();
    for (int i = 0; i < reduce_size; ++i) {
      reduce_dims[i] = i;
    }
  } else {
    for (auto e : dims) {
      PADDLE_ENFORCE_LT(e, dim_size,
                        paddle::platform::errors::InvalidArgument(
                            "ReduceOp: invalid axis, when x_dims is %d, "
                            "axis[i] should less than x_dims, but got %d.",
                            dim_size, e));
      reduce_dims.push_back(e >= 0 ? e : e + dim_size);
    }
  }
  return reduce_dims;
}
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
template <typename DeviceContext, typename OutT>
void GetShuffledInput(const framework::ExecutionContext& context,
                      const Tensor* input, Tensor* shuffled_input,
                      const std::vector<int>& dims) {
  DDim shuffled_dims(input->dims());
  std::vector<int> perm_axis(input->dims().size());
  GetShuffledDim(input->dims(), &shuffled_dims, dims, &perm_axis);

  shuffled_input->Resize(shuffled_dims);
  shuffled_input->mutable_data<OutT>(context.GetPlace());

  math::TransposeNormal<DeviceContext, OutT> trans;
  trans(context.template device_context<DeviceContext>(), *input,
        shuffled_input, perm_axis);
}

inline void GetOriginDimFromShuffled(const DDim& src_dim,
                                     const std::vector<int>& dims,
                                     std::vector<int>* origin_dim) {
  DDim shuffled_dims(src_dim);
  size_t n = src_dim.size();
  std::vector<int> perm_axis(n);
  GetShuffledDim(src_dim, &shuffled_dims, dims, &perm_axis);
  for (size_t i = 0; i < n; ++i) {
    (*origin_dim)[perm_axis[i]] = i;
  }
}

template <typename DeviceContext, typename OutT, typename Functor>
void HandleLargeDim(const framework::ExecutionContext& context,
                    const Tensor* input, Tensor* output,
                    const std::vector<int>& dims, bool keep_dim) {
  //  shuffle the reduced dim to the end
  Tensor shuffled_input;
  GetShuffledInput<DeviceContext, OutT>(context, input, &shuffled_input, dims);

  // transpose to 2D tensor whose shape is {unreduced, reduced}.
  const int64_t unreduced = output->numel();
  const int64_t reduced = shuffled_input.numel() / unreduced;
  shuffled_input.Resize({unreduced, reduced});
  DDim output_dim = output->dims();
  output->Resize({unreduced});
  ReduceFunctor<DeviceContext, OutT, 2, 1, Functor>(
      context.template device_context<DeviceContext>(), shuffled_input, output,
      {1}, keep_dim);
  output->Resize(output_dim);
}

template <typename DeviceContext, typename T, typename Functor>
void HandleLargeDimGrad(const framework::ExecutionContext& context,
                        const framework::Tensor* x,
                        const framework::Tensor* out,
                        const framework::Tensor* dout, framework::Tensor* dx,
                        const std::vector<int>& dims) {
  const int64_t unreduced = out->numel();
  const int64_t reduced = x->numel() / unreduced;
  DDim out_dim(out->dims());
  DDim x_dim(x->dims());
  // transpose and reshape X
  Tensor shuffled_x;
  GetShuffledInput<DeviceContext, T>(context, x, &shuffled_x, dims);
  DDim shuffled_dim = shuffled_x.dims();
  shuffled_x.Resize({unreduced, reduced});
  // reshape dX {unreduced, reduced}
  dx->Resize({unreduced, reduced});
  ReduceGradFunctor<DeviceContext, T, 2, Functor>(
      context.template device_context<DeviceContext>(), shuffled_x, *out, *dout,
      dx, {1});
  // transpose dX
  std::vector<int> origin_axis(x_dim.size());
  GetOriginDimFromShuffled(x_dim, dims, &origin_axis);
  Tensor dx_tmp;
  framework::TensorCopy(*dx, context.GetPlace(), &dx_tmp);
  dx_tmp.Resize(shuffled_dim);
  dx->Resize(x_dim);
  math::TransposeNormal<DeviceContext, T> trans;
  trans(context.template device_context<DeviceContext>(), dx_tmp, dx,
        origin_axis);
}
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

template <typename DeviceContext, typename T, typename Functor>
struct ReduceKernelFunctor {
  const Tensor* input;
  Tensor* output;
  std::vector<int> dims;
  bool keep_dim;
  bool reduce_all;
  const framework::ExecutionContext& context;
  ReduceKernelFunctor(const Tensor* input, Tensor* output,
                      const std::vector<int>& dims, bool keep_dim,
                      bool reduce_all,
                      const framework::ExecutionContext& context)
      : input(input),
        output(output),
        dims(dims),
        keep_dim(keep_dim),
        reduce_all(reduce_all),
        context(context) {}

  template <typename OutT>
  void apply() const {
    output->mutable_data<OutT>(context.GetPlace());
    if (reduce_all) {
      // Flatten and reduce 1-D tensor
      auto x = EigenVector<OutT>::Flatten(*input);
      auto out = EigenScalar<OutT>::From(*output);
      auto& place =
          *context.template device_context<DeviceContext>().eigen_device();
      auto reduce_dim = Eigen::array<int, 1>({{0}});
      Functor functor;
      functor(place, &x, &out, reduce_dim);
    } else {
      int ndim = input->dims().size();
      int rdim = dims.size();
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
      if (ndim > 6) {
        HandleLargeDim<DeviceContext, OutT, Functor>(context, input, output,
                                                     dims, keep_dim);
      } else {
        HANDLE_DIM(6, 5);
        HANDLE_DIM(6, 4);
        HANDLE_DIM(6, 3);
        HANDLE_DIM(6, 2);
        HANDLE_DIM(6, 1);
        HANDLE_DIM(5, 4);
        HANDLE_DIM(5, 3);
        HANDLE_DIM(5, 2);
        HANDLE_DIM(5, 1);
        HANDLE_DIM(4, 3);
        HANDLE_DIM(4, 2);
        HANDLE_DIM(4, 1);
        HANDLE_DIM(3, 2);
        HANDLE_DIM(3, 1);
        HANDLE_DIM(2, 1);
        HANDLE_DIM(1, 1);
      }
229 230 231
    }
  }
};
Q
QI JUN 已提交
232
template <typename DeviceContext, typename T, typename Functor>
Y
Yu Yang 已提交
233
class ReduceKernel : public framework::OpKernel<T> {
234 235 236 237 238 239 240 241
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    bool reduce_all = context.Attr<bool>("reduce_all");
    auto* output = context.Output<Tensor>("Out");
    auto dims = context.Attr<std::vector<int>>("dim");
    bool keep_dim = context.Attr<bool>("keep_dim");
    int out_dtype = context.Attr<int>("out_dtype");
    framework::proto::VarType::Type cast_out_dtype;
242
    auto* input = context.Input<Tensor>("X");
243

244 245
    if (out_dtype < 0) {
      cast_out_dtype =
246
          static_cast<framework::proto::VarType::Type>(input->type());
247 248 249
    } else {
      cast_out_dtype = static_cast<framework::proto::VarType::Type>(out_dtype);
    }
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264

    auto& dev_ctx = context.device_context<DeviceContext>();
    output->mutable_data(
        dev_ctx.GetPlace(),
        static_cast<framework::proto::VarType::Type>(cast_out_dtype));

    auto pt_x = paddle::experimental::MakePtenDenseTensor(*input);
    auto pt_out = paddle::experimental::MakePtenDenseTensor(*output);

    std::vector<int64_t> tmp_dims(dims.begin(), dims.end());

    // call new kernel
    pten::general::Reduce<DeviceContext, T, Functor>(
        dev_ctx, *pt_x.get(), reduce_all, tmp_dims, keep_dim,
        pten::TransToPtenDataType(cast_out_dtype), pt_out.get());
265 266 267 268
  }
};
template <typename DeviceContext, typename OutT, typename Functor>
class BoolReduceKernel : public framework::OpKernel<OutT> {
G
guosheng 已提交
269 270
 public:
  void Compute(const framework::ExecutionContext& context) const override {
271
    bool reduce_all = context.Attr<bool>("reduce_all");
272 273
    auto* input = context.Input<Tensor>("X");
    auto* output = context.Output<Tensor>("Out");
274
    output->mutable_data<OutT>(context.GetPlace());
275 276 277 278

    auto dims = context.Attr<std::vector<int>>("dim");
    bool keep_dim = context.Attr<bool>("keep_dim");

279 280 281 282 283 284 285 286 287 288 289 290
    // The dims has full dim, set the reduce_all is True
    const auto& input_dim_size = context.Input<Tensor>("X")->dims().size();
    std::set<int> dims_set(dims.begin(), dims.end());
    bool full_dim = true;
    for (auto i = 0; i < input_dim_size; i++) {
      if (dims_set.find(i) == dims_set.end()) {
        full_dim = false;
        break;
      }
    }
    reduce_all = (reduce_all || full_dim);

291 292
    if (reduce_all) {
      // Flatten and reduce 1-D tensor
293 294
      auto x = EigenVector<OutT>::Flatten(*input);
      auto out = EigenScalar<OutT>::From(*output);
295 296 297 298
      auto& place =
          *context.template device_context<DeviceContext>().eigen_device();
      auto reduce_dim = Eigen::array<int, 1>({{0}});
      Functor functor;
299
      functor(place, &x, &out, reduce_dim);
300
    } else {
301 302
      int ndim = input->dims().size();
      int rdim = dims.size();
303
      // comments for accelerating compiling temporarily.
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
      if (ndim > 6) {
        HandleLargeDim<DeviceContext, OutT, Functor>(context, input, output,
                                                     dims, keep_dim);
      } else {
        HANDLE_DIM(6, 5);
        HANDLE_DIM(6, 4);
        HANDLE_DIM(6, 3);
        HANDLE_DIM(6, 2);
        HANDLE_DIM(6, 1);
        HANDLE_DIM(5, 4);
        HANDLE_DIM(5, 3);
        HANDLE_DIM(5, 2);
        HANDLE_DIM(5, 1);
        HANDLE_DIM(4, 3);
        HANDLE_DIM(4, 2);
        HANDLE_DIM(4, 1);
        HANDLE_DIM(3, 2);
        HANDLE_DIM(3, 1);
        HANDLE_DIM(2, 1);
        HANDLE_DIM(1, 1);
      }
G
guosheng 已提交
325 326 327
    }
  }
};
328

329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
template <typename DeviceContext, typename T, typename Functor>
void LaunchReduceGradKernel(const framework::ExecutionContext& context,
                            const framework::Tensor* input0,
                            const framework::Tensor* input1,
                            const framework::Tensor* input2,
                            paddle::framework::Tensor* output,
                            const std::vector<int>& dims,
                            bool reduce_all = false) {
  if (reduce_all) {
    auto x = EigenVector<T>::Flatten(*input0);
    auto x_reduce = EigenVector<T>::Flatten(*input1);
    auto x_reduce_grad = EigenVector<T>::Flatten(*input2);
    auto x_grad = EigenVector<T>::Flatten(*output);
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
    auto broadcast_dim =
        Eigen::array<int, 1>({{static_cast<int>(input0->numel())}});
    Functor functor;
    functor(place, &x, &x_reduce, &x_grad, &x_reduce_grad, broadcast_dim,
            broadcast_dim[0]);
  } else {
    int rank = input0->dims().size();
    switch (rank) {
      case 1:
        ReduceGradFunctor<DeviceContext, T, 1, Functor>(
            context.template device_context<DeviceContext>(), *input0, *input1,
            *input2, output, dims);
        break;
      case 2:
        ReduceGradFunctor<DeviceContext, T, 2, Functor>(
            context.template device_context<DeviceContext>(), *input0, *input1,
            *input2, output, dims);
        break;
      case 3:
        ReduceGradFunctor<DeviceContext, T, 3, Functor>(
            context.template device_context<DeviceContext>(), *input0, *input1,
            *input2, output, dims);
        break;
      case 4:
        ReduceGradFunctor<DeviceContext, T, 4, Functor>(
            context.template device_context<DeviceContext>(), *input0, *input1,
            *input2, output, dims);
        break;
      case 5:
        ReduceGradFunctor<DeviceContext, T, 5, Functor>(
            context.template device_context<DeviceContext>(), *input0, *input1,
            *input2, output, dims);
        break;
      case 6:
        ReduceGradFunctor<DeviceContext, T, 6, Functor>(
            context.template device_context<DeviceContext>(), *input0, *input1,
            *input2, output, dims);
        break;
      default:
        HandleLargeDimGrad<DeviceContext, T, Functor>(context, input0, input1,
                                                      input2, output, dims);
        break;
    }
  }
}

390 391
template <typename DeviceContext, typename T, typename Functor,
          bool kNoNeedBufferX = false, bool kNoNeedBufferY = false>
Y
Yu Yang 已提交
392
class ReduceGradKernel : public framework::OpKernel<T> {
G
guosheng 已提交
393
 public:
394 395
  void ComputeFromInput(const Tensor* input2,
                        const framework::ExecutionContext& context) const {
396
    bool reduce_all = context.Attr<bool>("reduce_all");
397 398 399
    auto dims = context.Attr<std::vector<int>>("dim");
    auto* input0 = context.Input<Tensor>("X");
    auto* input1 = context.Input<Tensor>("Out");
400

401 402 403
    auto* output = context.Output<Tensor>(framework::GradVarName("X"));
    output->mutable_data<T>(context.GetPlace());

404 405 406 407 408 409 410 411 412 413 414
    // The dims has full dim, set the reduce_all is True
    const auto& input_dim_size = context.Input<Tensor>("X")->dims().size();
    std::set<int> dims_set(dims.begin(), dims.end());
    bool full_dim = true;
    for (auto i = 0; i < input_dim_size; i++) {
      if (dims_set.find(i) == dims_set.end()) {
        full_dim = false;
        break;
      }
    }
    reduce_all = (reduce_all || full_dim);
415 416 417 418 419 420 421 422 423 424 425
    // NOTE: EigenTensor::From() uses tensor->data()
    // if op has NoNeedBufferVarsInferer, the corresponding kNoNeedBufferX or
    // kNoNeedBufferY should set true
    // and use fake var that has same dims.
    if (kNoNeedBufferX) {
      input0 = output;
    }
    if (kNoNeedBufferY) {
      input1 = input2;
    }

426 427
    const std::vector<int> const_dims = dims;

L
lvmengsi 已提交
428 429 430
    // NOTE(dengkaipeng): Out is unnecessary in some reduce kernel and
    // not be set as Input in grad Maker, use Out_grad to replace here
    if (!input1) input1 = input2;
431 432
    LaunchReduceGradKernel<DeviceContext, T, Functor>(
        context, input0, input1, input2, output, const_dims, reduce_all);
G
guosheng 已提交
433
  }
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453

  void Compute(const framework::ExecutionContext& context) const override {
    int in_dtype = context.Attr<int>("in_dtype");
    if (in_dtype >= 0) {
      Tensor tmp_tensor;
      auto* pre_input = context.Input<Tensor>(framework::GradVarName("Out"));
      auto in_kernel_type =
          framework::OpKernelType(pre_input->type(), context.GetPlace());
      auto out_kernel_type = framework::OpKernelType(
          static_cast<framework::proto::VarType::Type>(in_dtype),
          context.GetPlace());
      framework::TransDataType(in_kernel_type, out_kernel_type, *pre_input,
                               &tmp_tensor);
      ComputeFromInput(&tmp_tensor, context);

    } else {
      auto* input2 = context.Input<Tensor>(framework::GradVarName("Out"));
      ComputeFromInput(input2, context);
    }
  }
454
};
G
guosheng 已提交
455

456 457 458
class ReduceOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
G
guosheng 已提交
459

460
  void InferShape(framework::InferShapeContext* ctx) const override {
461 462
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "ReduceOp");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "ReduceOp");
463 464 465
    auto x_dims = ctx->GetInputDim("X");
    auto x_rank = x_dims.size();
    auto dims = ctx->Attrs().Get<std::vector<int>>("dim");
466 467 468 469 470 471
    PADDLE_ENFORCE_GT(dims.size(), 0,
                      platform::errors::InvalidArgument(
                          "The input dim dimensions of ReduceOp "
                          "should be greater than 0. But received the dim "
                          "dimesions of Reduce = %d.",
                          dims.size()));
472

473
    for (size_t i = 0; i < dims.size(); ++i) {
474
      PADDLE_ENFORCE_LT(dims[i], x_rank,
475 476 477 478 479
                        platform::errors::InvalidArgument(
                            "The reduce dim index %d should be in the "
                            "range [-dimension(X), dimension(X)] "
                            "which dimesion = %d. But received dim index = %d.",
                            i, x_rank, dims[i]));
480 481 482 483 484 485
      PADDLE_ENFORCE_GE(dims[i], -x_rank,
                        platform::errors::InvalidArgument(
                            "The reduce dim index %d should be in the "
                            "range [-dimension(X), dimension(X)] "
                            "which dimesion = %d. But received dim index = %d.",
                            i, x_rank, dims[i]));
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
      if (dims[i] < 0) dims[i] = x_rank + dims[i];
    }
    sort(dims.begin(), dims.end());
    bool reduce_all = ctx->Attrs().Get<bool>("reduce_all");
    bool keep_dim = ctx->Attrs().Get<bool>("keep_dim");
    if (reduce_all) {
      if (keep_dim)
        ctx->SetOutputDim(
            "Out", framework::make_ddim(std::vector<int64_t>(x_rank, 1)));
      else
        ctx->SetOutputDim("Out", {1});
    } else {
      auto dims_vector = vectorize(x_dims);
      if (keep_dim) {
        for (size_t i = 0; i < dims.size(); ++i) {
          dims_vector[dims[i]] = 1;
        }
      } else {
        const int kDelFlag = -2;
        for (size_t i = 0; i < dims.size(); ++i) {
          dims_vector[dims[i]] = kDelFlag;
        }
        dims_vector.erase(
            remove(dims_vector.begin(), dims_vector.end(), kDelFlag),
            dims_vector.end());
      }
512 513 514
      if (!keep_dim && dims_vector.size() == 0) {
        dims_vector.push_back(1);
      }
515 516
      auto out_dims = framework::make_ddim(dims_vector);
      ctx->SetOutputDim("Out", out_dims);
517
      if (dims.size() > 0 && dims[0] != 0) {
518 519 520 521 522
        // Only pass LoD when not reducing on the first dim.
        ctx->ShareLoD("X", /*->*/ "Out");
      }
    }
  }
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");

    if (ctx.Input<paddle::framework::LoDTensor>("X")->dims().size() > 5)
      return framework::OpKernelType(input_data_type, ctx.GetPlace());

#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif

    if (input_data_type == framework::proto::VarType::FP16) {
F
furnace 已提交
541 542 543
      PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx.GetPlace()) ||
                            platform::is_npu_place(ctx.GetPlace()),
                        true,
544
                        platform::errors::InvalidArgument(
F
furnace 已提交
545
                            "float16 can only be used on GPU or NPU place"));
546 547 548
    }
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567

  framework::KernelSignature GetExpectedPtenKernelArgs(
      const framework::ExecutionContext& ctx) const override {
    if (Type() == "reduce_sum") {
      if (ctx.InputVar("X")->IsType<framework::LoDTensor>()) {
        return framework::KernelSignature(
            "sum", {"X"}, {"dim", "keep_dim", "reduce_all", "out_dtype"},
            {"Out"});
      }
    }
    if (Type() == "reduce_mean") {
      if (ctx.InputVar("X")->IsType<framework::LoDTensor>()) {
        return framework::KernelSignature(
            "mean", {"X"}, {"dim", "keep_dim", "reduce_all"}, {"Out"});
      }
    }
    // TODO(chentianyu03): support other cases after selected rows added
    return framework::KernelSignature("reduce.unregistered", {}, {}, {});
  }
568 569
};

G
Guo Sheng 已提交
570 571 572 573 574 575 576 577 578 579 580 581 582
class ReduceOpUseInputPlace : public ReduceOp {
 public:
  using ReduceOp::ReduceOp;

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    framework::OpKernelType kt = OperatorWithKernel::GetExpectedKernelType(ctx);
    kt.place_ = ctx.Input<framework::LoDTensor>("X")->place();
    return kt;
  }
};

583 584 585
class ReduceGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
W
whs 已提交
586

587
  void InferShape(framework::InferShapeContext* ctx) const override {
588 589 590
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "ReduceOp");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   "Out@GRAD", "ReduceOp");
591 592 593
    auto x_dims = ctx->GetInputDim("X");
    auto x_rank = x_dims.size();
    auto dims = ctx->Attrs().Get<std::vector<int>>("dim");
W
whs 已提交
594
    for (size_t i = 0; i < dims.size(); ++i) {
595
      PADDLE_ENFORCE_LT(dims[i], x_rank,
596 597 598 599 600
                        platform::errors::InvalidArgument(
                            "The reduce dim index %d should be in the "
                            "range [-dimension(X), dimension(X)], "
                            "which dimesion = %d. But received dim index = %d.",
                            i, x_rank, dims[i]));
W
whs 已提交
601
      if (dims[i] < 0) dims[i] = x_rank + dims[i];
602 603 604 605 606 607
    }
    sort(dims.begin(), dims.end());
    auto x_grad_name = framework::GradVarName("X");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
      ctx->ShareLoD("X", /*->*/ x_grad_name);
W
whs 已提交
608
    }
609
  }
610 611 612 613

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
J
jakpiase 已提交
614 615 616 617 618
    int in_dtype = ctx.Attr<int>("in_dtype");
    auto input_data_type =
        (in_dtype >= 0) ? static_cast<framework::proto::VarType::Type>(in_dtype)
                        : OperatorWithKernel::IndicateVarDataType(
                              ctx, framework::GradVarName("Out"));
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
#ifdef PADDLE_WITH_MKLDNN
    auto CanMKLDNNReduceGradBeUsed = [&]() {
      auto dx_dims = ctx.Input<Tensor>("X")->dims();

      if (dx_dims.size() > 5) return false;  // max 5D tensor is supported

      return true;
    };
    if (this->CanMKLDNNBeUsed(ctx, input_data_type) &&
        CanMKLDNNReduceGradBeUsed()) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif

    return framework::OpKernelType(input_data_type, ctx.GetPlace());
636
  }
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
};

class ReduceOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() final {
    AddInput("X",
             "(Tensor) The input tensor. Tensors with rank at most 6 are "
             "supported.");
    AddOutput("Out", "(Tensor) The result tensor.");
    AddAttr<std::vector<int>>(
        "dim",
        "(list<int>, default {0}) The dimensions to reduce. "
        "Must be in the range [-rank(input), rank(input)). "
        "If `dim[i] < 0`, the dims[i] to reduce is `rank + dims[i]`. "
        "Note that reducing on the first dim will make the LoD info lost.")
        .SetDefault({0});
    AddAttr<bool>("keep_dim",
                  "(bool, default false) "
                  "If true, retain the reduced dimension with length 1.")
        .SetDefault(false);
    AddAttr<bool>("reduce_all",
                  "(bool, default false) "
                  "If true, output a scalar reduced along all dimensions.")
        .SetDefault(false);
661 662 663 664 665 666 667 668 669 670
    AddAttr<int>("in_dtype",
                 "(int, default -1)"
                 "The dtype of input, default value is -1, the user could not "
                 "set this value.")
        .SetDefault(-1);
    AddAttr<int>(
        "out_dtype",
        "(int, default -1)"
        "The dtype of output, default value is -1, the dtype is same as intput")
        .SetDefault(-1);
671 672
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
673 674
        .SetDefault(false)
        .AsExtra();
675 676
    AddComment(string::Sprintf(R"DOC(
%s Operator.
W
whs 已提交
677

678 679 680
This operator computes the %s of input tensor along the given dimension.
The result tensor has 1 fewer dimension than the input unless keep_dim is true.
If reduce_all is true, just reduce along all dimensions and output a scalar.
W
whs 已提交
681

682 683
)DOC",
                               GetOpType(), GetName()));
G
guosheng 已提交
684
  }
685 686 687 688

 protected:
  virtual std::string GetName() const = 0;
  virtual std::string GetOpType() const = 0;
G
guosheng 已提交
689 690
};

691
#if defined(__HIPCC__) || defined(__NVCC__)
692 693
template <typename T, template <typename> class ReduceOp,
          template <typename, typename> class TransformOp>
694 695 696 697 698 699 700 701 702
class ReduceCudaKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    bool reduce_all = context.Attr<bool>("reduce_all");
    const Tensor* input = context.Input<Tensor>("X");
    Tensor* output = context.Output<Tensor>("Out");
    auto out_dtype = context.Attr<int>("out_dtype");
    std::vector<int> dims = context.Attr<std::vector<int>>("dim");

703 704
    auto& dev_ctx = context.cuda_device_context();

705
    if (out_dtype >= 0) {
706 707 708
      output->mutable_data(
          dev_ctx.GetPlace(),
          static_cast<framework::proto::VarType::Type>(out_dtype));
709
    } else {
710 711 712
      output->mutable_data(
          dev_ctx.GetPlace(),
          static_cast<framework::proto::VarType::Type>(input->type()));
713
    }
714 715 716 717 718 719 720 721 722 723 724

    auto pt_x = paddle::experimental::MakePtenDenseTensor(*input);
    auto pt_out = paddle::experimental::MakePtenDenseTensor(*output);
    std::vector<int64_t> dims_int64{dims.begin(), dims.end()};

    auto pt_out_dtype = pten::TransToPtenDataType(
        static_cast<framework::proto::VarType::Type>(out_dtype));

    pten::Reduce<T, ReduceOp, TransformOp>(dev_ctx, *pt_x.get(), reduce_all,
                                           dims_int64, false, pt_out_dtype,
                                           pt_out.get());
725 726 727 728
  }
};
#endif

G
guosheng 已提交
729 730
}  // namespace operators
}  // namespace paddle
731

732 733
namespace ops = paddle::operators;

H
hong 已提交
734 735 736 737 738 739 740 741 742 743 744 745 746 747
#define REGISTER_REDUCE_OP(op_name)                                           \
  class __##op_name##Maker__ : public ops::ReduceOpMaker {                    \
   protected:                                                                 \
    virtual std::string GetName() const { return #op_name; }                  \
    virtual std::string GetOpType() const { return "Reduce " #op_name; }      \
  };                                                                          \
  REGISTER_OPERATOR(                                                          \
      op_name, ops::ReduceOp, __##op_name##Maker__,                           \
      paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>, \
      paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase,       \
                                            true>);                           \
  REGISTER_OPERATOR(op_name##_grad, ops::ReduceGradOp)

#define REGISTER_REDUCE_OP_WITHOUT_GRAD(op_name, ...)                    \
748 749 750 751 752
  class __##op_name##Maker__ : public ops::ReduceOpMaker {               \
   protected:                                                            \
    virtual std::string GetName() const { return #op_name; }             \
    virtual std::string GetOpType() const { return "Reduce " #op_name; } \
  };                                                                     \
H
hong 已提交
753 754 755 756
  REGISTER_OPERATOR(                                                     \
      op_name, ops::ReduceOp##__VA_ARGS__, __##op_name##Maker__,         \
      paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,    \
      paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);