post_training_quantization.py 31.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
15 16
import os
import re
17 18 19 20 21
import logging
import numpy as np
from .... import io
from .... import core
from .... import framework
22
from ....executor import global_scope, Executor
23 24 25 26 27
from ....framework import IrGraph
from ....log_helper import get_logger
from .quantization_pass import QuantizationTransformPass
from .quantization_pass import QuantizationFreezePass
from .quantization_pass import AddQuantDequantPass
28
from .quantization_pass import _op_real_in_out_name
29

30
__all__ = ['PostTrainingQuantization', 'WeightQuantization']
31 32 33 34 35

_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')


36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
def _load_variable_data(scope, var_name):
    '''
    Load variable value from scope
    '''
    return np.array(scope.find_var(var_name).get_tensor())


def _set_variable_data(scope, place, var_name, np_value):
    '''
    Set the value of var node by name, if the node exits,
    '''
    assert isinstance(np_value, np.ndarray), \
        'The type of value should be numpy array.'
    var_node = scope.find_var(var_name)
    if var_node != None:
        tensor = var_node.get_tensor()
        tensor.set(np_value, place)


55 56
class PostTrainingQuantization(object):
    def __init__(self,
57 58 59
                 executor=None,
                 scope=None,
                 model_dir=None,
60 61
                 model_filename=None,
                 params_filename=None,
62
                 sample_generator=None,
63 64 65
                 batch_size=10,
                 batch_nums=None,
                 algo="KL",
66
                 quantizable_op_type=["conv2d", "depthwise_conv2d", "mul"],
67
                 is_full_quantize=False,
68 69
                 weight_bits=8,
                 activation_bits=8,
70 71
                 is_use_cache_file=False,
                 cache_dir="./temp_post_training"):
72 73 74 75 76 77 78 79 80
        '''
        The class utilizes post training quantization methon to quantize the 
        fp32 model. It uses calibrate data to calculate the scale factor of 
        quantized variables, and inserts fake quant/dequant op to obtain the 
        quantized model.

        Args:
            executor(fluid.Executor): The executor to load, run and save the 
                quantized model.
81 82
            scope(fluid.Scope, optional): The scope of the program, use it to load 
                and save variables. If scope=None, get scope by global_scope(). 
83 84 85 86 87 88 89 90 91
            model_dir(str): The path of the fp32 model that will be quantized, 
                and the model and params files are under the path.
            model_filename(str, optional): The name of file to load the inference 
                program. If it is None, the default filename '__model__' will 
                be used. Default is 'None'.
            params_filename(str, optional): The name of file to load all parameters.
                When all parameters were saved in a single binary file, set it 
                as the real filename. If parameters were saved in separate files, 
                set it as 'None'. Default is 'None'.
92 93 94
            sample_generator(Python Generator): The sample generator provides 
                calibrate data for DataLoader, and it only returns a sample every 
                time.
95 96 97 98
            batch_size(int, optional): The batch size of DataLoader. Default is 10.
            batch_nums(int, optional): If batch_nums is not None, the number of 
                calibrate data is batch_size*batch_nums. If batch_nums is None, use 
                all data provided by sample_generator as calibrate data.
99 100 101 102 103
            algo(str, optional): If algo=KL, use KL-divergenc method to 
                get the more precise scale factor. If algo='direct', use 
                abs_max methon to get the scale factor. Default is KL.
            quantizable_op_type(list[str], optional): List the type of ops 
                that will be quantized. Default is ["conv2d", "depthwise_conv2d", 
104 105
                "mul"].
            is_full_quantized(bool, optional): If set is_full_quantized as True, 
106
                apply quantization to all supported quantizable op type. If set
107 108
                is_full_quantized as False, only apply quantization to the op type 
                according to the input quantizable_op_type.
109 110
            weight_bits(int, optional): quantization bit number for weights.
            activation_bits(int): quantization bit number for activation.
111 112 113 114 115 116 117
            is_use_cache_file(bool, optional): If set is_use_cache_file as False,
                all temp data will be saved in memory. If set is_use_cache_file as True,
                it will save temp data to disk. When the fp32 model is complex or
                the number of calibrate data is large, we should set is_use_cache_file
                as True. Defalut is False.
            cache_dir(str, optional): When is_use_cache_file is True, set cache_dir as
                the directory for saving temp data. Default is ./temp_post_training.
118 119 120
        Returns:
            None

121 122 123 124 125 126
        Examples:
        .. code-block:: python
            import paddle.fluid as fluid
            from paddle.fluid.contrib.slim.quantization import PostTrainingQuantization
            
            exe = fluid.Executor(fluid.CPUPlace())
127 128 129 130 131 132 133 134 135
            model_dir = path/to/fp32_model_params
            # set model_filename as None when the filename is __model__, 
            # otherwise set it as the real filename
            model_filename = None 
            # set params_filename as None when all parameters were saved in 
            # separate files, otherwise set it as the real filename
            params_filename = None
            save_model_path = path/to/save_model_path
            # prepare the sample generator according to the model, and the 
136
            # sample generator must return a sample every time. The reference
137 138 139
            # document: https://www.paddlepaddle.org.cn/documentation/docs/zh
            # /user_guides/howto/prepare_data/use_py_reader.html
            sample_generator = your_sample_generator
140 141 142
            batch_size = 10
            batch_nums = 10
            algo = "KL"
143
            quantizable_op_type = ["conv2d", "depthwise_conv2d", "mul"]
144 145
            ptq = PostTrainingQuantization(
                        executor=exe,
146 147 148 149
                        sample_generator=sample_generator,
                        model_dir=model_dir,
                        model_filename=model_filename,
                        params_filename=params_filename,
150 151 152 153 154 155 156
                        batch_size=batch_size,
                        batch_nums=batch_nums,
                        algo=algo,
                        quantizable_op_type=quantizable_op_type)
            ptq.quantize()
            ptq.save_quantized_model(save_model_path)
        '''
157 158 159 160 161 162

        assert executor is not None, "The executor cannot be None."
        assert model_dir is not None, "The model_dir cannot be None."
        assert sample_generator is not None, \
                "The sample_generator cannot be None."

163
        self._executor = executor
164
        self._scope = global_scope() if scope == None else scope
165 166 167
        self._model_dir = model_dir
        self._model_filename = model_filename
        self._params_filename = params_filename
168
        self._sample_generator = sample_generator
169 170 171
        self._batch_size = batch_size
        self._batch_nums = batch_nums
        self._algo = algo
172 173 174 175
        self._is_use_cache_file = is_use_cache_file
        self._cache_dir = cache_dir
        if self._is_use_cache_file and not os.path.exists(self._cache_dir):
            os.mkdir(self._cache_dir)
176 177 178 179 180 181 182 183 184 185 186 187

        supported_quantizable_op_type = \
            QuantizationTransformPass._supported_quantizable_op_type + \
            AddQuantDequantPass._supported_quantizable_op_type
        if is_full_quantize:
            self._quantizable_op_type = supported_quantizable_op_type
        else:
            self._quantizable_op_type = quantizable_op_type
            for op_type in self._quantizable_op_type:
                assert op_type in supported_quantizable_op_type + \
                    AddQuantDequantPass._activation_type, \
                    op_type + " is not supported for quantization."
188 189 190 191 192 193 194

        self._place = self._executor.place
        self._program = None
        self._feed_list = None
        self._fetch_list = None
        self._data_loader = None

195
        self._op_real_in_out_name = _op_real_in_out_name
196
        self._bit_length = 8
197 198
        self._quantized_weight_var_name = set()
        self._quantized_act_var_name = set()
199 200 201 202 203 204 205 206
        self._sampling_data = {}
        self._quantized_var_scale_factor = {}

    def quantize(self):
        '''
        Quantize the fp32 model. Use calibrate data to calculate the scale factor of 
        quantized variables, and inserts fake quant/dequant op to obtain the 
        quantized model.
207 208 209 210

        Args:
            None
        Returns:
211 212
            the program of quantized model.
        '''
213
        self._preprocess()
214 215 216 217 218

        batch_id = 0
        for data in self._data_loader():
            self._executor.run(program=self._program,
                               feed=data,
219 220
                               fetch_list=self._fetch_list,
                               return_numpy=False)
221 222
            self._sample_data(batch_id)

223 224 225 226 227 228 229
            if batch_id % 5 == 0:
                _logger.info("run batch: " + str(batch_id))
            batch_id += 1
            if self._batch_nums and batch_id >= self._batch_nums:
                break
        _logger.info("all run batch: " + str(batch_id))

230
        _logger.info("calculate scale factor ...")
231
        self._calculate_scale_factor()
232 233

        _logger.info("update the program ...")
234 235
        self._update_program()

236
        self._save_output_scale()
237 238 239 240 241 242 243 244
        return self._program

    def save_quantized_model(self, save_model_path):
        '''
        Save the quantized model to the disk.

        Args:
            save_model_path(str): The path to save the quantized model
245
        Returns:
246 247 248 249 250 251 252 253 254
            None
        '''
        io.save_inference_model(
            dirname=save_model_path,
            feeded_var_names=self._feed_list,
            target_vars=self._fetch_list,
            executor=self._executor,
            main_program=self._program)

255
    def _preprocess(self):
256 257 258 259 260 261
        '''
        Load model and set data loader, collect the variable names for sampling, 
        and set activation variables to be persistable.
        '''
        # load model and set data loader
        [self._program, self._feed_list, self._fetch_list] = \
262 263 264 265
            io.load_inference_model(dirname=self._model_dir,
                                    executor=self._executor,
                                    model_filename=self._model_filename,
                                    params_filename=self._params_filename)
266 267 268 269 270
        feed_vars = [framework._get_var(str(var_name), self._program) \
            for var_name in self._feed_list]
        self._data_loader = io.DataLoader.from_generator(
            feed_list=feed_vars, capacity=3 * self._batch_size, iterable=True)
        self._data_loader.set_sample_generator(
271
            self._sample_generator,
272 273 274 275
            batch_size=self._batch_size,
            drop_last=True,
            places=self._place)

276 277 278
        # collect the variable names for sampling.
        # TODO(juncaipeng), consider the name_scope of skip_quant and
        # reduce the variables for sampling
279 280 281 282 283
        persistable_var_names = []
        for var in self._program.list_vars():
            if var.persistable:
                persistable_var_names.append(var.name)

284
        for op in self._program.global_block().ops:
285 286 287
            op_type = op.type
            if op_type in self._quantizable_op_type:
                if op_type in ("conv2d", "depthwise_conv2d"):
288 289 290
                    self._quantized_act_var_name.add(op.input("Input")[0])
                    self._quantized_weight_var_name.add(op.input("Filter")[0])
                    self._quantized_act_var_name.add(op.output("Output")[0])
291 292 293 294 295 296 297 298 299
                elif op_type in ["mul", "matmul"]:
                    x_var_name = op.input("X")[0]
                    if x_var_name in persistable_var_names:
                        self._quantized_weight_var_name.add(x_var_name)
                    else:
                        self._quantized_act_var_name.add(x_var_name)
                    y_var_name = op.input("Y")[0]
                    if y_var_name in persistable_var_names:
                        self._quantized_weight_var_name.add(y_var_name)
300
                    else:
301 302
                        self._quantized_act_var_name.add(y_var_name)
                    self._quantized_act_var_name.add(op.output("Out")[0])
303 304 305 306 307 308 309 310
                else:
                    # process other quantizable op type, the input must all not persistable
                    if self._is_input_all_not_persistable(
                            op, persistable_var_names):
                        input_output_name_list = self._op_real_in_out_name[
                            op_type]
                        for input_name in input_output_name_list[0]:
                            for var_name in op.input(input_name):
311
                                self._quantized_act_var_name.add(var_name)
312 313
                        for output_name in input_output_name_list[1]:
                            for var_name in op.output(output_name):
314
                                self._quantized_act_var_name.add(var_name)
315 316 317

        # set activation variables to be persistable, so can obtain 
        # the tensor data in sample_data
318 319 320 321
        for var in self._program.list_vars():
            if var.name in self._quantized_act_var_name:
                var.persistable = True

322
    def _sample_data(self, iter):
323 324 325 326 327 328
        '''
        Sample the tensor data of quantized variables, 
        applied in every iteration.
        '''
        for var_name in self._quantized_weight_var_name:
            if var_name not in self._sampling_data:
329
                var_tensor = _load_variable_data(self._scope, var_name)
330 331
                self._sampling_data[var_name] = var_tensor

332 333
        if self._is_use_cache_file:
            for var_name in self._quantized_act_var_name:
334
                var_tensor = _load_variable_data(self._scope, var_name)
335 336 337 338 339 340 341 342
                var_tensor = var_tensor.ravel()
                save_path = os.path.join(self._cache_dir,
                                         var_name + "_" + str(iter) + ".npy")
                np.save(save_path, var_tensor)
        else:
            for var_name in self._quantized_act_var_name:
                if var_name not in self._sampling_data:
                    self._sampling_data[var_name] = []
343
                var_tensor = _load_variable_data(self._scope, var_name)
344 345
                var_tensor = var_tensor.ravel()
                self._sampling_data[var_name].append(var_tensor)
346 347 348 349 350

    def _calculate_scale_factor(self):
        '''
        Calculate the scale factor of quantized variables.
        '''
351
        # apply channel_wise_abs_max quantization for weights
352 353 354 355 356 357 358 359 360
        for var_name in self._quantized_weight_var_name:
            data = self._sampling_data[var_name]
            scale_factor_per_channel = []
            for i in range(data.shape[0]):
                abs_max_value = np.max(np.abs(data[i]))
                scale_factor_per_channel.append(abs_max_value)
            self._quantized_var_scale_factor[
                var_name] = scale_factor_per_channel

361
        # apply kl quantization for activation
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
        if self._is_use_cache_file:
            for var_name in self._quantized_act_var_name:
                sampling_data = []
                filenames = [f for f in os.listdir(self._cache_dir) \
                    if re.match(var_name + '_[0-9]+.npy', f)]
                for filename in filenames:
                    file_path = os.path.join(self._cache_dir, filename)
                    sampling_data.append(np.load(file_path))
                    os.remove(file_path)
                sampling_data = np.concatenate(sampling_data)

                if self._algo == "KL":
                    self._quantized_var_scale_factor[var_name] = \
                        self._get_kl_scaling_factor(np.abs(sampling_data))
                else:
                    self._quantized_var_scale_factor[var_name] = \
                        np.max(np.abs(sampling_data))
        else:
            for var_name in self._quantized_act_var_name:
                self._sampling_data[var_name] = np.concatenate(
                    self._sampling_data[var_name])
                if self._algo == "KL":
                    self._quantized_var_scale_factor[var_name] = \
                        self._get_kl_scaling_factor(np.abs(self._sampling_data[var_name]))
                else:
                    self._quantized_var_scale_factor[var_name] = \
                        np.max(np.abs(self._sampling_data[var_name]))
389 390 391 392 393

    def _update_program(self):
        '''
        Insert fake_quantize/fake_dequantize op to the program.
        '''
394
        # reset quantized activation variable
395 396 397 398 399 400 401
        for var in self._program.list_vars():
            if var.name in self._quantized_act_var_name:
                var.persistable = False

        # use QuantizationTransformPass to insert fake_quantize/fake_dequantize op
        graph = IrGraph(core.Graph(self._program.desc), for_test=True)

402 403
        major_quantizable_op_types = []
        for op_type in QuantizationTransformPass._supported_quantizable_op_type:
404
            if op_type in self._quantizable_op_type:
405
                major_quantizable_op_types.append(op_type)
406 407 408 409 410 411 412
        transform_pass = QuantizationTransformPass(
            scope=self._scope,
            place=self._place,
            weight_bits=self._bit_length,
            activation_bits=self._bit_length,
            activation_quantize_type='moving_average_abs_max',
            weight_quantize_type='channel_wise_abs_max',
413
            quantizable_op_type=major_quantizable_op_types)
414 415 416
        transform_pass.apply(graph)

        # use AddQuantDequantPass to insert fake_quant_dequant op
417 418
        minor_quantizable_op_types = []
        for op_type in AddQuantDequantPass._supported_quantizable_op_type:
419
            if op_type in self._quantizable_op_type:
420
                minor_quantizable_op_types.append(op_type)
421 422 423
        add_quant_dequant_pass = AddQuantDequantPass(
            scope=self._scope,
            place=self._place,
424
            quantizable_op_type=minor_quantizable_op_types)
425 426 427 428
        add_quant_dequant_pass.apply(graph)

        # save scale factor to scale var node
        for key, val in self._quantized_var_scale_factor.items():
429 430 431 432 433
            _set_variable_data(
                self._scope,
                self._place,
                key + ".scale",
                np.array(
434
                    [val], dtype=np.float32))
435 436 437 438 439
            _set_variable_data(
                self._scope,
                self._place,
                key + ".quant_dequant.scale",
                np.array(
440 441 442 443 444 445 446 447 448
                    [val], dtype=np.float32))

        # apply QuantizationFreezePass, and obtain the final quant model
        freeze_pass = QuantizationFreezePass(
            scope=self._scope,
            place=self._place,
            weight_bits=self._bit_length,
            activation_bits=self._bit_length,
            weight_quantize_type='channel_wise_abs_max',
449
            quantizable_op_type=major_quantizable_op_types)
450 451 452
        freeze_pass.apply(graph)
        self._program = graph.to_program()

453 454 455 456 457 458 459 460 461
    def _save_output_scale(self):
        '''
        Save output scale to the quantized op.
        '''
        output_scale_name = "output_scale"
        for op in self._program.global_block().ops:
            if op.type in self._quantizable_op_type:
                output_name_list = self._op_real_in_out_name[op.type][1]
                for output_name in output_name_list:
462 463 464 465 466
                    for output_var_name in op.output(output_name):
                        if output_var_name in self._quantized_var_scale_factor:
                            op._set_attr(output_scale_name,
                                         self._quantized_var_scale_factor[
                                             output_var_name])
467 468 469 470 471 472 473 474 475 476 477 478 479 480

    def _is_input_all_not_persistable(self, op, persistable_var_names):
        '''
        Analyze the real inputs of the op are all not persistable.
        '''
        is_input_all_not_persistable = True
        input_name_list = self._op_real_in_out_name[op.type][0]
        for input_name in input_name_list:
            for var_name in op.input(input_name):
                if var_name in persistable_var_names:
                    is_input_all_not_persistable = False
                    break
        return is_input_all_not_persistable

481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
    def _get_kl_scaling_factor(self, activation_blob, num_quantized_bins=255):
        '''
        Using the KL-divergenc method to get the more precise scaling factor.
        '''
        max_val = np.max(activation_blob)
        min_val = np.min(activation_blob)
        if min_val >= 0:
            hist, hist_edeges = np.histogram(
                activation_blob, bins=2048, range=(min_val, max_val))
            ending_iter = 2047
            starting_iter = int(ending_iter * 0.7)
        else:
            _logger.error("Please first apply abs to activation_blob.")
        bin_width = hist_edeges[1] - hist_edeges[0]

        P_sum = len(np.array(activation_blob).ravel())
        min_kl_divergence = 0
        min_kl_index = 0
        kl_inited = False
        for i in range(starting_iter, ending_iter + 1):
            reference_distr_P = hist[0:i].tolist()
            outliers_count = sum(hist[i:2048])
            if reference_distr_P[i - 1] == 0:
                continue
            reference_distr_P[i - 1] += outliers_count
            reference_distr_bins = reference_distr_P[:]
            candidate_distr_Q = hist[0:i].tolist()
            num_merged_bins = int(i / num_quantized_bins)
            candidate_distr_Q_quantized = [0] * num_quantized_bins
            j_start = 0
            j_end = num_merged_bins
            for idx in range(num_quantized_bins):
                candidate_distr_Q_quantized[idx] = sum(candidate_distr_Q[
                    j_start:j_end])
                j_start += num_merged_bins
                j_end += num_merged_bins
                if (idx + 1) == num_quantized_bins - 1:
                    j_end = i
            candidate_distr_Q = self._expand_quantized_bins(
                candidate_distr_Q_quantized, reference_distr_bins)
            Q_sum = sum(candidate_distr_Q)
            kl_divergence = self._safe_entropy(reference_distr_P, P_sum,
                                               candidate_distr_Q, Q_sum)
            if not kl_inited:
                min_kl_divergence = kl_divergence
                min_kl_index = i
                kl_inited = True
            elif kl_divergence < min_kl_divergence:
                min_kl_divergence = kl_divergence
                min_kl_index = i
            else:
                pass
        if min_kl_index == 0:
            while starting_iter > 0:
                if hist[starting_iter] == 0:
                    starting_iter -= 1
                    continue
                else:
                    break
            min_kl_index = starting_iter
        return (min_kl_index + 0.5) * bin_width

    def _expand_quantized_bins(self, quantized_bins, reference_bins):
        '''
        '''
        expanded_quantized_bins = [0] * len(reference_bins)
        num_merged_bins = int(len(reference_bins) / len(quantized_bins))
        j_start = 0
        j_end = num_merged_bins
        for idx in range(len(quantized_bins)):
            zero_count = reference_bins[j_start:j_end].count(0)
            num_merged_bins = j_end - j_start
            if zero_count == num_merged_bins:
                avg_bin_ele = 0
            else:
                avg_bin_ele = quantized_bins[idx] / (
                    num_merged_bins - zero_count + 0.0)
            for idx1 in range(j_start, j_end):
                expanded_quantized_bins[idx1] = (0 if reference_bins[idx1] == 0
                                                 else avg_bin_ele)
            j_start += num_merged_bins
            j_end += num_merged_bins
            if (idx + 1) == len(quantized_bins) - 1:
                j_end = len(reference_bins)
        return expanded_quantized_bins

    def _safe_entropy(self, reference_distr_P, P_sum, candidate_distr_Q, Q_sum):
        '''
        Calculate the entropy.
        '''
        assert len(reference_distr_P) == len(candidate_distr_Q)
        tmp_sum1 = 0
        tmp_sum2 = 0
        for idx in range(len(reference_distr_P)):
            p_idx = reference_distr_P[idx]
            q_idx = candidate_distr_Q[idx]
            if p_idx == 0:
                tmp_sum1 += 0
                tmp_sum2 += 0
            else:
                if q_idx == 0:
582 583
                    _logger.error("Fatal error!, idx = " + str(idx) +
                                  " qindex = 0! p_idx = " + str(p_idx))
584 585 586
                tmp_sum1 += p_idx * (math.log(Q_sum * p_idx))
                tmp_sum2 += p_idx * (math.log(P_sum * q_idx))
        return (tmp_sum1 - tmp_sum2) / P_sum
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616


class WeightQuantization(object):
    _supported_quantizable_op_type = ['conv2d', 'depthwise_conv2d', 'mul']

    def __init__(self, model_dir, model_filename=None, params_filename=None):
        '''
        This class quantizes the weight of some ops to reduce the size of model
        or improve the perforemace.

        Args:
            model_dir(str): The path of the fp32 model that will be quantized,
                and the model and params files are under the path.
            model_filename(str, optional): The name of file to load the inference
                program. If it is None, the default filename '__model__' will
                be used. Default is 'None'.
            params_filename(str, optional): The name of file to load all parameters.
                When all parameters were saved in a single binary file, set it
                as the real filename. If parameters were saved in separate files,
                set it as 'None'. Default is 'None'.
        '''
        self._model_dir = model_dir
        self._model_filename = model_filename
        self._params_filename = params_filename

    def quantize_weight_to_int(self,
                               save_model_dir,
                               save_model_filename=None,
                               save_params_filename=None,
                               quantizable_op_type=["conv2d", "mul"],
617
                               weight_bits=8,
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
                               threshold_rate=0.0):
        '''
        In order to reduce the size of model, this api quantizes the weight
        of some ops from float32 to int8/16. In the inference stage, the 
        quantized weight will be dequantized to float32 again.
        
        Args:
            save_model_dir(str): The path to save the quantized model.
            save_model_filename(str, optional): The name of file to 
                save the inference program. If it is None, the default 
                filename '__model__' will be used. Default is 'None'.
            save_params_filename(str, optional): The name of file to 
                save all parameters. If it is None, parameters were 
                saved in separate files. If it is not None, all 
                parameters were saved in a single binary file.
            quantizable_op_type(list[str], optional): The list of ops 
                that will be quantized, and the quantized ops should be
                contained in ["conv2d", "depthwise_conv2d", "mul"]. 
                Default is ["conv2d","mul"].
637 638
            weight_bits(int, optional): The bits for the quantized weight, 
                and it should be 8 or 16. Default is 8.
639 640 641 642 643 644 645 646 647 648 649
            threshold_rate(float, optional): This api uses abs_max methd to 
                quantize the weight from float32 to int8/16, and the abs max 
                value is important for quantization diff. When the abs_max 
                value is far away from the center of the numerical distribution, 
                we can set threshold_rate between 1e-6 and 1e-8, so the abs max 
                value will be optimized. Default is 0.0.
        '''
        for op_type in quantizable_op_type:
            assert op_type in self._supported_quantizable_op_type, \
                "input error:" + op_type + \
                " is not supported for weight quantization."
650 651 652 653
        assert weight_bits in [8, 16], \
            "input error: weight_bits should be 8 or 16."
        quantize_range = (1 << (weight_bits - 1)) - 1
        save_weight_dtype = np.int8 if weight_bits == 8 else np.int16
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689

        place = core.CPUPlace()
        exe = Executor(place)
        scope = global_scope()
        [program, feed_list, fetch_list] = \
            io.load_inference_model(dirname=self._model_dir,
                                    executor=exe,
                                    model_filename=self._model_filename,
                                    params_filename=self._params_filename)

        persistable_var_names = []
        for var in program.list_vars():
            if var.persistable:
                persistable_var_names.append(var.name)
        for op in program.global_block().ops:
            if op.type in quantizable_op_type:
                for var_name in op.input_arg_names:
                    if var_name in persistable_var_names:
                        var_tensor_data = _load_variable_data(scope, var_name)
                        if abs(threshold_rate) < 1e-10:
                            threshold_value = np.max(np.abs(var_tensor_data))
                        else:
                            threshold_value = self._calculate_threshold(\
                                var_tensor_data, threshold_rate)
                            var_tensor_data[var_tensor_data >
                                            threshold_value] = threshold_value
                            var_tensor_data[var_tensor_data <
                                            -threshold_value] = -threshold_value
                        scale = threshold_value / quantize_range
                        quantized_var_tensor_data = \
                            np.around(var_tensor_data / scale)
                        quantized_var_tensor_data = \
                            quantized_var_tensor_data.astype(save_weight_dtype)
                        _set_variable_data(scope, place, var_name,
                                           quantized_var_tensor_data)
                        op._set_attr(var_name + "_quant_scale", [scale])
690
                        op._set_attr('quantize_weight_bits', weight_bits)
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714

        io.save_inference_model(
            dirname=save_model_dir,
            feeded_var_names=feed_list,
            target_vars=fetch_list,
            executor=exe,
            main_program=program,
            model_filename=save_model_filename,
            params_filename=save_params_filename)

    def _calculate_threshold(self, input, threshold_rate, histogram_bins=5000):
        input_abs = np.abs(input)
        hist, hist_edeges = np.histogram(
            input_abs, bins=histogram_bins, range=(0, np.max(input_abs)))
        hist = hist / float(sum(hist))
        hist_sum = 0
        hist_index = 0
        for i in range(len(hist)):
            hist_sum += hist[i]
            if hist_sum >= 1.0 - threshold_rate:
                hist_index = i + 1
                break
        bin_width = hist_edeges[1] - hist_edeges[0]
        return hist_index * bin_width