Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
d014e29f
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
d014e29f
编写于
9月 27, 2020
作者:
C
Chengmo
提交者:
GitHub
9月 27, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix error message (#27318)
* fix sgd/momentum/dpsgd/rmsprop error message
上级
35074963
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
277 addition
and
129 deletion
+277
-129
paddle/fluid/operators/optimizers/dpsgd_op.cc
paddle/fluid/operators/optimizers/dpsgd_op.cc
+24
-11
paddle/fluid/operators/optimizers/dpsgd_op.h
paddle/fluid/operators/optimizers/dpsgd_op.h
+10
-8
paddle/fluid/operators/optimizers/momentum_op.h
paddle/fluid/operators/optimizers/momentum_op.h
+50
-29
paddle/fluid/operators/optimizers/rmsprop_op.cc
paddle/fluid/operators/optimizers/rmsprop_op.cc
+58
-30
paddle/fluid/operators/optimizers/rmsprop_op.h
paddle/fluid/operators/optimizers/rmsprop_op.h
+26
-11
paddle/fluid/operators/optimizers/sgd_op.cc
paddle/fluid/operators/optimizers/sgd_op.cc
+21
-13
paddle/fluid/operators/optimizers/sgd_op.cu
paddle/fluid/operators/optimizers/sgd_op.cu
+27
-9
paddle/fluid/operators/optimizers/sgd_op.h
paddle/fluid/operators/optimizers/sgd_op.h
+61
-18
未找到文件。
paddle/fluid/operators/optimizers/dpsgd_op.cc
浏览文件 @
d014e29f
...
...
@@ -24,32 +24,45 @@ class DpsgdOp : public framework::OperatorWithKernel {
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"Param"
),
true
,
"Input(Param) of DpsgdOp should not be null."
);
platform
::
errors
::
NotFound
(
"Input(Param) of DpsgdOp should not be null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"Grad"
),
true
,
"Input(Grad) of DpsgdOp should not be null."
);
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"LearningRate"
),
true
,
"Input(LearningRate) of DpsgdOp should not be null."
);
platform
::
errors
::
NotFound
(
"Input(Grad) of DpsgdOp should not be null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"LearningRate"
),
true
,
platform
::
errors
::
NotFound
(
"Input(LearningRate) of DpsgdOp should not be null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputsVarType
(
"Param"
).
front
(),
framework
::
proto
::
VarType
::
LOD_TENSOR
,
"The input var's type should be LoDTensor, but the received is %s"
,
ctx
->
Inputs
(
"Param"
).
front
(),
ctx
->
GetInputsVarType
(
"Param"
).
front
());
platform
::
errors
::
InvalidArgument
(
"The input var's type should be LoDTensor, but the received is %s"
,
ctx
->
GetInputsVarType
(
"Param"
).
front
()));
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputsVarType
(
"Grad"
).
front
(),
framework
::
proto
::
VarType
::
LOD_TENSOR
,
"The input var's type should be LoDTensor, but the received is %s"
,
ctx
->
Inputs
(
"Grad"
).
front
(),
ctx
->
GetInputsVarType
(
"Grad"
).
front
());
platform
::
errors
::
InvalidArgument
(
"The input var's type should be LoDTensor, but the received is %s"
,
ctx
->
GetInputsVarType
(
"Grad"
).
front
()));
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutput
(
"ParamOut"
),
true
,
"Output(ParamOut) of DpsgdOp should not be null."
);
platform
::
errors
::
NotFound
(
"Output(ParamOut) of DpsgdOp should not be null."
));
auto
lr_dims
=
ctx
->
GetInputDim
(
"LearningRate"
);
PADDLE_ENFORCE_EQ
(
framework
::
product
(
lr_dims
),
1
,
"Learning rate should have 1 dimension"
);
platform
::
errors
::
InvalidArgument
(
"Learning rate should have 1 dimension. But Received "
"LearningRate's dims [%s]."
,
framework
::
product
(
lr_dims
)));
auto
param_dims
=
ctx
->
GetInputDim
(
"Param"
);
PADDLE_ENFORCE_EQ
(
param_dims
,
ctx
->
GetInputDim
(
"Grad"
),
"Param and Grad input of DpsgdOp should have same dimension"
);
platform
::
errors
::
InvalidArgument
(
"Param and Grad input of DpsgdOp should have same dimension. But "
"received Para's dim [%s] and Grad's dim [%s]."
,
param_dims
,
ctx
->
GetInputDim
(
"Grad"
)));
ctx
->
SetOutputDim
(
"ParamOut"
,
param_dims
);
}
...
...
paddle/fluid/operators/optimizers/dpsgd_op.h
浏览文件 @
d014e29f
...
...
@@ -28,17 +28,19 @@ class DpsgdOpKernel : public framework::OpKernel<T> {
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
auto
*
param_var
=
ctx
.
InputVar
(
"Param"
);
PADDLE_ENFORCE_EQ
(
param_var
->
IsType
<
framework
::
LoDTensor
>
(),
true
,
"The Var(%s)'s type should be LoDTensor, "
"but the received is %s"
,
ctx
.
InputNames
(
"Param"
).
front
(),
framework
::
ToTypeName
(
param_var
->
Type
()));
platform
::
errors
::
InvalidArgument
(
"The Var(%s)'s type should be LoDTensor, "
"but the received is %s"
,
ctx
.
InputNames
(
"Param"
).
front
(),
framework
::
ToTypeName
(
param_var
->
Type
())));
const
auto
*
grad_var
=
ctx
.
InputVar
(
"Grad"
);
PADDLE_ENFORCE_EQ
(
grad_var
->
IsType
<
framework
::
LoDTensor
>
(),
true
,
"The Var(%s)'s type should be LoDTensor, "
"but the received is %s"
,
ctx
.
InputNames
(
"Grad"
).
front
(),
framework
::
ToTypeName
(
grad_var
->
Type
()));
platform
::
errors
::
InvalidArgument
(
"The Var(%s)'s type should be LoDTensor, "
"but the received is %s"
,
ctx
.
InputNames
(
"Grad"
).
front
(),
framework
::
ToTypeName
(
grad_var
->
Type
())));
const
auto
*
learning_rate
=
ctx
.
Input
<
framework
::
Tensor
>
(
"LearningRate"
);
...
...
paddle/fluid/operators/optimizers/momentum_op.h
浏览文件 @
d014e29f
...
...
@@ -40,43 +40,62 @@ class MomentumOp : public framework::OperatorWithKernel {
protected:
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Param"
),
"Input(param) of Momentum should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Grad"
),
"Input(grad) of Momentum should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Velocity"
),
"Input(velocity) of Momentum should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"LearningRate"
),
"Input(LearningRate) of Momentum should not be null."
);
PADDLE_ENFORCE
(
ctx
->
GetInputsVarType
(
"Param"
).
front
()
==
framework
::
proto
::
VarType
::
LOD_TENSOR
,
"The input var's type should be LoDTensor, but the received is %s"
,
ctx
->
Inputs
(
"Param"
).
front
(),
ctx
->
GetInputsVarType
(
"Param"
).
front
());
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"ParamOut"
),
"Output(ParamOut) of Momentum should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"VelocityOut"
),
"Output(VelocityOut) of Momentum should not be null."
);
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"Param"
),
true
,
platform
::
errors
::
NotFound
(
"Input(param) of Momentum should not be null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"Grad"
),
true
,
platform
::
errors
::
NotFound
(
"Input(grad) of Momentum should not be null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"Velocity"
),
true
,
platform
::
errors
::
NotFound
(
"Input(velocity) of Momentum should not be null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"LearningRate"
),
true
,
platform
::
errors
::
NotFound
(
"Input(LearningRate) of Momentum should not be null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputsVarType
(
"Param"
).
front
(),
framework
::
proto
::
VarType
::
LOD_TENSOR
,
platform
::
errors
::
InvalidArgument
(
"The input var's type should be LoDTensor, but the received is %s"
,
ctx
->
GetInputsVarType
(
"Param"
).
front
()));
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutput
(
"ParamOut"
),
true
,
platform
::
errors
::
NotFound
(
"Output(ParamOut) of Momentum should not be null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutput
(
"VelocityOut"
),
true
,
platform
::
errors
::
NotFound
(
"Output(VelocityOut) of Momentum should not be null."
));
auto
lr_dims
=
ctx
->
GetInputDim
(
"LearningRate"
);
PADDLE_ENFORCE_NE
(
framework
::
product
(
lr_dims
),
0
,
"Maybe the Input variable LearningRate has not "
"been initialized. You may need to confirm "
"if you put exe.run(startup_program) "
"after optimizer.minimize function."
);
platform
::
errors
::
InvalidArgument
(
"Maybe the Input variable LearningRate has not "
"been initialized. You may need to confirm "
"if you put exe.run(startup_program) "
"after optimizer.minimize function."
));
PADDLE_ENFORCE_EQ
(
framework
::
product
(
lr_dims
),
1
,
"Learning_rate should be a scalar"
);
platform
::
errors
::
InvalidArgument
(
"Learning_rate should be a scalar. But Received "
"LearningRate's dim [%s]"
,
framework
::
product
(
lr_dims
)));
auto
param_dim
=
ctx
->
GetInputDim
(
"Param"
);
if
(
ctx
->
GetInputsVarType
(
"Grad"
)[
0
]
==
framework
::
proto
::
VarType
::
LOD_TENSOR
)
{
PADDLE_ENFORCE_EQ
(
param_dim
,
ctx
->
GetInputDim
(
"Grad"
),
"Param and Grad input of MomentumOp should have the same dimension."
);
platform
::
errors
::
InvalidArgument
(
"Param and Grad input of MomentumOp should have the same "
"dimension. But received Param's dim [%s] and Grad's dim [%s]."
,
param_dim
,
ctx
->
GetInputDim
(
"Grad"
)));
PADDLE_ENFORCE_EQ
(
param_dim
,
ctx
->
GetInputDim
(
"Velocity"
),
"Param and Velocity of MomentumOp should have the same dimension."
);
platform
::
errors
::
InvalidArgument
(
"Param and Velocity of MomentumOp should have the same "
"dimension. But received Param's dim [%s] and Velocity [%s]."
,
param_dim
,
ctx
->
GetInputDim
(
"Velocity"
)));
}
ctx
->
SetOutputDim
(
"ParamOut"
,
param_dim
);
...
...
@@ -398,10 +417,12 @@ class MomentumOpKernel : public framework::OpKernel<T> {
for_range
(
functor
);
}
}
else
{
PADDLE_THROW
(
string
::
Sprintf
(
"MomentumOp only supports LoDTensor or SelectedRows "
"gradient, but the received Variable Type is %s"
,
framework
::
ToTypeName
(
grad_var
->
Type
())));
PADDLE_ENFORCE_EQ
(
false
,
true
,
platform
::
errors
::
PermissionDenied
(
"Unsupported Variable Type of Grad "
"in MomentumOp. Excepted LodTensor "
"or SelectedRows, But received [%s]"
,
paddle
::
framework
::
ToTypeName
(
grad_var
->
Type
())));
}
}
};
...
...
paddle/fluid/operators/optimizers/rmsprop_op.cc
浏览文件 @
d014e29f
...
...
@@ -22,47 +22,75 @@ class RmspropOp : public framework::OperatorWithKernel {
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Param"
),
"Input(Param) of RmspropOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"MeanSquare"
),
"Input(MeanSquare) of RmspropOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"LearningRate"
),
"Input(LearningRate) of RmspropOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Grad"
),
"Input(Grad) of RmspropOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Moment"
),
"Input(Moment) of RmspropOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
GetInputsVarType
(
"Param"
).
front
()
==
framework
::
proto
::
VarType
::
LOD_TENSOR
,
"The input var's type should be LoDTensor, but the received is %s"
,
ctx
->
Inputs
(
"Param"
).
front
(),
ctx
->
GetInputsVarType
(
"Param"
).
front
());
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"ParamOut"
),
"Output(param_out) of RmspropOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"MomentOut"
),
"Output(MomentOut) of RmspropOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"MeanSquareOut"
),
"Output(MeanSquareOut) of RmspropOp should not be null."
);
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"Param"
),
true
,
platform
::
errors
::
NotFound
(
"Input(Param) of RmspropOp should not be null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"MeanSquare"
),
true
,
platform
::
errors
::
NotFound
(
"Input(MeanSquare) of RmspropOp should not be null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"LearningRate"
),
true
,
platform
::
errors
::
NotFound
(
"Input(LearningRate) of RmspropOp should not be null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"Grad"
),
true
,
platform
::
errors
::
NotFound
(
"Input(Grad) of RmspropOp should not be null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"Moment"
),
true
,
platform
::
errors
::
NotFound
(
"Input(Moment) of RmspropOp should not be null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputsVarType
(
"Param"
).
front
(),
framework
::
proto
::
VarType
::
LOD_TENSOR
,
platform
::
errors
::
InvalidArgument
(
"The input var's type in RmspropOp should be "
"LoDTensor, but the received is %s"
,
ctx
->
GetInputsVarType
(
"Param"
).
front
()));
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutput
(
"ParamOut"
),
true
,
platform
::
errors
::
NotFound
(
"Output(param_out) of RmspropOp should not be null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutput
(
"MomentOut"
),
true
,
platform
::
errors
::
NotFound
(
"Output(MomentOut) of RmspropOp should not be null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutput
(
"MeanSquareOut"
),
true
,
platform
::
errors
::
NotFound
(
"Output(MeanSquareOut) of RmspropOp should not be null."
));
if
(
ctx
->
Attrs
().
Get
<
bool
>
(
"centered"
))
{
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"MeanGradOut"
),
"Output(MeanGradOut) of RmspropOp should not be null."
);
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutput
(
"MeanGradOut"
),
true
,
platform
::
errors
::
NotFound
(
"Output(MeanGradOut) of RmspropOp should not be null."
));
}
auto
param_dim
=
ctx
->
GetInputDim
(
"Param"
);
PADDLE_ENFORCE_EQ
(
param_dim
,
ctx
->
GetInputDim
(
"Grad"
),
"Param and grad input of RmspropOp should have the same dimension."
);
platform
::
errors
::
InvalidArgument
(
"Param and grad input of RmspropOp should have the same dimension. "
"But received Param's dim [%s] and Grad's dim [%s]."
,
param_dim
,
ctx
->
GetInputDim
(
"Grad"
)));
PADDLE_ENFORCE_EQ
(
param_dim
,
ctx
->
GetInputDim
(
"Moment"
),
"Param and Momentum input of RmspropOp "
"should have the same dimension."
);
platform
::
errors
::
InvalidArgument
(
"Param and Momentum input of RmspropOp "
"should have the same dimension. But received "
"Param's dim [%s] and Moment [%s]"
,
param_dim
,
ctx
->
GetInputDim
(
"Moment"
)));
PADDLE_ENFORCE_EQ
(
param_dim
,
ctx
->
GetInputDim
(
"MeanSquare"
),
"Param and Momentum input of RmspropOp "
"should have the same dimension."
);
platform
::
errors
::
InvalidArgument
(
"Param and Momentum input of RmspropOp "
"should have the same dimension. But received "
"Param's dim [%s] and MeanSquare [%s]"
,
param_dim
,
ctx
->
GetInputDim
(
"MeanSquare"
)));
auto
lr_dim
=
ctx
->
GetInputDim
(
"LearningRate"
);
PADDLE_ENFORCE_EQ
(
framework
::
product
(
lr_dim
),
1
,
"Learning Rate should be a scalar."
);
platform
::
errors
::
InvalidArgument
(
"Learning Rate of RmspropOp should be a scalar. But "
"received LearningRate's dim [%s]"
,
framework
::
product
(
lr_dim
)));
ctx
->
SetOutputDim
(
"ParamOut"
,
param_dim
);
ctx
->
SetOutputDim
(
"MomentOut"
,
param_dim
);
...
...
paddle/fluid/operators/optimizers/rmsprop_op.h
浏览文件 @
d014e29f
...
...
@@ -148,11 +148,15 @@ class RmspropOpKernel : public framework::OpKernel<T> {
auto
&
mom_tensor
=
*
ctx
.
Input
<
LoDTensor
>
(
"Moment"
);
PADDLE_ENFORCE_EQ
(
&
p_tensor
,
param_out
,
"Param and ParamOut must be the same Tensor"
);
platform
::
errors
::
InvalidArgument
(
"Param and ParamOut must be the same Tensor"
));
PADDLE_ENFORCE_EQ
(
&
mom_tensor
,
moment_out
,
"Moment and MomentOut must be the same Tensor"
);
PADDLE_ENFORCE_EQ
(
&
ms_tensor
,
mean_square_out
,
"MeanSquare and MeanSquareOut must be the same Tensor"
);
platform
::
errors
::
InvalidArgument
(
"Moment and MomentOut must be the same Tensor"
));
PADDLE_ENFORCE_EQ
(
&
ms_tensor
,
mean_square_out
,
platform
::
errors
::
InvalidArgument
(
"MeanSquare and MeanSquareOut must be the same Tensor"
));
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
size_t
limit
=
static_cast
<
size_t
>
(
ms_tensor
.
numel
());
...
...
@@ -179,8 +183,10 @@ class RmspropOpKernel : public framework::OpKernel<T> {
auto
&
mg_tensor
=
*
ctx
.
Input
<
LoDTensor
>
(
"MeanGrad"
);
auto
mg
=
EigenVector
<
T
>::
Flatten
(
mg_tensor
);
auto
*
mean_grad_out
=
ctx
.
Output
<
LoDTensor
>
(
"MeanGradOut"
);
PADDLE_ENFORCE_EQ
(
&
mg_tensor
,
mean_grad_out
,
"MeanGrad and MeanGradOut must be the same Tensor"
);
PADDLE_ENFORCE_EQ
(
&
mg_tensor
,
mean_grad_out
,
platform
::
errors
::
InvalidArgument
(
"MeanGrad and MeanGradOut must be the same Tensor"
));
auto
mg_out
=
EigenVector
<
T
>::
Flatten
(
*
mean_grad_out
);
mg_out
.
device
(
place
)
=
rho
*
mg
+
(
1
-
rho
)
*
g
;
...
...
@@ -198,8 +204,10 @@ class RmspropOpKernel : public framework::OpKernel<T> {
if
(
centered
)
{
auto
&
mg_tensor
=
*
ctx
.
Input
<
LoDTensor
>
(
"MeanGrad"
);
auto
*
mean_grad_out
=
ctx
.
Output
<
LoDTensor
>
(
"MeanGradOut"
);
PADDLE_ENFORCE_EQ
(
&
mg_tensor
,
mean_grad_out
,
"MeanGrad and MeanGradOut must be the same Tensor"
);
PADDLE_ENFORCE_EQ
(
&
mg_tensor
,
mean_grad_out
,
platform
::
errors
::
InvalidArgument
(
"MeanGrad and MeanGradOut must be the same Tensor"
));
for_range
(
CenteredRmspropFunctor
<
T
,
DenseRmspropGradFunctor
<
T
>>
(
param_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
mean_square_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
...
...
@@ -233,8 +241,10 @@ class RmspropOpKernel : public framework::OpKernel<T> {
if
(
centered
)
{
auto
&
mg_tensor
=
*
ctx
.
Input
<
LoDTensor
>
(
"MeanGrad"
);
auto
*
mean_grad_out
=
ctx
.
Output
<
LoDTensor
>
(
"MeanGradOut"
);
PADDLE_ENFORCE_EQ
(
&
mg_tensor
,
mean_grad_out
,
"MeanGrad and MeanGradOut must be the same Tensor"
);
PADDLE_ENFORCE_EQ
(
&
mg_tensor
,
mean_grad_out
,
platform
::
errors
::
InvalidArgument
(
"MeanGrad and MeanGradOut must be the same Tensor"
));
for_range
(
CenteredRmspropFunctor
<
T
,
SparseRmspropGradFunctor
<
T
>>
(
param_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
mean_square_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
...
...
@@ -249,7 +259,12 @@ class RmspropOpKernel : public framework::OpKernel<T> {
rho
,
epsilon
,
momentum
,
grad_func
));
}
}
else
{
PADDLE_THROW
(
"RMSProp only supports LoDTensor or SelectedRows gradient"
);
PADDLE_ENFORCE_EQ
(
false
,
true
,
platform
::
errors
::
PermissionDenied
(
"Unsupported Variable Type of Grad "
"in RmspropOp. Excepted LodTensor "
"or SelectedRows, But received [%s]"
,
paddle
::
framework
::
ToTypeName
(
grad_var
->
Type
())));
}
}
};
...
...
paddle/fluid/operators/optimizers/sgd_op.cc
浏览文件 @
d014e29f
...
...
@@ -22,23 +22,31 @@ class SGDOp : public framework::OperatorWithKernel {
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Param"
),
"Input(Param) of SGDOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Grad"
),
"Input(Grad) of SGDOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"LearningRate"
),
"Input(LearningRate) of SGDOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"ParamOut"
),
"Output(ParamOut) of SGDOp should not be null."
);
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"Param"
),
true
,
platform
::
errors
::
NotFound
(
"Input(Param) of SGDOp should not be null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"Grad"
),
true
,
platform
::
errors
::
NotFound
(
"Input(Grad) of SGDOp should not be null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"LearningRate"
),
true
,
platform
::
errors
::
NotFound
(
"Input(LearningRate) of SGDOp should not be null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutput
(
"ParamOut"
),
true
,
platform
::
errors
::
NotFound
(
"Output(ParamOut) of SGDOp should not be null."
));
auto
lr_dims
=
ctx
->
GetInputDim
(
"LearningRate"
);
PADDLE_ENFORCE_NE
(
framework
::
product
(
lr_dims
),
0
,
"Maybe the Input variable LearningRate has not "
"been initialized. You may need to confirm "
"if you put exe.run(startup_program) "
"after optimizer.minimize function."
);
platform
::
errors
::
NotFound
(
"Maybe the Input variable LearningRate has not "
"been initialized. You may need to confirm "
"if you put exe.run(startup_program) "
"after optimizer.minimize function."
));
PADDLE_ENFORCE_EQ
(
framework
::
product
(
lr_dims
),
1
,
"Learning rate should have 1 element"
);
platform
::
errors
::
InvalidArgument
(
"Learning rate should have 1 element. But received "
"LearningRate dims [%s]"
,
framework
::
product
(
lr_dims
)));
auto
param_dim
=
ctx
->
GetInputDim
(
"Param"
);
if
(
ctx
->
GetInputsVarType
(
"Grad"
)[
0
]
==
framework
::
proto
::
VarType
::
LOD_TENSOR
)
{
...
...
paddle/fluid/operators/optimizers/sgd_op.cu
浏览文件 @
d014e29f
...
...
@@ -57,11 +57,12 @@ class SGDOpKernel<platform::CUDADeviceContext, T>
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
auto
*
param_var
=
ctx
.
InputVar
(
"Param"
);
PADDLE_ENFORCE
(
param_var
->
IsType
<
framework
::
LoDTensor
>
(),
"The Var(%s)'s type should be LoDTensor, "
"but the received is %s"
,
ctx
.
InputNames
(
"Param"
).
front
(),
framework
::
ToTypeName
(
param_var
->
Type
()));
PADDLE_ENFORCE_EQ
(
param_var
->
IsType
<
framework
::
LoDTensor
>
(),
true
,
platform
::
errors
::
InvalidArgument
(
"The Var(%s)'s type should be LoDTensor, "
"but the received is %s"
,
ctx
.
InputNames
(
"Param"
).
front
(),
paddle
::
framework
::
ToTypeName
(
param_var
->
Type
())));
auto
*
param
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Param"
);
auto
*
param_out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"ParamOut"
);
...
...
@@ -91,18 +92,30 @@ class SGDOpKernel<platform::CUDADeviceContext, T>
// TODO(qijun): In Sparse SGD operator, in-place update is enforced.
// This manual optimization brings difficulty to track data dependency.
// It's better to find a more elegant solution.
PADDLE_ENFORCE_EQ
(
param
,
param_out
);
PADDLE_ENFORCE_EQ
(
param
,
param_out
,
platform
::
errors
::
InvalidArgument
(
"The input tensor Param of SgdOp should be equal with ParamOut "
"if variable's type is SelectedRows."
));
auto
*
grad
=
ctx
.
Input
<
framework
::
SelectedRows
>
(
"Grad"
);
auto
in_height
=
grad
->
height
();
auto
out_dims
=
param_out
->
dims
();
PADDLE_ENFORCE_EQ
(
in_height
,
out_dims
[
0
]);
PADDLE_ENFORCE_EQ
(
in_height
,
out_dims
[
0
],
platform
::
errors
::
InvalidArgument
(
"The input tensor Grad's height of SgdOp should be "
"equal with ParamOut's dims. But received Grad's "
"height [%s] and ParamOut's dims [%s]"
,
in_height
,
out_dims
[
0
]));
auto
&
in_value
=
grad
->
value
();
auto
&
in_rows
=
grad
->
rows
();
int64_t
in_row_numel
=
in_value
.
numel
()
/
in_rows
.
size
();
PADDLE_ENFORCE_EQ
(
in_row_numel
,
param_out
->
numel
()
/
in_height
);
PADDLE_ENFORCE_EQ
(
in_row_numel
,
param_out
->
numel
()
/
in_height
,
platform
::
errors
::
InvalidArgument
(
"The in_row_numel of SgdOp should be equal with "
"param_out's numel / in_height."
));
auto
*
in_data
=
in_value
.
data
<
T
>
();
auto
*
out_data
=
param_out
->
data
<
T
>
();
...
...
@@ -118,7 +131,12 @@ class SGDOpKernel<platform::CUDADeviceContext, T>
out_data
,
in_row_numel
,
in_rows
.
size
());
}
else
{
PADDLE_THROW
(
"Unsupported Variable Type of Grad"
);
PADDLE_ENFORCE_EQ
(
false
,
true
,
platform
::
errors
::
PermissionDenied
(
"Unsupported Variable Type of Grad "
"in SgdOp. Excepted LodTensor or "
"SelectedRows, But received [%s]"
,
paddle
::
framework
::
ToTypeName
(
grad_var
->
Type
())));
}
}
};
...
...
paddle/fluid/operators/optimizers/sgd_op.h
浏览文件 @
d014e29f
...
...
@@ -44,8 +44,20 @@ class SGDOpKernel<platform::CPUDeviceContext, T>
if
(
grad_var
->
IsType
<
framework
::
LoDTensor
>
())
{
const
auto
*
grad
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Grad"
);
auto
sz
=
param_out
->
numel
();
PADDLE_ENFORCE_EQ
(
param
->
numel
(),
sz
);
PADDLE_ENFORCE_EQ
(
grad
->
numel
(),
sz
);
PADDLE_ENFORCE_EQ
(
param
->
numel
(),
sz
,
platform
::
errors
::
InvalidArgument
(
"The input tensor Param's numel of SgdOp "
"should be equal with ParamOut's numel. "
"But received Param's "
"numel = [%s], ParamOut's numel = [%s]"
,
param
->
numel
(),
sz
));
PADDLE_ENFORCE_EQ
(
grad
->
numel
(),
sz
,
platform
::
errors
::
InvalidArgument
(
"The input tensor Grad's numel of SgdOp "
"should be equal with ParamOut's numel. "
"But received Grad's "
"numel = [%s], ParamOut's numel = [%s]"
,
grad
->
numel
(),
sz
));
jit
::
sgd_attr_t
attr
(
1
,
sz
,
1
,
sz
,
1
);
const
T
*
lr
=
learning_rate
->
data
<
T
>
();
...
...
@@ -62,7 +74,11 @@ class SGDOpKernel<platform::CPUDeviceContext, T>
// TODO(qijun): In Sparse SGD operator, in-place update is enforced.
// This manual optimization brings difficulty to track data dependency.
// It's better to find a more elegant solution.
PADDLE_ENFORCE_EQ
(
param
,
param_out
);
PADDLE_ENFORCE_EQ
(
param
,
param_out
,
platform
::
errors
::
InvalidArgument
(
"The input tensor Param of SgdOp "
"should be equal with ParamOut if variable's "
"type is SelectedRows. "
));
const
auto
*
grad
=
ctx
.
Input
<
framework
::
SelectedRows
>
(
"Grad"
);
auto
&
grad_rows
=
grad
->
rows
();
...
...
@@ -73,7 +89,13 @@ class SGDOpKernel<platform::CPUDeviceContext, T>
}
auto
out_dims
=
param_out
->
dims
();
PADDLE_ENFORCE_EQ
(
grad
->
height
(),
out_dims
[
0
]);
PADDLE_ENFORCE_EQ
(
grad
->
height
(),
out_dims
[
0
],
platform
::
errors
::
InvalidArgument
(
"The input tensor Grad's height of SgdOp "
"should be equal with ParamOut's dims. But received Grad's "
"height [%s] and ParamOut's dims [%s]"
,
grad
->
height
(),
out_dims
[
0
]));
auto
&
grad_value
=
grad
->
value
();
const
T
*
param_data
=
param
->
data
<
T
>
();
const
T
*
grad_data
=
grad_value
.
data
<
T
>
();
...
...
@@ -87,19 +109,31 @@ class SGDOpKernel<platform::CPUDeviceContext, T>
attr
.
grad_height
=
grad_rows
.
size
();
// note: it is not grad->height()
attr
.
grad_width
=
grad_value
.
numel
()
/
attr
.
grad_height
;
attr
.
selected_rows_size
=
grad_rows
.
size
();
PADDLE_ENFORCE_EQ
(
attr
.
grad_width
,
attr
.
param_width
);
PADDLE_ENFORCE_EQ
(
attr
.
grad_width
,
attr
.
param_width
,
platform
::
errors
::
InvalidArgument
(
"The grad_value's numel of SgdOp "
"should be equal with param_out's numel. But received "
"grad_value's numel [%s] and param_out's numel [%s]"
,
attr
.
grad_width
,
attr
.
param_width
));
auto
sgd
=
jit
::
KernelFuncs
<
jit
::
SgdTuple
<
T
>
,
platform
::
CPUPlace
>::
Cache
().
At
(
attr
);
sgd
(
lr
,
param_data
,
grad_data
,
rows_data
,
out_data
,
&
attr
);
}
else
{
PADDLE_THROW
(
"Unsupported Variable Type of Grad"
);
PADDLE_ENFORCE_EQ
(
false
,
true
,
platform
::
errors
::
PermissionDenied
(
"Unsupported Variable Type of Grad in SgdOp. Excepted "
"LodTensor or SelectedRows, But received [%s]"
,
paddle
::
framework
::
ToTypeName
(
grad_var
->
Type
())));
}
}
else
if
(
param_var
->
IsType
<
framework
::
SelectedRows
>
())
{
PADDLE_ENFORCE
(
grad_var
->
IsType
<
framework
::
SelectedRows
>
(),
"when param "
"is SelectedRows, gradient should also be SelectedRows"
);
PADDLE_ENFORCE_EQ
(
grad_var
->
IsType
<
framework
::
SelectedRows
>
(),
true
,
platform
::
errors
::
InvalidArgument
(
"when param is SelectedRows, "
"gradient should also be SelectedRows"
));
const
auto
&
param
=
param_var
->
Get
<
framework
::
SelectedRows
>
();
auto
*
param_out
=
ctx
.
Output
<
framework
::
SelectedRows
>
(
"ParamOut"
);
const
auto
&
grad
=
grad_var
->
Get
<
framework
::
SelectedRows
>
();
...
...
@@ -112,27 +146,36 @@ class SGDOpKernel<platform::CPUDeviceContext, T>
auto
param_row_width
=
param
.
value
().
dims
()[
1
];
auto
grad_row_width
=
grad
.
value
().
dims
()[
1
];
VLOG
(
4
)
<<
" param rows: "
<<
param
.
rows
().
size
()
<<
" param memory rows: "
<<
param
.
value
().
dims
()[
0
]
<<
" grad rows: "
<<
grad
.
rows
().
size
()
<<
" grad memory rows: "
<<
grad
.
value
().
dims
()[
0
];
PADDLE_ENFORCE_EQ
(
param_row_width
,
grad_row_width
,
"param_row should have the same size with grad_row"
);
PADDLE_ENFORCE_EQ
(
param_row_width
,
grad_row_width
,
platform
::
errors
::
InvalidArgument
(
"The param_row in SgdOP should have the same size with grad_row. "
"But received param_row's width is [%s], and grad_row's width is "
"[%s]"
,
param_row_width
,
grad_row_width
));
const
auto
*
lr
=
learning_rate
->
data
<
T
>
();
const
auto
*
grad_data
=
grad
.
value
().
data
<
T
>
();
auto
*
out_data
=
param_out
->
mutable_value
()
->
data
<
T
>
();
for
(
size_t
i
=
0
;
i
<
grad
.
rows
().
size
();
i
++
)
{
int64_t
id_index
=
param_out
->
AutoGrownIndex
(
grad
.
rows
()[
i
],
false
);
PADDLE_ENFORCE_GE
(
id_index
,
static_cast
<
int64_t
>
(
0
),
"id should be in the table"
);
PADDLE_ENFORCE_GE
(
id_index
,
static_cast
<
int64_t
>
(
0
),
platform
::
errors
::
InvalidArgument
(
"The id in SgdOp should be >= 0. But recevied id_index is [%s]"
,
id_index
));
for
(
int64_t
j
=
0
;
j
<
grad_row_width
;
j
++
)
{
out_data
[
id_index
*
grad_row_width
+
j
]
-=
lr
[
0
]
*
grad_data
[
i
*
grad_row_width
+
j
];
}
}
}
else
{
PADDLE_THROW
(
"Unsupported Variable Type of Parameter"
);
PADDLE_ENFORCE_EQ
(
false
,
true
,
platform
::
errors
::
PermissionDenied
(
"Unsupported Variable Type of Parameter in SgdOp. Excepted "
"LodTensor or SelectedRows, But received [%s]"
,
paddle
::
framework
::
ToTypeName
(
param_var
->
Type
())));
}
}
};
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录