dpsgd_op.h 3.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <math.h>
#include <stdlib.h>
#include <iostream>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
class DpsgdOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *param_var = ctx.InputVar("Param");
    PADDLE_ENFORCE_EQ(param_var->IsType<framework::LoDTensor>(), true,
C
Chengmo 已提交
31 32 33 34 35
                      platform::errors::InvalidArgument(
                          "The Var(%s)'s type should be LoDTensor, "
                          "but the received is %s",
                          ctx.InputNames("Param").front(),
                          framework::ToTypeName(param_var->Type())));
36 37 38

    const auto *grad_var = ctx.InputVar("Grad");
    PADDLE_ENFORCE_EQ(grad_var->IsType<framework::LoDTensor>(), true,
C
Chengmo 已提交
39 40 41 42 43
                      platform::errors::InvalidArgument(
                          "The Var(%s)'s type should be LoDTensor, "
                          "but the received is %s",
                          ctx.InputNames("Grad").front(),
                          framework::ToTypeName(grad_var->Type())));
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83

    const auto *learning_rate = ctx.Input<framework::Tensor>("LearningRate");

    const auto *param = ctx.Input<framework::Tensor>("Param");
    const auto *grad = ctx.Input<framework::Tensor>("Grad");

    auto *param_out = ctx.Output<framework::Tensor>("ParamOut");

    auto sz = param_out->numel();
    PADDLE_ENFORCE_EQ(param->numel(), sz);
    PADDLE_ENFORCE_EQ(grad->numel(), sz);

    const T *lr = learning_rate->data<T>();
    const T *param_data = param->data<T>();
    const T *grad_data = grad->data<T>();

    T *out_data = param_out->mutable_data<T>(ctx.GetPlace());

    T clip = static_cast<T>(ctx.Attr<float>("clip"));
    T batch_size = static_cast<T>(ctx.Attr<float>("batch_size"));
    T sigma = static_cast<T>(ctx.Attr<float>("sigma"));

    // compute clipping
    float l2_norm = 0.0;
    for (int64_t i = 0; i < grad->numel(); ++i) {
      l2_norm = l2_norm + grad_data[i] * grad_data[i];
    }
    l2_norm = std::sqrt(l2_norm);

    float scale = 1.0;
    if (l2_norm > clip) {
      scale = l2_norm / clip;
    }

    // generate gaussian noise.
    // [https://en.wikipedia.org/wiki/Box-Muller_transform]
    float V1, V2, S;
    float X;
    float mu = 0.0;
    float U1, U2;
Z
zhongpu 已提交
84 85 86 87
    unsigned seed = static_cast<unsigned int>(ctx.Attr<int>("seed"));
    if (seed == 0) {
      seed = (unsigned)(time(NULL));
    }
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
    std::minstd_rand engine;
    engine.seed(seed);
    std::uniform_real_distribution<T> dist(0.0, 1.0);
    do {
      U1 = dist(engine);
      U2 = dist(engine);
      V1 = 2 * U1 - 1;
      V2 = 2 * U2 - 1;
      S = V1 * V1 + V2 * V2;
    } while (S >= 1 || S == 0);

    X = V1 * sqrt(-2 * log(S) / S);

    float gaussian_noise = mu + X * sigma;

    // update parameters
    for (int64_t i = 0; i < grad->numel(); ++i) {
      out_data[i] =
          param_data[i] -
          lr[0] * (grad_data[i] / scale + gaussian_noise / batch_size);
    }
    // CCS16 - Deep Learning with Differential Privacy.
    // [https://arxiv.org/abs/1607.00133]
  }  // Compute
};   // class
}  // namespace operators
}  // namespace paddle