/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/op_registry.h" namespace paddle { namespace operators { template class DpsgdOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &ctx) const override { const auto *param_var = ctx.InputVar("Param"); PADDLE_ENFORCE_EQ(param_var->IsType(), true, platform::errors::InvalidArgument( "The Var(%s)'s type should be LoDTensor, " "but the received is %s", ctx.InputNames("Param").front(), framework::ToTypeName(param_var->Type()))); const auto *grad_var = ctx.InputVar("Grad"); PADDLE_ENFORCE_EQ(grad_var->IsType(), true, platform::errors::InvalidArgument( "The Var(%s)'s type should be LoDTensor, " "but the received is %s", ctx.InputNames("Grad").front(), framework::ToTypeName(grad_var->Type()))); const auto *learning_rate = ctx.Input("LearningRate"); const auto *param = ctx.Input("Param"); const auto *grad = ctx.Input("Grad"); auto *param_out = ctx.Output("ParamOut"); auto sz = param_out->numel(); PADDLE_ENFORCE_EQ(param->numel(), sz); PADDLE_ENFORCE_EQ(grad->numel(), sz); const T *lr = learning_rate->data(); const T *param_data = param->data(); const T *grad_data = grad->data(); T *out_data = param_out->mutable_data(ctx.GetPlace()); T clip = static_cast(ctx.Attr("clip")); T batch_size = static_cast(ctx.Attr("batch_size")); T sigma = static_cast(ctx.Attr("sigma")); // compute clipping float l2_norm = 0.0; for (int64_t i = 0; i < grad->numel(); ++i) { l2_norm = l2_norm + grad_data[i] * grad_data[i]; } l2_norm = std::sqrt(l2_norm); float scale = 1.0; if (l2_norm > clip) { scale = l2_norm / clip; } // generate gaussian noise. // [https://en.wikipedia.org/wiki/Box-Muller_transform] float V1, V2, S; float X; float mu = 0.0; float U1, U2; unsigned seed = static_cast(ctx.Attr("seed")); if (seed == 0) { seed = (unsigned)(time(NULL)); } std::minstd_rand engine; engine.seed(seed); std::uniform_real_distribution dist(0.0, 1.0); do { U1 = dist(engine); U2 = dist(engine); V1 = 2 * U1 - 1; V2 = 2 * U2 - 1; S = V1 * V1 + V2 * V2; } while (S >= 1 || S == 0); X = V1 * sqrt(-2 * log(S) / S); float gaussian_noise = mu + X * sigma; // update parameters for (int64_t i = 0; i < grad->numel(); ++i) { out_data[i] = param_data[i] - lr[0] * (grad_data[i] / scale + gaussian_noise / batch_size); } // CCS16 - Deep Learning with Differential Privacy. // [https://arxiv.org/abs/1607.00133] } // Compute }; // class } // namespace operators } // namespace paddle