executor.py 92.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Z
Zeng Jinle 已提交
17
import logging
18 19
import os
import multiprocessing
C
chengduo 已提交
20
import sys
21
import warnings
D
dzhwinter 已提交
22
import numpy as np
S
rename  
sneaxiy 已提交
23
from .wrapped_decorator import signature_safe_contextmanager
24
import six
25
from .data_feeder import convert_dtype
26
from .framework import Program, default_main_program, Variable, Operator
27
from .framework import convert_np_dtype_to_dtype_
28
from . import core
29
from . import unique_name
30 31
from . import compiler
from .. import compat as cpt
32
from .trainer_factory import TrainerFactory
33
from .trainer_factory import FetchHandlerMonitor
34
import copy
35
from . import framework
36
from .incubate.checkpoint import auto_checkpoint as acp
37
from .compiler import _prune_feed_ops
38

T
Tink_Y 已提交
39
__all__ = ['Executor', 'global_scope', 'scope_guard']
Y
Yu Yang 已提交
40

Y
Yu Yang 已提交
41
g_scope = core.Scope()
F
flame 已提交
42 43
InferNativeConfig = core.NativeConfig
InferAnalysisConfig = core.AnalysisConfig
Y
Yu Yang 已提交
44

Y
Yu Yang 已提交
45

Y
Yang Yu 已提交
46
def global_scope():
Y
yuyang18 已提交
47
    """
48 49
    :api_attr: Static Graph

Y
yuyang18 已提交
50 51 52
    Get the global/default scope instance. There are a lot of APIs use
    :code:`global_scope` as its default value, e.g., :code:`Executor.run`

C
chengduo 已提交
53 54 55
    Returns:
        Scope: The global/default scope instance.

56 57 58
    Examples:
        .. code-block:: python

59
          import paddle
60 61
          import numpy

62 63
          paddle.static.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), paddle.CPUPlace())
          numpy.array(paddle.static.global_scope().find_var("data").get_tensor())
Y
yuyang18 已提交
64
    """
Y
Yang Yu 已提交
65 66 67
    return g_scope


68
def _switch_scope(scope):
Y
Yang Yu 已提交
69 70 71 72 73 74
    global g_scope
    ex = g_scope
    g_scope = scope
    return ex


S
rename  
sneaxiy 已提交
75
@signature_safe_contextmanager
Y
Yang Yu 已提交
76
def scope_guard(scope):
Y
yuyang18 已提交
77
    """
78 79
    :api_attr: Static Graph
    
80 81 82 83 84 85 86 87 88 89 90 91
    This function switches scope through python `with` statement.
    Scope records the mapping between variable names and variables ( :ref:`api_guide_Variable` ),
    similar to brackets in programming languages.
    If this function is not invoked, all variables and variable names are recorded in the default global scope.
    When users need to create variables with the same name,
    they need to switch scopes through this function
    if they do not want the mapping of variables with the same name to be overwritten.
    After switching through the `with` statement,
    all variables created in the `with` block will be assigned to a new scope.

    Parameters:
        scope: The new scope.
Y
yuyang18 已提交
92

93 94
    Returns:
        None
L
lujun 已提交
95

Y
yuyang18 已提交
96
    Examples:
97 98
        .. code-block:: python

99
            import paddle
L
lujun 已提交
100
            import numpy
101
            paddle.enable_static()
Y
yuyang18 已提交
102

103 104 105
            new_scope = paddle.static.Scope()
            with paddle.static.scope_guard(new_scope):
                 paddle.static.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), paddle.CPUPlace())
L
lujun 已提交
106
            numpy.array(new_scope.find_var("data").get_tensor())
Y
yuyang18 已提交
107
    """
L
lujun 已提交
108

109
    ex = _switch_scope(scope)
110 111 112 113
    try:
        yield
    finally:
        _switch_scope(ex)
Y
Yang Yu 已提交
114 115


116
def as_numpy(tensor, copy=False):
117 118 119
    """
    Convert a Tensor to a numpy.ndarray, its only support Tensor without LoD information.
    For higher dimensional sequence data, please use LoDTensor directly.
120

121
    Examples:
122 123 124 125 126 127 128 129 130 131
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          new_scope = fluid.Scope()
          with fluid.scope_guard(new_scope):
              fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
          tensor = new_scope.find_var("data").get_tensor()
          fluid.executor.as_numpy(tensor) # or numpy.array(new_scope.find_var("data").get_tensor())
132 133 134

    Args:
       tensor(Variable): a instance of Tensor
135
       copy(bool, optional): Whether to use deep copy.
136 137 138 139

    Returns:
        numpy.ndarray
    """
C
chengduo 已提交
140
    if isinstance(tensor, core.LoDTensorArray):
141
        return [as_numpy(t, copy) for t in tensor]
D
dzhwinter 已提交
142
    if isinstance(tensor, list):
143
        return [as_numpy(t, copy) for t in tensor]
D
dzhwinter 已提交
144 145
    assert isinstance(tensor, core.LoDTensor)
    lod = tensor.lod()
146
    if len(lod) > 0:
D
dzhwinter 已提交
147
        raise RuntimeError("Some of your fetched tensors hold LoD information. \
148 149 150
            They can not be completely cast to Python ndarray. \
            Please set the parameter 'return_numpy' as 'False' to \
            return LoDTensor itself directly.")
Q
qingqing01 已提交
151
    if tensor._is_initialized():
152 153 154 155
        if copy:
            return np.array(tensor)
        else:
            return np.asarray(tensor)
Q
qingqing01 已提交
156 157
    else:
        return None
D
dzhwinter 已提交
158 159


H
Huihuang Zheng 已提交
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
def dtype_is_compatible_with(first, second):
    """
    Returns True if the first dtype can be compatible the second one.
    Currently, we require the two dtype's have to be same.
      
    Args:
        dtype (np.dtype|VarType|str): The type of data: float32, int64, etc.
    
    Returns:
        True if the two types are same.
    """
    if not isinstance(first, core.VarDesc.VarType):
        first = convert_np_dtype_to_dtype_(first)
    if not isinstance(second, core.VarDesc.VarType):
        second = convert_np_dtype_to_dtype_(second)
    return first == second


def dimension_is_compatible_with(first, second):
    """
    Returns True if the two dimensions are compatible.

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
T
tianshuo78520a 已提交
184 185
    2. Each non-negative number of the two dimensions are same.
    3. For negative number or 'None' in a dimension, it means unknown so it
H
Huihuang Zheng 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
       is compatible with any number.

    Args:
        first (list/tuple): integers representing shape. "None" or negative
            number means unknown.
        second (list/tuple): integers representing shape. "None" or negative
            number means unknown.

    Returns:
        True if the two dimensions are compatible.
    """

    dim_len = len(first)
    if dim_len != len(second):
        return False

    for i in range(dim_len):
        if first[i] is None or first[i] < 0:
            continue
        if second[i] is None or second[i] < 0:
            continue
        if first[i] != second[i]:
            return False

    return True


213
def check_feed_shape_type(var, feed, num_places=1):
H
Huihuang Zheng 已提交
214 215
    """
    Returns True if the variable doesn't require feed check or it is compatible
T
tianshuo78520a 已提交
216
    with the shape and have same dtype as the fed value.
H
Huihuang Zheng 已提交
217 218 219

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
T
tianshuo78520a 已提交
220 221
    2. Each non-negative number of the two dimensions are same.
    3. For negative number or 'None' in a dimension, it means unknown so it
H
Huihuang Zheng 已提交
222 223 224 225
       is compatible with any number.
    
    Args:
        var (Variable): the Variable object
T
tianshuo78520a 已提交
226
        feed (LoDTensor): the fed value, which must be a LoDTensor
227 228
        num_places: an integer value indicating the number of places.
            ParallelExecutor will divide data into devices (CPU/GPU) evenly.
H
Huihuang Zheng 已提交
229 230 231 232 233 234 235
    Returns:
        True if the shape and dtype of variable is compatible with the feed value
    Raises:
        ValueError: if the shape or dtype of the variable is not compatible with
            the feed value
    """
    if var.desc.need_check_feed():
236 237
        diff_shape = core.diff_tensor_shape(feed, var.desc, num_places)
        if diff_shape is not None:
238
            raise ValueError(
T
tianshuo78520a 已提交
239 240
                'The fed Variable %r should have dimensions = %d, shape = '
                '%r, but received fed shape %r on each device' %
241
                (var.name, len(var.shape), var.shape, diff_shape))
H
Huihuang Zheng 已提交
242
        if not dtype_is_compatible_with(feed._dtype(), var.dtype):
243 244 245 246 247
            var_dtype_format = convert_dtype(var.dtype) if isinstance(
                var.dtype, core.VarDesc.VarType) else var.dtype
            feed_dtype_format = convert_dtype(feed._dtype()) if isinstance(
                feed._dtype(), core.VarDesc.VarType) else feed._dtype()
            raise ValueError(
T
tianshuo78520a 已提交
248 249
                'The data type of fed Variable %r must be %r, but received %r' %
                (var.name, var_dtype_format, feed_dtype_format))
H
Huihuang Zheng 已提交
250 251 252
    return True


253 254 255 256 257 258 259 260 261 262 263 264
def has_feed_operators(block, feed_targets, feed_holder_name):
    """ Check whether the block already has feed operators.

    Return false if the block does not have any feed operators.
    If some feed operators have been prepended to the block, check that
    the info contained in these feed operators matches the feed_targets
    and feed_holder_name. Raise exception when any mismatch is found.
    Return true when the block has feed operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        feed_targets: a dictionary of {feed_target_name: feed_target_data}
X
xuwei06 已提交
265 266
        feed_holder_name: the name of the variable that holds the data of
            all feed targets. The type of this feed_holder variable is
267 268 269
            FEED_MINIBATCH, which is essentially vector<LoDTensor>.

    Returns:
X
xuwei06 已提交
270
        A boolean value that indicates whether a block has feed operators
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
        that match the info contained in feed_targets and feed_holder_name.
    """

    feed_count = 0
    for op in block.ops:
        if op.desc.type() == 'feed':
            feed_count += 1
            assert op.desc.input('X')[0] == feed_holder_name
            feed_target_name = op.desc.output('Out')[0]
            if feed_target_name not in feed_targets:
                raise Exception("'feed_targets' does not have {} variable".
                                format(feed_target_name))
        else:
            break
    if feed_count > 0 and feed_count != len(feed_targets):
        raise Exception(
            "Feed operators in program desc do not match 'feed_targets'")
    return feed_count > 0


def has_fetch_operators(block, fetch_targets, fetch_holder_name):
    """ Check whether the block already has fetch operators.
X
xuwei06 已提交
293

294 295 296 297 298 299 300 301 302
    Return false if the block does not have any fetch operators.
    If some fetch operators have been appended to the block, check that
    the info contained in these fetch operators matches the fetch_targets
    and fetch_holder_name. Raise exception when any mismatch is found.
    Return true when the block has fetch operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        fetch_targets: a dictionary of {fetch_target_name: fetch_target_data}
X
xuwei06 已提交
303 304 305
        fetch_holder_name: the name of the variable that holds the data of
            all fetch targets. The type of this fetch_holder variable is
            FETCH_LIST, which is essentially vector<LoDTensor>.
306

X
xuwei06 已提交
307 308 309
    Return:
        A boolean value that indicates whether a block has fetch operators
        that match the info contained in fetch_targets and fetch_holder_name.
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
    """

    fetch_count = 0
    for op in block.ops:
        if op.desc.type() == 'fetch':
            fetch_count += 1
            assert op.desc.output('Out')[0] == fetch_holder_name
            fetch_target_name = op.desc.input('X')[0]
            if fetch_target_name not in [
                    var.desc.name() for var in fetch_targets
            ]:
                raise Exception("'fetch_targets' does not have {} variable".
                                format(fetch_target_name))
            idx = op.desc.attr('col')
            assert fetch_target_name == fetch_targets[idx].desc.name()
    if fetch_count > 0 and fetch_count != len(fetch_targets):
        raise Exception(
            "Fetch operators in program desc do not match 'fetch_targets'")
    return fetch_count > 0


W
Wu Yi 已提交
331
def _fetch_var(name, scope=None, return_numpy=True):
X
xuwei06 已提交
332
    """
C
chengduoZH 已提交
333 334 335
    Fetch the value of the variable with the given name from the
    given scope.

X
xuwei06 已提交
336
    Args:
337 338 339 340
        name(str): name of the variable. Typically, only persistable variables
            can be found in the scope used for running the program.
        scope(core.Scope|None): scope object. It should be the scope where
            you pass to Executor.run() when running your program.
C
chengduoZH 已提交
341 342 343 344
            If None, global_scope() will be used. Default None.
        return_numpy(bool): whether convert the tensor to numpy.ndarray.
            Default True.

X
xuwei06 已提交
345 346 347
    Returns:
       LodTensor|numpy.ndarray
    """
348
    assert isinstance(name, six.string_types)
X
xuwei06 已提交
349 350
    if scope is None:
        scope = global_scope()
S
sneaxiy 已提交
351
    assert isinstance(scope, core._Scope)
X
xuwei06 已提交
352

353
    var = scope.find_var(_to_name_str(name))
354 355 356 357
    assert var is not None, (
        "Cannot find " + name + " in scope. Perhaps you need to make the"
        " variable persistable by using var.persistable = True in your"
        " program.")
X
xuwei06 已提交
358 359
    tensor = var.get_tensor()
    if return_numpy:
360
        tensor = as_numpy(tensor, copy=True)
X
xuwei06 已提交
361 362 363
    return tensor


X
polish  
Xin Pan 已提交
364
def _to_name_str(var):
365 366 367 368 369 370 371 372
    def _to_str(var):
        if isinstance(var, Variable):
            return var.desc.name()
        elif isinstance(var, str):
            return var
        elif isinstance(var, six.string_types):
            return str(var)
        elif isinstance(var, Operator):
373
            return str(id(var))
374 375 376 377 378 379 380 381 382 383
        else:
            raise TypeError(str(var) + " should be Variable, Operator or str")

    # NOTEz(zhiqiu): The item in fetch_list may be tuple returned by Optimizer.minimize(),
    # see comments in _split_optimize_ops_in_fetch_list for more details.
    if isinstance(var, tuple):
        var = var[0]
    if isinstance(var, list):
        s = [_to_str(item) for item in var]
        return ','.join(s)
X
polish  
Xin Pan 已提交
384
    else:
385
        return _to_str(var)
Q
qiaolongfei 已提交
386 387


388 389 390 391 392 393 394 395 396 397 398
def _is_enable_standalone_executor():
    """
    Whether to use experimental executor `StandaloneExecutor`.
    """
    flag = False
    env_val = os.environ.get('FLAGS_USE_STANDALONE_EXECUTOR', None)
    if env_val in [1, '1', True, 'True', 'true']:
        flag = True
    return flag


399 400 401 402
def _get_strong_program_cache_key(program, feed, fetch_list):
    return str(id(program)) + _get_program_cache_key(feed, fetch_list)


X
polish  
Xin Pan 已提交
403
def _get_program_cache_key(feed, fetch_list):
404 405 406 407 408 409
    feed_var_names = []
    if isinstance(feed, dict):
        feed_var_names = list(feed.keys())
    elif isinstance(feed, list) or isinstance(feed, tuple):
        for i, each in enumerate(feed):
            feed_var_names += list(each.keys())
X
polish  
Xin Pan 已提交
410
    fetch_var_names = list(map(_to_name_str, fetch_list))
Q
qiaolongfei 已提交
411 412 413
    return str(feed_var_names + fetch_var_names)


414
def _as_lodtensor(data, place, dtype=None):
W
Wu Yi 已提交
415 416 417 418 419 420 421 422 423 424 425 426 427
    """
        Convert numpy.ndarray to Tensor, its only support Tensor without LoD information.
        For higher dimensional sequence data, please use LoDTensor directly.

        Examples:
            >>> import paddle.fluid as fluid
            >>> place = fluid.CPUPlace()
            >>> exe = fluid.executor(place)
            >>> data = np.array(size=(100, 200, 300))
            >>> np_outs = map(lambda x: fluid.executor._as_lodtensor(x, place), data)
            >>>     ...

        Args:
428
            data(numpy.ndarray|list|tuple|scalar): a instance of array, scalar, list or tuple
429
            data(core.Place): the place of created tensor
430
            dtype(core.VarDesc.VarType|str): the expected data type of created tensor
W
Wu Yi 已提交
431 432 433 434

        Returns:
            LoDTensor
        """
435
    #NOTE(zhiqiu): convert python builtin, like float, int, and list, to numpy ndarray
436
    if not isinstance(data, np.ndarray):
437 438 439
        assert dtype is not None, 'The dtype should be given when feed data is not np.ndarray'
        dtype = convert_dtype(dtype) if isinstance(
            dtype, core.VarDesc.VarType) else dtype
440 441
        if np.isscalar(data):
            data = np.array([data]).astype(dtype)
442 443 444 445 446 447 448 449 450 451 452 453 454
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
            if data.dtype == np.object:
                raise TypeError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t* Usually "
                    "this means the input data contains nested lists with different lengths. "
                    "Please consider using 'fluid.create_lod_tensor' to convert it to a LoD-Tensor."
                )
            data = data.astype(dtype)
        else:
            raise TypeError(
                "Convert data of type {} to Tensor is not supported".format(
                    type(data)))
455

456
    # convert numpy.ndarray to tensor
W
Wu Yi 已提交
457 458 459 460 461
    tensor = core.LoDTensor()
    tensor.set(data, place)
    return tensor


462
class FetchHandler(object):
D
Dong Daxiang 已提交
463 464 465
    def __init__(self, var_dict=None, period_secs=60):
        assert var_dict != None
        self.var_dict = var_dict
466 467
        self.period_secs = period_secs

D
Dong Daxiang 已提交
468 469 470 471 472
    def handler(self, res_dict):
        for key in res_dict:
            if type(res_dict[key]) is np.ndarray:
                sys.stdout.write("{}[0]: {} ".format(key, res_dict[key][0]))
        sys.stdout.write("\n")
473 474 475 476

    @staticmethod
    def help():
        print("""
D
Dong Daxiang 已提交
477 478 479 480 481 482 483 484
class FetchHandlerExample(FetchHandler):
    def handler(self, res_dict):
        print(res_dict["auc"])
        print("auc: {}, {}".format(res_dict["auc"], time.ctime()))

auc = Variable()
var_dict = {"auc": auc}
handler = FetchHandlerExample(var_dict=var_dict)
485 486 487
""")


488
class _StandaloneExecutor(object):
489
    def __init__(self, place, main_program, scope):
490 491 492
        self._place = core.Place()
        self._place.set_place(place)
        self._main_program = main_program
493
        self._scope = scope
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
        self._new_exe = self._create_new_executor()

    def run(self, feed, fetch_list, return_numpy=True):
        """
        Args:
            feed(list|dict): This parameter represents the input Tensors of the model.
                If it is single card training, the feed is dict type, and if it is multi-card
                training, the parameter feed can be dict or list of Tensors. If the
                parameter type is dict, the data in the feed will be split and sent to
                multiple devices (CPU/GPU), that is to say, the input data will be evenly
                sent to different devices, so you should make sure the number of samples of
                the current mini-batch must be greater than the number of places;
                if the parameter type is list, those data are copied directly to each device,
                so the length of this list should be equal to the number of places.
                The default is None.
            fetch_list(list): This parameter represents the Tensors that need to be returned
                after the model runs. The default is None. 
            return_numpy(bool): This parameter indicates whether convert the fetched Tensors
                (the Tensor specified in the fetch list) to numpy.ndarray. if it is False,
                the type of the return value is a list of :code:`LoDTensor`. The default is True.
        """
        feed = self._update_feed(feed)
        fetch_list = self._check_fetch(fetch_list)

        tensors = self._new_exe.run(feed, fetch_list)._move_to_list()
        if return_numpy:
            return as_numpy(tensors, copy=True)
        else:
            return tensors

    def _create_new_executor(self):
        # NOTE: It's a trick to set empty start_up program.
        startup_program = Program()
        new_exe = core.StandaloneExecutor(self._place, startup_program.desc,
528
                                          self._main_program.desc, self._scope)
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546

        return new_exe

    def _update_feed(self, feed):
        """
        Update the feed dict, remove the feed item which is pruned in program.  

        Notes: This is a very low level API. Users should not use this API
        directly. 

        Args:
            feed(list|dict): feed dict or list.

        Returns:
            feed:(list|dict)  updated feed.
        """
        if feed is None:
            feed = {}
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
        elif isinstance(feed, (list, tuple)):
            assert len(feed) == 1, "Not compiled with data parallel"
            feed = feed[0]

        if not isinstance(feed, dict):
            raise TypeError(
                "feed requires dict as its Parameter. But you passed in %s" %
                (type(feed)))

        global_block = self._main_program.global_block()
        for feed_name in list(feed.keys()):
            if not global_block.has_var(feed_name):
                feed.pop(feed_name)
                warnings.warn(
                    "The variable %s is not found in program. It is not declared or is pruned."
                    % feed_name)
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588

        return feed

    def _check_fetch(self, fetch_list):
        if fetch_list is None:
            fetch_list = []

        res = []
        for fetch_var in fetch_list:
            if isinstance(fetch_var, Variable):
                fetch_var = fetch_var.name
            elif not isinstance(fetch_var, str):
                raise TypeError(
                    "Required fetch_var shall be str|Variable, but received {}".
                    format(type(fetch_var).__name__))

            res.append(fetch_var)
        return res


class _ExecutorCache(object):
    def __init__(self, place):
        # {Program : _StandaloneExecutor}
        self._place = place
        self._cached_executors = {}

589 590
    def run(self, program, scope, feed, fetch_list, return_numpy=True):
        new_exe = self._get_exe_from_cache(program, scope)
591 592
        return new_exe.run(feed, fetch_list, return_numpy)

593
    def _get_exe_from_cache(self, program, scope):
594 595 596 597 598 599 600
        """
        Return cached _StandaloneExecutor instance. If not found, create associated 
        _StandaloneExecutor instance with given program and cache it.
        """
        assert isinstance(
            program, Program), "Required type(Program), but received {}".format(
                type(program).__name__)
W
wanghuancoder 已提交
601
        if str(program) not in self._cached_executors:
602 603 604
            new_program = program.clone()
            _prune_feed_ops(new_program)
            new_exe = _StandaloneExecutor(self._place, new_program, scope)
W
wanghuancoder 已提交
605
            self._cached_executors[str(program)] = new_exe
606

W
wanghuancoder 已提交
607
        return self._cached_executors[str(program)]
608 609


Y
Yu Yang 已提交
610
class Executor(object):
611
    """
612 613
    :api_attr: Static Graph

614
    An Executor in Python, supports single/multiple-GPU running,
615
    and single/multiple-CPU running.
C
chengduo 已提交
616 617

    Args:
618
        place(paddle.CPUPlace()|paddle.CUDAPlace(n)|str|None): This parameter represents
619 620 621 622
            which device the executor runs on. When this parameter is None, PaddlePaddle
            will set the default device according to its installation version. If Paddle
            is CPU version, the default device would be set to `CPUPlace()` . If Paddle is
            GPU version, the default device would be set to `CUDAPlace(0)` . Default is None.
623 624
            If ``place`` is string, it can be ``cpu``, and ``gpu:x``, where ``x`` 
            is the index of the GPUs.
C
chengduo 已提交
625 626 627

    Returns:
        Executor
S
Fix doc  
sneaxiy 已提交
628

629
    Examples:
S
Fix doc  
sneaxiy 已提交
630 631
        .. code-block:: python

632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
            import paddle
            import numpy
            import os

            # Executor is only used in static graph mode
            paddle.enable_static()

            # Set place explicitly.
            # use_cuda = True
            # place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
            # exe = paddle.static.Executor(place)

            # If you don't set place, PaddlePaddle sets the default device.
            exe = paddle.static.Executor()

            train_program = paddle.static.Program()
            startup_program = paddle.static.Program()
            with paddle.static.program_guard(train_program, startup_program):
                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
                hidden = paddle.static.nn.fc(data, 10)
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)

            # Run the startup program once and only once.
            # Not need to optimize/compile the startup program.
            exe.run(startup_program)

            # Run the main program directly without compile.
            x = numpy.random.random(size=(10, 1)).astype('float32')
            loss_data, = exe.run(train_program, feed={"X": x}, fetch_list=[loss.name])

            # Or, compiled the program and run. See `CompiledProgram`
            # for more details.
            # NOTE: If you use CPU to run the program or Paddle is
            # CPU version, you need to specify the CPU_NUM, otherwise,
            # PaddlePaddle will use all the number of the logic core as
            # the CPU_NUM, in that case, the batch size of the input
            # should be greater than CPU_NUM, if not, the process will be
            # failed by an exception.

            # Set place explicitly.
            # if not use_cuda:
            #     os.environ['CPU_NUM'] = str(2)

            # If you don't set place and PaddlePaddle is CPU version
            os.environ['CPU_NUM'] = str(2)

            compiled_prog = paddle.static.CompiledProgram(
                train_program).with_data_parallel(loss_name=loss.name)
            loss_data, = exe.run(compiled_prog, feed={"X": x}, fetch_list=[loss.name])

683 684
    """

685 686
    def __init__(self, place=None):
        if place is None:
687 688
            expected_place = framework._current_expected_place()
            self.place = expected_place
689
        else:
690
            self.place = framework._get_paddle_place(place)
Q
qiaolongfei 已提交
691
        self.program_caches = dict()
692
        self.ctx_caches = dict()
693
        self.trainer_caches = dict()
694 695
        self.scope_caches = dict()
        self.var_caches = dict()
696
        self.pruned_program_caches = dict()
697 698 699
        p = core.Place()
        p.set_place(self.place)
        self._default_executor = core.Executor(p)
Y
Yancey1989 已提交
700
        self._closed = False
701
        self.pruned_program_scope_caches = dict()
702
        self._prepare_to_run_called = False
D
dzhwinter 已提交
703

704 705 706
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_executor__")

707 708 709 710
        # NOTE: Whether to use experimental executor `StandaloneExecutor`.
        self._enable_interpreter_core = _is_enable_standalone_executor()
        self._executor_cache = _ExecutorCache(self.place)

711 712 713
    def _get_scope_cache(self, program_cache_key):
        return self.scope_caches.get(program_cache_key, None)

714 715 716
    def _get_ctx_cache(self, program_cache_key):
        return self.ctx_caches.get(program_cache_key, None)

717 718 719
    def _get_trainer_cache(self, program_cache_key):
        return self.trainer_caches.get(program_cache_key, None)

Q
Qiao Longfei 已提交
720 721 722 723 724 725
    def _get_program_cache(self, program_cache_key):
        return self.program_caches.get(program_cache_key, None)

    def _add_program_cache(self, program_cache_key, program):
        self.program_caches[program_cache_key] = program

726 727 728 729 730 731 732 733 734 735 736 737
    def _get_pruned_program_cache(self, program_cache_key):
        return self.pruned_program_caches.get(program_cache_key, None)

    def _add_pruned_program_cache(self, program_cache_key, program):
        self.pruned_program_caches[program_cache_key] = program

    def _get_pruned_program_scope_cache(self, program_cache_key):
        return self.pruned_program_scope_caches.get(program_cache_key, None)

    def _add_pruned_program_scope_cache(self, program_cache_key, program):
        self.pruned_program_scope_caches[program_cache_key] = program

738 739 740
    def _add_ctx_cache(self, ctx_cache_key, ctx):
        self.ctx_caches[ctx_cache_key] = ctx

741 742 743
    def _add_trainer_cache(self, trainer_cache_key, ctx):
        self.trainer_caches[trainer_cache_key] = ctx

744 745 746
    def _add_scope_cache(self, scope_cache_key, scope):
        self.scope_caches[scope_cache_key] = scope

Q
Qiao Longfei 已提交
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
    def _add_feed_fetch_ops(self, program, feed, fetch_list, feed_var_name,
                            fetch_var_name):
        tmp_program = program.clone()

        global_block = tmp_program.global_block()

        if feed_var_name in global_block.vars:
            feed_var = global_block.var(feed_var_name)
        else:
            feed_var = global_block.create_var(
                name=feed_var_name,
                type=core.VarDesc.VarType.FEED_MINIBATCH,
                persistable=True)

        if fetch_var_name in global_block.vars:
            fetch_var = global_block.var(fetch_var_name)
        else:
            fetch_var = global_block.create_var(
                name=fetch_var_name,
                type=core.VarDesc.VarType.FETCH_LIST,
                persistable=True)

        # prepend feed operators
        if not has_feed_operators(global_block, feed, feed_var_name):
            for i, name in enumerate(feed):
772 773 774 775 776 777 778 779 780 781 782
                if global_block.has_var(name):
                    out = global_block.var(name)
                    global_block._prepend_op(
                        type='feed',
                        inputs={'X': [feed_var]},
                        outputs={'Out': [out]},
                        attrs={'col': i})
                else:
                    warnings.warn(
                        "The variable %s is not found in program. It is not declared or is pruned."
                        % name)
Q
Qiao Longfei 已提交
783 784 785
        # append fetch_operators
        if not has_fetch_operators(global_block, fetch_list, fetch_var_name):
            for i, var in enumerate(fetch_list):
M
minqiyang 已提交
786 787 788
                assert isinstance(var, Variable) or isinstance(
                    var, six.string_types), (
                        "Wrong type for fetch_list[%s]: %s" % (i, type(var)))
Q
Qiao Longfei 已提交
789 790 791 792 793 794 795 796 797 798
                global_block.append_op(
                    type='fetch',
                    inputs={'X': [var]},
                    outputs={'Out': [fetch_var]},
                    attrs={'col': i})

        return tmp_program

    def _feed_data(self, program, feed, feed_var_name, scope):
        # feed var to framework
H
Huihuang Zheng 已提交
799 800
        global_block = program.global_block()
        for op in global_block.ops:
Q
Qiao Longfei 已提交
801 802 803
            if op.desc.type() == 'feed':
                feed_target_name = op.desc.output('Out')[0]
                cur_feed = feed[feed_target_name]
H
Huihuang Zheng 已提交
804
                var = global_block.var(feed_target_name)
S
Steffy-zxf 已提交
805 806 807 808 809
                if var.dtype != core.VarDesc.VarType.STRINGS:
                    if not isinstance(cur_feed, core.LoDTensor):
                        cur_feed = _as_lodtensor(cur_feed, self.place,
                                                 var.dtype)
                    check_feed_shape_type(var, cur_feed)
Q
Qiao Longfei 已提交
810 811 812 813 814 815 816 817
                idx = op.desc.attr('col')
                core.set_feed_variable(scope, cur_feed, feed_var_name, idx)
            else:
                break

    def _fetch_data(self, fetch_list, fetch_var_name, scope):
        outs = [
            core.get_fetch_variable(scope, fetch_var_name, i)
M
minqiyang 已提交
818
            for i in six.moves.range(len(fetch_list))
Q
Qiao Longfei 已提交
819 820 821
        ]
        return outs

822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
    def _split_optimize_ops_in_fetch_list(self, fetch_list):
        """
        Split optimize_ops from fetch_list, which provided to specify program prunning.
        Args:
            fetch_list(list): The original fetch_list.
            Possible types of fetch_list are:
                fetch_list = ['loss']
                fetch_list = [[sgd, sgd], 'loss']
                fetch_list = [([sgd, sgd], [(param, grad)]), 'loss']

        Returns:
            optimize_ops(list): The optimize operators splited from fetch_list.
            fetch_list(list):  The updated fetch_list which does not contain optimize operators.  
        """
        _optimize_ops = []
        _fetch_list = []

        def _get_targets(_optimize_ops, _fetch_list, item):
            if isinstance(item, Operator):
                if item._is_optimize_op():
                    _optimize_ops.append(item)
                else:
                    raise TypeError(
                        "The operator in fetch_list is not an optimize_op")
            elif isinstance(item, Variable) or isinstance(
                    item, str) or isinstance(item, six.string_types):
                _fetch_list.append(item)
            else:
                raise TypeError(
                    "The item in fetch_list should be str, variable or optimize_op, but recieved %s.",
                    type(item))

854
        for index, item in enumerate(fetch_list):
855 856 857 858 859 860 861
            # NOTE(zhiqiu): to support (optimizer_ops, param_and_grads) and optimizer_ops in fetch_list
            # we should handle tuple and list in fetch_list.
            # TODO(zhiqiu): find a better way to handle that.
            if isinstance(item, list):
                for i in item:
                    _get_targets(_optimize_ops, _fetch_list, i)
            elif isinstance(item, tuple):
862 863 864 865
                if not isinstance(item[0], (list, tuple)):
                    raise TypeError(
                        "Requires fetch_list[{}][0] shall be one of (list, tuple) when type(fetch_list[{}]) is `tuple`, but received fetch_list[{}][0]'s type is `{}`.".
                        format(index, index, index, type(item[0]).__name__))
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
                for i in item[0]:
                    _get_targets(_optimize_ops, _fetch_list, i)
            else:
                _get_targets(_optimize_ops, _fetch_list, item)

        return _fetch_list, _optimize_ops

    def _prune_program(self,
                       program,
                       feed=None,
                       fetch_list=None,
                       optimize_ops=None):
        """
        Prune operators and variables which are not needed to generate
        :code:`fetch_list` and optimize operators. 
        Prune operators and variables which are needed 
        to generate variables to be feeded.  

        Notes: This is a very low level API. Users should not use this API
        directly. 

        Args:
            program(Program): the origin program
            feed(list|dict): feed dict or list.
            fetch_list(list|Variable): A list of variables need to be fetched
            optimize_ops(list[Operator]): A list of optimizer operators

        Returns:
            Program:  A new, pruned program.
        """
        compiled = isinstance(program, compiler.CompiledProgram)
        if compiled:
            if program._program:
                origin_program = program._program
            else:
                warnings.warn(
                    "The program holds no _program, maybe it is constructed by graph, which can't be pruned yet."
                )
                return
        else:
            origin_program = program

        feed_names = []
        if isinstance(feed, dict):
            feed_names = list(feed.keys())
        elif isinstance(feed, list) or isinstance(feed, tuple):
            for i, each in enumerate(feed):
                feed_names += list(each.keys())

        # if optimize_ops is [], all optimize ops in the program is used.
        if not optimize_ops:
            for block in origin_program.blocks:
                for op in block.ops:
                    if op._is_optimize_op():
                        optimize_ops.append(op)

        targets = fetch_list + optimize_ops
        pruned_program = origin_program._prune_with_input(feed_names, targets)

        if compiled:
            # for compiled program, update the underlying program, re-generate graph,
            # and reset the flag so it can be compiled again.
            program._program = pruned_program
            program._graph = core.Graph(pruned_program.desc)
            program._compiled = False
        else:
            program = pruned_program

        return program

    def _update_feed(self, program, feed):
        """
        Update the feed dict, remove the feed item which is pruned in program.  

        Notes: This is a very low level API. Users should not use this API
        directly. 

        Args:
            program(Program): the pruned program.
            feed(list|dict): feed dict or list.

        Returns:
            feed:(list|dict)  updated feed.
        """
        compiled = isinstance(program, compiler.CompiledProgram)
        if compiled:
            if program._program:
                global_block = program._program.global_block()
            else:
                warnings.warn(
                    "The program holds no _program, maybe it is constructed by graph."
                )
        else:
            global_block = program.global_block()

        if isinstance(feed, dict):
            for feed_name in list(feed.keys()):
                if not global_block.has_var(feed_name):
                    feed.pop(feed_name)
                    warnings.warn(
                        "The variable %s is not found in program. It is not declared or is pruned."
                        % feed_name)

        elif isinstance(feed, list) or isinstance(feed, tuple):
            for i, each in enumerate(feed):
                for feed_name in list(each.keys()):
                    if not global_block.has_var(feed_name):
                        each.pop(feed_name)
                        warnings.warn(
                            "The variable %s is not found in program. It is not declared or is pruned."
                            % feed_name)
        return feed

S
Fix doc  
sneaxiy 已提交
979 980 981 982 983 984
    '''
    TODO(typhoonzero): Define "no longer use" meaning? Can user create
    a new Executor for the same program and run?
    TODO(panyx0718): Why ParallelExecutor doesn't have close?
    '''

Y
Yancey1989 已提交
985 986
    def close(self):
        """
C
chengduo 已提交
987 988 989
        Close the executor. This interface is used for distributed training (PServers mode).
        This executor can not be used after calling the interface, because
        this interface releases resources associated with the current Trainer.
Y
Yancey1989 已提交
990

C
chengduo 已提交
991 992
        Returns:
            None
993 994 995 996

        Examples:
            .. code-block:: python

997
              import paddle
998

999 1000
              cpu = paddle.CPUPlace()
              exe = paddle.static.Executor(cpu)
1001 1002
              # execute training or testing
              exe.close()
Y
Yancey1989 已提交
1003
        """
1004
        if not self._closed:
Y
Yancey1989 已提交
1005
            self._closed = True
1006 1007 1008 1009
            for k, trainer_instance in self.trainer_caches.items():
                self._default_executor.release_trainer(trainer_instance)
                del trainer_instance
            self._default_executor.close()
Y
Yancey1989 已提交
1010

X
fix  
Xin Pan 已提交
1011
    def _run_parallel(self, program, scope, feed, fetch_list, fetch_var_name,
Z
Zhen Wang 已提交
1012
                      return_numpy, return_merged):
1013
        from paddle.optimizer.lr import LRScheduler
1014
        exe = program._executor
H
Huihuang Zheng 已提交
1015 1016 1017 1018 1019
        # TODO(zhenghuihuang): quantization uses Graph in CompiledProgram
        # instead of program. We will add support for checking Vars in Graph
        need_check_feed = program._program is not None
        if need_check_feed:
            global_block = program._program.global_block()
1020 1021 1022 1023
        if isinstance(feed, dict):
            feed_tensor_dict = dict()
            for feed_name in feed:
                feed_tensor = feed[feed_name]
1024
                var = global_block.var(feed_name) if need_check_feed else None
1025
                if not isinstance(feed_tensor, core.LoDTensor):
1026
                    # always set to CPU place, since the tensor need to be split
1027
                    # it is fast in CPU
1028 1029 1030
                    feed_tensor = _as_lodtensor(feed[feed_name],
                                                core.CPUPlace(), var.dtype
                                                if var else None)
H
Huihuang Zheng 已提交
1031
                if need_check_feed:
1032
                    check_feed_shape_type(var, feed_tensor, exe.device_count())
1033
                feed_tensor_dict[feed_name] = feed_tensor
1034
            exe.feed_and_split_tensor_into_local_scopes(feed_tensor_dict)
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044

        elif isinstance(feed, list) or isinstance(feed, tuple):
            res = list()
            for i, each in enumerate(feed):
                if not isinstance(each, dict):
                    raise TypeError(
                        "Each element of feed list should be a dict")
                res_dict = dict()
                for feed_name in each:
                    tensor = each[feed_name]
1045 1046
                    var = global_block.var(
                        feed_name) if need_check_feed else None
1047
                    if not isinstance(tensor, core.LoDTensor):
1048 1049 1050
                        tensor = _as_lodtensor(each[feed_name],
                                               program._places[i], var.dtype
                                               if var else None)
H
Huihuang Zheng 已提交
1051 1052
                    if need_check_feed:
                        check_feed_shape_type(var, tensor)
1053 1054
                    res_dict[feed_name] = tensor
                res.append(res_dict)
1055

1056
            exe.feed_tensors_into_local_scopes(res)
1057

1058 1059
        if hasattr(program._program, 'lr_sheduler'):
            lr_sheduler = program._program.lr_sheduler
1060
            assert isinstance(lr_sheduler, LRScheduler), "must be LRScheduler"
1061 1062 1063
            lr_value = lr_sheduler()
            lr_var = program._program.global_block().vars[lr_sheduler._var_name]
            lr_tensor = _as_lodtensor(lr_value, core.CPUPlace(), lr_var.dtype)
1064 1065 1066 1067 1068 1069 1070 1071 1072
            if core.is_cuda_graph_capturing():
                warnings.warn(
                    "Caution!!! When capturing CUDA Graph, the learning rate scheduler would not "
                    "take any effect! Please set the learning rate manually before each batch!"
                )
            else:
                exe.feed_and_split_tensor_into_local_scopes({
                    lr_sheduler._var_name: lr_tensor
                })
1073

X
polish  
Xin Pan 已提交
1074
        fetch_var_names = list(map(_to_name_str, fetch_list))
Z
Zhen Wang 已提交
1075
        tensors = exe.run(fetch_var_names, return_merged)._move_to_list()
1076
        return as_numpy(tensors) if return_numpy else tensors
1077

Y
Yu Yang 已提交
1078
    def run(self,
Y
Yu Yang 已提交
1079
            program=None,
1080 1081
            feed=None,
            fetch_list=None,
Y
Yu Yang 已提交
1082
            feed_var_name='feed',
Y
Yu Yang 已提交
1083
            fetch_var_name='fetch',
D
dzhwinter 已提交
1084
            scope=None,
1085
            return_numpy=True,
Z
Zhen Wang 已提交
1086
            use_program_cache=False,
1087 1088
            return_merged=True,
            use_prune=False):
1089
        """
C
chengduo 已提交
1090 1091 1092
        Run the specified :code:`Program` or :code:`CompiledProgram`. It should be noted that the executor
        will execute all the operators in :code:`Program` or :code:`CompiledProgram` without pruning some
        operators of the :code:`Program` or :code:`CompiledProgram` according to fetch_list. And you could
1093 1094
        specify the scope to store the :code:`Tensor` during the executor running if the scope
        is not set, the executor will use the global scope, i.e. :code:`paddle.static.global_scope()`.
1095

C
chengduo 已提交
1096 1097 1098
        Args:
            program(Program|CompiledProgram): This parameter represents the :code:`Program` or
                :code:`CompiledProgram` to be executed. If this parameter is not provided, that
1099
                parameter is None, the program will be set to :code:`paddle.static.default_main_program()`.
C
chengduo 已提交
1100
                The default is None.
1101
            feed(list|dict): This parameter represents the input Tensors of the model.
C
chengduo 已提交
1102
                If it is single card training, the feed is dict type, and if it is multi-card
1103
                training, the parameter feed can be dict or list of Tensors. If the
C
chengduo 已提交
1104 1105 1106 1107 1108 1109 1110
                parameter type is dict, the data in the feed will be split and sent to
                multiple devices (CPU/GPU), that is to say, the input data will be evenly
                sent to different devices, so you should make sure the number of samples of
                the current mini-batch must be greater than the number of places;
                if the parameter type is list, those data are copied directly to each device,
                so the length of this list should be equal to the number of places.
                The default is None.
1111
            fetch_list(list): This parameter represents the Tensors that need to be returned
1112
                after the model runs. The default is None. 
1113
            feed_var_name(str): This parameter represents the name of the input Tensor of
C
chengduo 已提交
1114
                the feed operator. The default is "feed".
1115
            fetch_var_name(str): This parameter represents the name of the output Tensor of
C
chengduo 已提交
1116 1117
                the fetch operator. The default is "fetch".
            scope(Scope): the scope used to run this program, you can switch 
1118 1119 1120
                it to different scope. default is :code:`paddle.static.global_scope()`
            return_numpy(bool): This parameter indicates whether convert the fetched Tensors
                (the Tensor specified in the fetch list) to numpy.ndarray. if it is False,
C
chengduo 已提交
1121 1122 1123
                the type of the return value is a list of :code:`LoDTensor`. The default is True.
            use_program_cache(bool): This parameter indicates whether the input :code:`Program` is cached.
                If the parameter is True, the model may run faster in the following cases:
1124 1125
                the input program is :code:`paddle.static.Program`, and the parameters(program, feed Tensor name
                and fetch_list Tensor) of this interface remains unchanged during running.
C
chengduo 已提交
1126
                The default is False.
1127
            return_merged(bool): This parameter indicates whether fetched Tensors (the Tensors
Z
Zhen Wang 已提交
1128 1129
                specified in the fetch list) should be merged according to the execution device dimension.
                If :code:`return_merged` is False, the type of the return value is a two-dimensional list
1130 1131 1132 1133 1134 1135 1136 1137
                of :code:`Tensor` / :code:`LoDTensorArray` ( :code:`return_numpy` is False) or a two-dimensional
                list of :code:`numpy.ndarray` ( :code:`return_numpy` is True). If :code:`return_merged` is True,
                the type of the return value is an one-dimensional list of :code:`Tensor` / :code:`LoDTensorArray`
                ( :code:`return_numpy` is False) or an one-dimensional list of :code:`numpy.ndarray`
                ( :code:`return_numpy` is True). Please see Examples 2 for more details. If the lengths of fetched
                results are variant, please set :code:`return_merged` as False, which denotes that the fetched
                results will not be merged. The default is True, but it is just for the compatibility, and may
                use False as default value in the future version.
1138 1139 1140 1141 1142 1143 1144
            use_prune(bool): This parameter indicates whether the input :code:`Program` will be pruned. 
                If the parameter is True, the program will be pruned accroding to the given feed and fetch_list,
                which means the operators and variables in program that generate :code:`feed` and are not 
                needed to generate :code:`fetch_list` will be pruned. The default is False, which means the 
                program will not pruned and all the operators and variables will be executed during running.
                Note that if the tuple returned from :code:`Optimizer.minimize()` is passed to :code:`fetch_list`, 
                :code:`use_prune` will be overrided to True, and the program will be pruned.
C
chengduo 已提交
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
                
        Returns:

            List: The fetched result list.

        NOTES:
            1. If it is multi-card running and the feed parameter is dict type, the input data
               will be evenly sent to different cards. For example, using two GPUs to run the model,
               the input sample number is 3, that is, [0, 1, 2], the sample number on GPU0 is 1,
               that is, [0], and the sample number on GPU1 is 2, that is, [1, 2].
               If the number of samples is less than the number of devices, the program will
               throw an exception, so when running the model, you should make sure that the
               number of samples of the last batch of the data set should be greater than the
               number of CPU cores or GPU cards, if it is less than, it is recommended that
               the batch be discarded.
            2. If the number of CPU cores or GPU cards available is greater than 1, the fetch
1161 1162
               results are spliced together in dimension 0 for the same Tensor values
               (Tensors in fetch_list) on different devices.
1163

Z
Zhen Wang 已提交
1164
        Examples 1:
1165 1166
            .. code-block:: python

1167 1168
                import paddle
                import numpy
1169

1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
                # First create the Executor.
                paddle.enable_static()
                place = paddle.CPUPlace()  # paddle.CUDAPlace(0)
                exe = paddle.static.Executor(place)

                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
                hidden = paddle.static.nn.fc(data, 10)
                loss = paddle.mean(hidden)
                adam = paddle.optimizer.Adam()
                adam.minimize(loss)
                i = paddle.zeros(shape=[1], dtype='int64')
                array = paddle.fluid.layers.array_write(x=loss, i=i)
1182

1183 1184
                # Run the startup program once and only once.
                exe.run(paddle.static.default_startup_program())
1185

1186 1187 1188 1189 1190
                x = numpy.random.random(size=(10, 1)).astype('float32')
                loss_val, array_val = exe.run(feed={'X': x},
                                              fetch_list=[loss.name, array.name])
                print(array_val)
                # [array([0.02153828], dtype=float32)]
Z
Zhen Wang 已提交
1191 1192 1193 1194

        Examples 2:
            .. code-block:: python

1195
                import paddle
Z
Zhen Wang 已提交
1196 1197 1198
                import numpy as np

                # First create the Executor.
1199 1200 1201
                paddle.enable_static()
                place = paddle.CUDAPlace(0)
                exe = paddle.static.Executor(place)
Z
Zhen Wang 已提交
1202

1203
                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
Z
Zhen Wang 已提交
1204
                class_dim = 2
1205 1206 1207
                prediction = paddle.static.nn.fc(data, class_dim)
                loss = paddle.mean(prediction)
                adam = paddle.optimizer.Adam()
Z
Zhen Wang 已提交
1208 1209 1210
                adam.minimize(loss)

                # Run the startup program once and only once.
1211 1212 1213 1214 1215
                exe.run(paddle.static.default_startup_program())
                build_strategy = paddle.static.BuildStrategy()
                binary = paddle.static.CompiledProgram(
                    paddle.static.default_main_program()).with_data_parallel(
                        loss_name=loss.name, build_strategy=build_strategy)
Z
Zhen Wang 已提交
1216 1217 1218 1219
                batch_size = 6
                x = np.random.random(size=(batch_size, 1)).astype('float32')

                # Set return_merged as False to fetch unmerged results:
1220 1221 1222 1223
                unmerged_prediction, = exe.run(binary,
                                               feed={'X': x},
                                               fetch_list=[prediction.name],
                                               return_merged=False)
Z
Zhen Wang 已提交
1224 1225 1226 1227
                # If the user uses two GPU cards to run this python code, the printed result will be
                # (2, 3, class_dim). The first dimension value of the printed result is the number of used
                # GPU cards, and the second dimension value is the quotient of batch_size and the
                # number of used GPU cards.
1228 1229
                print("The unmerged prediction shape: {}".format(
                    np.array(unmerged_prediction).shape))
Z
Zhen Wang 已提交
1230 1231 1232
                print(unmerged_prediction)

                # Set return_merged as True to fetch merged results:
1233 1234 1235 1236
                merged_prediction, = exe.run(binary,
                                             feed={'X': x},
                                             fetch_list=[prediction.name],
                                             return_merged=True)
Z
Zhen Wang 已提交
1237 1238
                # If the user uses two GPU cards to run this python code, the printed result will be
                # (6, class_dim). The first dimension value of the printed result is the batch_size.
1239 1240
                print("The merged prediction shape: {}".format(
                    np.array(merged_prediction).shape))
Z
Zhen Wang 已提交
1241
                print(merged_prediction)
1242
 
Z
Zhen Wang 已提交
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
                # Out:
                # The unmerged prediction shape: (2, 3, 2)
                # [array([[-0.37620035, -0.19752218],
                #        [-0.3561043 , -0.18697084],
                #        [-0.24129935, -0.12669306]], dtype=float32), array([[-0.24489994, -0.12858354],
                #        [-0.49041364, -0.25748932],
                #        [-0.44331917, -0.23276259]], dtype=float32)]
                # The merged prediction shape: (6, 2)
                # [[-0.37789783 -0.19921964]
                #  [-0.3577645  -0.18863106]
                #  [-0.24274671 -0.12814042]
                #  [-0.24635398 -0.13003758]
                #  [-0.49232286 -0.25939852]
                #  [-0.44514108 -0.2345845 ]]
1257

1258
        """
C
chengduo 已提交
1259 1260 1261 1262 1263 1264 1265 1266 1267
        try:
            return self._run_impl(
                program=program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name,
                scope=scope,
                return_numpy=return_numpy,
Z
Zhen Wang 已提交
1268
                use_program_cache=use_program_cache,
1269
                use_prune=use_prune,
Z
Zhen Wang 已提交
1270
                return_merged=return_merged)
C
chengduo 已提交
1271
        except Exception as e:
1272
            six.reraise(*sys.exc_info())
C
chengduo 已提交
1273 1274

    def _run_impl(self, program, feed, fetch_list, feed_var_name,
Z
Zhen Wang 已提交
1275
                  fetch_var_name, scope, return_numpy, use_program_cache,
1276
                  return_merged, use_prune):
Y
Yancey1989 已提交
1277 1278 1279
        if self._closed:
            raise RuntimeError("Attempted to use a closed Executor")

C
chengduo 已提交
1280
        use_default_main_program = program is None
1281 1282
        if program is None:
            program = default_main_program()
1283

1284
        fetch_list = self._check_fetch_list(fetch_list)
1285 1286

        if isinstance(program, Program) and program._pipeline_opt:
L
LiYuRio 已提交
1287 1288 1289 1290 1291
            if "fleet_opt" in program._pipeline_opt:
                return self._run_using_fleet_executor(
                    program,
                    fetch_list=fetch_list,
                    use_program_cache=use_program_cache)
1292 1293 1294
            if "startup_program" in program._pipeline_opt:
                program = program._pipeline_opt["startup_program"]
            else:
1295 1296 1297 1298
                return self._run_pipeline(
                    program,
                    fetch_list=fetch_list,
                    use_program_cache=use_program_cache)
1299 1300 1301 1302 1303 1304

        if isinstance(program, Program) and program._heter_pipeline_opt:
            if "startup_program" in program._heter_pipeline_opt:
                program = program._heter_pipeline_opt["startup_program"]
            # TODO(zhangminxu): support heterps pipeline training using exe.run

C
chengduo 已提交
1305
        if isinstance(program, Program) and \
1306
                        len(program.global_block().ops) == 0:
C
chengduo 已提交
1307
            if use_default_main_program:
1308 1309 1310 1311 1312 1313 1314 1315
                error_info = "Now you are using default_main_program, "\
                    "but there are no operators in the program to be executed. "\
                    "Please ensure you create model correctly or you can pass "\
                    "the Program or the CompiledProgram manually."
            else:
                error_info = "There are no operators in the program to be executed. "\
                    "If you pass Program manually, please use fluid.program_guard "\
                    "to ensure the current Program is being used."
C
chengduo 已提交
1316
            warnings.warn(error_info)
1317

1318 1319
        if scope is None:
            scope = global_scope()
1320

1321 1322
        # NOTE: This is an experimental feature. If `export FLAGS_USE_STANDALONE_EXECUTOR=1 `,
        # use StandaloneExecutor to run the program.
1323 1324 1325 1326
        if self._enable_interpreter_core:
            inner_program_ = program._program if isinstance(
                program, compiler.CompiledProgram) else program
            assert isinstance(inner_program_, framework.Program)
1327 1328
            if not inner_program_._is_start_up_program_:
                return self._executor_cache.run(inner_program_, scope, feed,
1329
                                                fetch_list, return_numpy)
1330

1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
        # use_prune can be overrided by putting optimize_ops in fetch_list
        _origin_fetch_list = fetch_list
        _origin_program = program
        fetch_list, optimize_ops = self._split_optimize_ops_in_fetch_list(
            fetch_list)
        if optimize_ops:
            use_prune = True
        if use_prune:
            cache_key = _get_strong_program_cache_key(program, feed,
                                                      _origin_fetch_list)
            cached_pruned_program = self._get_pruned_program_cache(cache_key)
            if cached_pruned_program is None:
                if isinstance(program, compiler.CompiledProgram):
                    program_scope_cache = self._get_pruned_program_scope_cache(
                        str(id(_origin_program)))
                    # copy the original program, so it can be cached.
                    program = copy.copy(program)
                    # share the local scopes for same original CompiledProgram.
                    program._share_vars_from = program_scope_cache
                    if self._get_pruned_program_scope_cache(
                            str(id(_origin_program))) is None:
                        self._add_pruned_program_scope_cache(
                            str(id(_origin_program)), program)
                pruned_program = self._prune_program(program, feed, fetch_list,
                                                     optimize_ops)
                self._add_pruned_program_cache(cache_key, pruned_program)
            else:
                pruned_program = cached_pruned_program

            feed = self._update_feed(pruned_program, feed)
            program = pruned_program

X
polish  
Xin Pan 已提交
1363
        compiled = isinstance(program, compiler.CompiledProgram)
H
Huihuang Zheng 已提交
1364

1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
        # Check if fluid.data() variable no feed data
        if use_prune:
            if compiled:
                global_block = program._program.global_block()
            else:
                global_block = program.global_block()
            for varname in global_block.vars:
                vardesc = global_block.desc.find_var(cpt.to_bytes(varname))
                varobj = global_block.vars[varname]

                # Can not check var build by fluid.layers.data(), bucause fluid.layers.data() had not set need_check_feed
                if vardesc.persistable() == False and \
                    vardesc.type() == core.VarDesc.VarType.LOD_TENSOR and \
                    vardesc.need_check_feed() == True and \
1379
                    varobj.stop_gradient == True and \
1380 1381 1382 1383 1384
                    varobj.is_data == True and \
                    varobj.belong_to_optimizer == False and \
                    varname not in feed:
                    raise ValueError('Need feed data for variable %s' % varname)

1385 1386
        acp._auto_checkpoint(self, program)

X
polish  
Xin Pan 已提交
1387
        # For backward compatibility, run directly.
1388
        if not compiled:
1389 1390 1391
            # In distributed training, the compiled program is saved in Program._graph
            has_compiled_graph = isinstance(program._graph,
                                            compiler.CompiledProgram)
1392

1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
            if has_compiled_graph:
                program._graph._compile(scope, self.place)
                # _graph in program does not support inference since the _graph is optimized
                # through optimizer.minimize function and should not be used as inference graph
                # assert not program._graph._is_inference
                return self._run_parallel(
                    program._graph,
                    scope=scope,
                    feed=feed,
                    fetch_list=fetch_list,
                    fetch_var_name=fetch_var_name,
                    return_numpy=return_numpy,
                    return_merged=return_merged)

C
chengduo 已提交
1407
            return self._run_program(
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
                program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name,
                scope=scope,
                return_numpy=return_numpy,
                use_program_cache=use_program_cache)

        program._compile(scope, self.place)
C
chengduo 已提交
1418 1419 1420
        if program._is_inference:
            return self._run_inference(program._executor, feed)
        else:
1421
            return self._run_parallel(
X
fix  
Xin Pan 已提交
1422
                program,
1423 1424 1425
                scope=scope,
                feed=feed,
                fetch_list=fetch_list,
X
polish  
Xin Pan 已提交
1426
                fetch_var_name=fetch_var_name,
Z
Zhen Wang 已提交
1427 1428
                return_numpy=return_numpy,
                return_merged=return_merged)
1429

C
chengduo 已提交
1430
    def _run_program(self, program, feed, fetch_list, feed_var_name,
C
chengduo 已提交
1431
                     fetch_var_name, scope, return_numpy, use_program_cache):
1432
        from paddle.optimizer.lr import LRScheduler
1433 1434
        if feed is None:
            feed = {}
S
sneaxiy 已提交
1435 1436 1437 1438
        elif isinstance(feed, (list, tuple)):
            assert len(feed) == 1, "Not compiled with data parallel"
            feed = feed[0]

Q
qiaolongfei 已提交
1439
        if not isinstance(feed, dict):
D
dzhwinter 已提交
1440 1441 1442
            raise TypeError(
                "feed requires dict as its Parameter. But you passed in %s" %
                (type(feed)))
Y
Yu Yang 已提交
1443

1444
        assert program is not None, "The program should not be Empty"
Y
Yu Yang 已提交
1445
        if not isinstance(program, Program):
D
dzhwinter 已提交
1446 1447 1448
            raise TypeError(
                "Executor requires Program as its Parameter. But you passed in %s"
                % (type(program)))
Y
Yu Yang 已提交
1449

1450 1451 1452 1453 1454
        if not isinstance(fetch_var_name, str):
            raise TypeError(
                "The name of fetch variable requires string as its Parameter. But you passed in %s"
                % (type(fetch_var_name)))

1455
        if use_program_cache:
1456
            cache_key = _get_strong_program_cache_key(program, feed, fetch_list)
Q
Qiao Longfei 已提交
1457
            cached_program = self._get_program_cache(cache_key)
1458
            cached_ctx = self._get_ctx_cache(cache_key)
1459
            cached_scope = self._get_scope_cache(cache_key)
Q
Qiao Longfei 已提交
1460 1461 1462 1463 1464 1465 1466 1467
            if cached_program is None:
                cached_program = self._add_feed_fetch_ops(
                    program=program,
                    feed=feed,
                    fetch_list=fetch_list,
                    feed_var_name=feed_var_name,
                    fetch_var_name=fetch_var_name)
                self._add_program_cache(cache_key, cached_program)
1468
                fetch_list_str = list(map(_to_name_str, fetch_list))
1469
                cached_ctx = self._default_executor.prepare(
1470 1471 1472 1473 1474 1475 1476
                    cached_program.desc, 0, fetch_list_str, False)
                # currently, we cache program, vars, sub_scope here
                # we suppose that in a life cycle of training, a user
                # will not create many programs. So, here the basic
                # rule of caching is to cache all unseen (program, var, scope)
                # when a user use use_program_cache.
                cached_scope = scope.new_scope()
1477 1478
                self._default_executor.create_variables(cached_program.desc,
                                                        cached_scope, 0)
1479
                self._add_ctx_cache(cache_key, cached_ctx)
1480
                self._add_scope_cache(cache_key, cached_scope)
Q
Qiao Longfei 已提交
1481
            program = cached_program
1482
            ctx = cached_ctx
1483
            scope = cached_scope
1484
        else:
Q
Qiao Longfei 已提交
1485 1486 1487 1488 1489 1490 1491 1492
            program = self._add_feed_fetch_ops(
                program=program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name)

        self._feed_data(program, feed, feed_var_name, scope)
1493 1494
        if hasattr(program, 'lr_sheduler'):
            assert isinstance(program.lr_sheduler,
1495
                              LRScheduler), "must be LRScheduler"
1496 1497 1498 1499 1500 1501 1502
            lr_sheduler = program.lr_sheduler
            lr_value = lr_sheduler()
            lr_var = program.global_block().vars[lr_sheduler._var_name]
            data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
            tensor = core.get_variable_tensor(scope, lr_sheduler._var_name)
            tensor.set(data, self.place)

1503
        if not use_program_cache:
C
chengduo 已提交
1504
            self._default_executor.run(program.desc, scope, 0, True, True,
1505
                                       [fetch_var_name])
1506
        else:
1507 1508
            self._default_executor.run_prepared_ctx(ctx, scope, False, False,
                                                    False)
1509
        arr = scope.find_var(fetch_var_name).get_fetch_list()
1510
        tensors = arr._move_to_list()
D
dzhwinter 已提交
1511
        if return_numpy:
1512 1513 1514
            return as_numpy(tensors)
        else:
            return tensors
F
flame 已提交
1515

X
Xin Pan 已提交
1516 1517
    def _run_inference(self, exe, feed):
        return exe.run(feed)
D
dongdaxiang 已提交
1518

1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
    def _check_fetch_list(self, fetch_list):
        is_fetch_var = lambda var: isinstance(var, (Variable, str, six.string_types))
        is_tuple_list = lambda var: isinstance(var, (tuple, list))

        if fetch_list is None: return []
        if is_fetch_var(fetch_list): return [fetch_list]

        assert is_tuple_list(fetch_list), \
            "Currently , The fetch_list type only should be list or tuple, \n"\
            "but the input type is {}. For more information please refer to \n"\
            "the executor.run(...).".format(type(fetch_list))

        res = []
        for i, var in enumerate(fetch_list):
            if is_fetch_var(var):
                res.append(var)
            # such as [x, 'mean_out', loss]
            elif is_tuple_list(var):
                if all(is_fetch_var(v) for v in var):
                    res.extend(list(var))
                else:
                    res.append(var)
            else:
                raise TypeError(
                    "Require fetch_list[{}] 's type shall be one of (Variable, str), but received {}.".
                    format(i, type(var).__name__))

        return res

1548 1549
    def _dump_debug_info(self, program=None, trainer=None):
        with open(str(id(program)) + "_train_desc.prototxt", "w") as fout:
H
hutuxian 已提交
1550
            fout.write(str(trainer))
1551
        if program._fleet_opt and "fleet_desc" in program._fleet_opt:
1552 1553 1554
            with open("fleet_desc.prototxt", "w") as fout:
                fout.write(str(program._fleet_opt["fleet_desc"]))

1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
    def _adjust_pipeline_resource(self, pipeline_opt, dataset, pipeline_num):
        filelist_length = len(dataset.dataset.get_filelist())
        if filelist_length < pipeline_num:
            pipeline_num = filelist_length
            print(
                "Pipeline training: setting the pipeline num to %d is enough because there are only %d files"
                % (filelist_length, filelist_length))
        if filelist_length < pipeline_num * pipeline_opt["concurrency_list"][0]:
            print(
                "Pipeline training: setting the 1st element in concurrency_list to %d is enough because there are only %d files"
                % (filelist_length // pipeline_num, filelist_length))
            pipeline_opt["concurrency_list"][
                0] = filelist_length // pipeline_num
        dataset.set_thread(pipeline_opt["concurrency_list"][0] * pipeline_num)
        return pipeline_num

1571 1572 1573 1574 1575 1576 1577 1578 1579
    def _prepare_trainer(self,
                         program=None,
                         dataset=None,
                         scope=None,
                         thread=0,
                         debug=False,
                         fetch_list=None,
                         fetch_info=None,
                         print_period=100):
T
Thunderbrook 已提交
1580
        is_heter = 0
T
Thunderbrook 已提交
1581
        use_ps_gpu = 0
T
Thunderbrook 已提交
1582 1583 1584
        if not program._fleet_opt is None:
            if program._fleet_opt.get("worker_class", "") == "HeterCpuWorker":
                is_heter = 1
T
Thunderbrook 已提交
1585
            if program._fleet_opt.get("trainer", "") == "HeterXpuTrainer":
T
Thunderbrook 已提交
1586
                is_heter = 1
T
Thunderbrook 已提交
1587 1588
            if program._fleet_opt.get("use_ps_gpu", False):
                use_ps_gpu = True
D
dongdaxiang 已提交
1589 1590 1591 1592
        if scope is None:
            scope = global_scope()
        if fetch_list is None:
            fetch_list = []
D
dongdaxiang 已提交
1593 1594 1595
        if fetch_info is None:
            fetch_info = []
        assert len(fetch_list) == len(fetch_info)
D
dongdaxiang 已提交
1596
        compiled = isinstance(program, compiler.CompiledProgram)
T
Thunderbrook 已提交
1597 1598 1599 1600 1601
        if is_heter:
            from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
            from paddle.fluid.incubate.fleet.utils.fleet_util import FleetUtil
            fu = FleetUtil()
            ret = fu.split_program_by_device(program)
D
dongdaxiang 已提交
1602
        if not compiled:
H
hutuxian 已提交
1603 1604 1605 1606
            # TODO: Need a better way to distinguish and specify different execution mode
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program._pipeline_opt)
1607 1608 1609
            elif program._heter_pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program._heter_pipeline_opt)
H
hutuxian 已提交
1610 1611
            else:
                trainer = TrainerFactory()._create_trainer(program._fleet_opt)
1612
                trainer._set_thread_barrier(program._is_distributed)
1613
            trainer._set_program(program)
T
Thunderbrook 已提交
1614 1615
            if is_heter:
                trainer._set_heter_info(ret)
1616
        else:
H
hutuxian 已提交
1617 1618 1619
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program.program._pipeline_opt)
1620 1621 1622
            elif program._heter_pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program.program._heter_pipeline_opt)
H
hutuxian 已提交
1623 1624 1625
            else:
                trainer = TrainerFactory()._create_trainer(
                    program.program._fleet_opt)
1626
            trainer._set_program(program.program)
H
hutuxian 已提交
1627

1628
        if thread <= 0:
T
Thunderbrook 已提交
1629 1630 1631
            if use_ps_gpu:
                trainer._set_thread(len(program._fleet_opt["worker_places"]))
            elif dataset.thread_num <= 0:
D
dongdaxiang 已提交
1632
                raise RuntimeError(
1633 1634
                    "You should set thread num first, either in Dataset"
                    "or in Executor.train_from_dataset")
D
dongdaxiang 已提交
1635
            else:
1636
                trainer._set_thread(dataset.thread_num)
1637
        else:
1638
            trainer._set_thread(thread)
H
hutuxian 已提交
1639

1640 1641
        trainer._set_debug(debug)
        trainer._set_fetch_var_and_info(fetch_list, fetch_info, print_period)
1642
        return scope, trainer
1643

1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
    def _run_from_dataset(self,
                          program=None,
                          dataset=None,
                          scope=None,
                          thread=0,
                          is_infer=False,
                          debug=False,
                          fetch_list=None,
                          fetch_info=None,
                          print_period=100,
                          fetch_handler=None):
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
        if program._pipeline_opt is not None:
            import paddle
            if dataset is not None:
                raise RuntimeError("dataset should be None for pipeline mode")
            # The following fake dataset is created to call 
            # the _prepare_trainer api, and it is meaningless.
            data_vars = []
            for var in program.global_block().vars.values():
                if var.is_data:
                    data_vars.append(var)
1665 1666 1667 1668 1669 1670
            if core.is_compiled_with_npu():
                dataset = paddle.fluid.DatasetFactory().create_dataset(
                    'InMemoryDataset')
            else:
                dataset = paddle.fluid.DatasetFactory().create_dataset(
                    'FileInstantDataset')
1671 1672 1673 1674
            dataset.set_batch_size(1)
            dataset.set_thread(1)
            dataset.set_filelist(['None'])
            dataset.set_use_var(data_vars)
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
        elif program._heter_pipeline_opt is not None:
            stage_id = program._heter_pipeline_opt["pipeline_stage"]
            if stage_id != 0:
                import paddle
                if dataset is not None:
                    raise RuntimeError(
                        "dataset should be None for heter pipeline mode")
                # The following fake dataset is created to call 
                # the _prepare_trainer api, and it is meaningless.
                data_vars = []
                for var in program.global_block().vars.values():
                    if var.is_data:
                        data_vars.append(var)
                if core.is_compiled_with_npu():
                    dataset = paddle.fluid.DatasetFactory().create_dataset(
                        'InMemoryDataset')
                else:
                    dataset = paddle.fluid.DatasetFactory().create_dataset(
                        'FileInstantDataset')
                dataset.set_batch_size(1)
                dataset.set_thread(1)
                dataset.set_filelist(['None'])
                dataset.set_use_var(data_vars)
            else:
                if dataset is None:
                    raise RuntimeError(
                        "dataset is need and should be initialized")
1702 1703 1704
        else:
            if dataset is None:
                raise RuntimeError("dataset is need and should be initialized")
1705 1706

        dataset._prepare_to_run()
1707 1708
        real_fetch_list = []
        if program._pipeline_opt:
1709
            real_program = program._pipeline_opt["section_program"]
1710 1711 1712 1713 1714 1715 1716 1717
            for fetch_var in fetch_list:
                if isinstance(fetch_var, Variable):
                    fetch_var_name = fetch_var.name
                else:
                    fetch_var_name = fetch_var
                if fetch_var_name in real_program.global_block().vars:
                    real_fetch_list.append(fetch_var)

1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
            program._pipeline_opt["section_program"] = self._add_feed_fetch_ops(
                program=program._pipeline_opt["section_program"],
                feed=[],
                fetch_list=real_fetch_list,
                feed_var_name='feed',
                fetch_var_name='fetch')
            main_block = program._pipeline_opt["section_program"].block(0)
            for op in main_block.ops:
                # set the op_role of fetch op to Optimize to avoid
                # erase the fetched vars by gc for pipeline
                if op.type == 'fetch':
                    op._set_attr(
                        'op_role',
                        core.op_proto_and_checker_maker.OpRole.Optimize)
1732
            fetch_list = None
1733 1734 1735 1736 1737
        scope, trainer = self._prepare_trainer(
            program=program,
            dataset=dataset,
            scope=scope,
            thread=thread,
1738 1739 1740 1741
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period)
1742 1743 1744 1745

        trainer._set_infer(is_infer)
        trainer._gen_trainer_desc()

1746
        if program._pipeline_opt is None:
1747 1748
            if program._heter_pipeline_opt is None:
                self._dump_debug_info(program=program, trainer=trainer)
1749 1750 1751
        # in case of calling _set_use_ps_gpu explicitly
        if dataset.use_ps_gpu is False:
            dataset._set_use_ps_gpu(trainer.proto_desc.use_ps_gpu)
T
tangwei12 已提交
1752
        dataset._dynamic_adjust_before_train(trainer.proto_desc.thread_num)
1753

1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
        if program._heter_pipeline_opt is None:
            trainer_instance = self._default_executor.init_for_dataset(
                program.desc, trainer._desc(), scope, dataset.dataset)
        else:
            # cache trainer instance for heterps pipeline training
            if fetch_list == None:
                fetch_list = []
            cache_key = _get_strong_program_cache_key(program, None, fetch_list)
            trainer_instance = self._get_trainer_cache(cache_key)
            if trainer_instance is None:
                trainer_instance = self._default_executor.init_for_dataset(
                    program.desc, trainer._desc(), scope, dataset.dataset)
                self._add_trainer_cache(cache_key, trainer_instance)
            else:
                trainer_instance.ResetDataset(dataset.dataset)
1769

T
tangwei12 已提交
1770 1771 1772 1773 1774 1775
        if fetch_handler is not None:
            scope0 = trainer_instance.get_worker_scope(0)
            fetch_monitor = FetchHandlerMonitor(scope0, fetch_handler)
            fetch_monitor.start()
            self._default_executor.run_from_dataset(trainer_instance)
            fetch_monitor.stop()
1776 1777
            if program._heter_pipeline_opt is None:
                self._default_executor.release_trainer(trainer_instance)
T
tangwei12 已提交
1778 1779
        else:
            self._default_executor.run_from_dataset(trainer_instance)
1780 1781
            if program._heter_pipeline_opt is None:
                self._default_executor.release_trainer(trainer_instance)
T
tangwei12 已提交
1782 1783

        dataset._dynamic_adjust_after_train()
1784
        dataset._finish_to_run()
1785 1786 1787 1788
        if real_fetch_list:
            arr = scope.find_var('fetch').get_fetch_list()
            tensors = arr._move_to_list()
            return as_numpy(tensors)
T
tangwei12 已提交
1789

1790 1791
        return None

1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
    def _prepare_pipeline_ctx(self,
                              program=None,
                              dataset=None,
                              scope=None,
                              thread=0,
                              is_infer=False,
                              debug=False,
                              fetch_list=None,
                              fetch_info=None,
                              print_period=100,
                              fetch_handler=None,
                              use_program_cache=False):
        assert program._pipeline_opt is not None
        assert dataset is None, "dataset should be None for pipeline mode"

        cache_key = _get_strong_program_cache_key(program, None, fetch_list)
        ctx = self._get_ctx_cache(cache_key)
        if use_program_cache and ctx is not None:
            return ctx

        import paddle

        # The following fake dataset is created to call
        # the _prepare_trainer api, and it is meaningless.
        def _get_dataset():
            data_vars = []
            for var in program.global_block().vars.values():
                if var.is_data:
                    data_vars.append(var)
            if core.is_compiled_with_npu():
                dataset = paddle.fluid.DatasetFactory().create_dataset(
                    'InMemoryDataset')
            else:
                dataset = paddle.fluid.DatasetFactory().create_dataset(
                    'FileInstantDataset')
            dataset.set_batch_size(1)
            dataset.set_thread(1)
            dataset.set_filelist(['None'])
            dataset.set_use_var(data_vars)
            dataset._prepare_to_run()
            return dataset

        dataset = _get_dataset()

        def _get_real_program_fetch_list():
            real_program = program._pipeline_opt["section_program"]
            real_fetch_list = []
            for fetch_var in fetch_list:
                if isinstance(fetch_var, Variable):
                    fetch_var_name = fetch_var.name
                else:
                    fetch_var_name = fetch_var
                if fetch_var_name in real_program.global_block().vars:
                    real_fetch_list.append(fetch_var)

            real_program = self._add_feed_fetch_ops(
                program=real_program,
                feed=[],
                fetch_list=real_fetch_list,
                feed_var_name='feed',
                fetch_var_name='fetch')
            main_block = real_program.block(0)
            for op in main_block.ops:
                # set the op_role of fetch op to Optimize to avoid
                # erase the fetched vars by gc for pipeline
                if op.type == 'fetch':
                    op._set_attr(
                        'op_role',
                        core.op_proto_and_checker_maker.OpRole.Optimize)
            return real_program, real_fetch_list

        real_program, real_fetch_list = _get_real_program_fetch_list()

        program._pipeline_opt["section_program"] = real_program
        fetch_list = None

        scope, trainer = self._prepare_trainer(
            program=program,
            dataset=dataset,
            scope=scope,
            thread=thread,
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period)

        trainer._set_infer(is_infer)
        trainer._gen_trainer_desc()

        # NOTE: only for debug, very slow
        # self._dump_debug_info(program=program, trainer=trainer)

        # in case of calling _set_use_ps_gpu explicitly
        if dataset.use_ps_gpu is False:
            dataset._set_use_ps_gpu(trainer.proto_desc.use_ps_gpu)
        dataset._dynamic_adjust_before_train(trainer.proto_desc.thread_num)

        trainer_desc = trainer._desc()  # slow, cache
1890 1891 1892 1893
        trainer_instance = self._default_executor.init_for_dataset(
            program.desc, trainer_desc, scope, dataset.dataset)

        ctx = [scope, real_fetch_list, trainer_instance]
1894
        if use_program_cache: self._add_ctx_cache(cache_key, ctx)
1895

1896 1897
        return ctx

L
LiYuRio 已提交
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
    def _run_using_fleet_executor(self,
                                  program=None,
                                  dataset=None,
                                  scope=None,
                                  thread=0,
                                  is_infer=False,
                                  debug=False,
                                  fetch_list=None,
                                  fetch_info=None,
                                  print_period=100,
                                  fetch_handler=None,
                                  use_program_cache=False):
        scope, real_fetch_list, trainer_instance = \
            self._prepare_pipeline_ctx(program, dataset, scope, thread,
                                       is_infer, debug, fetch_list, fetch_info,
                                       print_period, fetch_handler,
                                       use_program_cache)
        from ..distributed.fleet.proto import fleet_executor_desc_pb2
        from google.protobuf import text_format
L
LiYuRio 已提交
1917 1918
        cur_rank = os.getenv("PADDLE_TRAINER_ID")
        trainer_endpoints_str = os.getenv("PADDLE_TRAINER_ENDPOINTS")
L
LiYuRio 已提交
1919
        fleet_exe_desc = fleet_executor_desc_pb2.FleetExecutorDesc()
1920
        nrank = 1
L
LiYuRio 已提交
1921 1922 1923 1924 1925 1926 1927 1928
        if cur_rank and trainer_endpoints_str:
            fleet_exe_desc.cur_rank = int(cur_rank)
            trainer_endpoints = trainer_endpoints_str.split(',')
            for rank, endpoint in enumerate(trainer_endpoints):
                rank_info = fleet_executor_desc_pb2.RankInfo()
                rank_info.rank = rank
                rank_info.ip_port = endpoint
                fleet_exe_desc.cluster_info.append(rank_info)
1929
            nrank = len(trainer_endpoints)
L
LiYuRio 已提交
1930 1931
        else:
            logging.warning("Fleet Executor will run on single device only.")
1932 1933 1934 1935 1936 1937 1938
        fleet_opt = program._pipeline_opt["fleet_opt"]
        if "dist_strategy" in fleet_opt:
            fleet_exe_desc.dp_degree = fleet_opt["dist_strategy"]["dp_degree"]
            fleet_exe_desc.mp_degree = fleet_opt["dist_strategy"]["mp_degree"]
            fleet_exe_desc.pp_degree = fleet_opt["dist_strategy"]["pp_degree"]
        num_of_gpu = fleet_exe_desc.dp_degree * fleet_exe_desc.mp_degree * fleet_exe_desc.pp_degree
        assert nrank == num_of_gpu, "The number of rank is not equal to the number of gpu."
L
LiYuRio 已提交
1939 1940 1941 1942 1943
        fleet_exe = core.FleetExecutor(fleet_exe_desc.SerializeToString())
        fleet_exe.init(program._pipeline_opt["section_program"].desc)
        fleet_exe.run()
        return None

1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
    def _run_pipeline(self,
                      program=None,
                      dataset=None,
                      scope=None,
                      thread=0,
                      is_infer=False,
                      debug=False,
                      fetch_list=None,
                      fetch_info=None,
                      print_period=100,
                      fetch_handler=None,
                      use_program_cache=False):
1956
        scope, real_fetch_list, trainer_instance = \
1957 1958 1959 1960 1961
            self._prepare_pipeline_ctx(program, dataset, scope, thread,
                                       is_infer, debug, fetch_list, fetch_info,
                                       print_period, fetch_handler,
                                       use_program_cache)

1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
        from paddle.optimizer.lr import LRScheduler
        if hasattr(program, 'lr_sheduler'):
            lr_sheduler = program.lr_sheduler
            assert isinstance(lr_sheduler, LRScheduler), "must be LRScheduler"
            lr_value = lr_sheduler()
            lr_var = program.global_block().vars[lr_sheduler._var_name]
            data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
            tensor = core.get_variable_tensor(scope, lr_sheduler._var_name)
            tensor.set(data, self.place)

1972 1973
        self._default_executor.run_from_dataset(trainer_instance)

1974 1975 1976
        if not use_program_cache:
            self._default_executor.release_trainer(trainer_instance)

1977 1978 1979 1980 1981 1982 1983
        if real_fetch_list:
            arr = scope.find_var('fetch').get_fetch_list()
            tensors = arr._move_to_list()
            return as_numpy(tensors)

        return None

1984 1985 1986 1987 1988
    def infer_from_dataset(self,
                           program=None,
                           dataset=None,
                           scope=None,
                           thread=0,
1989 1990 1991
                           debug=False,
                           fetch_list=None,
                           fetch_info=None,
1992 1993
                           print_period=100,
                           fetch_handler=None):
1994
        """
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
        Infer from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, infer_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current infer task.

        The document of infer_from_dataset is almost the same as train_from_dataset,
        except that in distributed training, push gradients will be disabled in infer_from_dataset.
        infer_from_dataset() can be used for evaluation in multi-threadvery easily.
2006

2007 2008
        Args:
            program(Program|CompiledProgram): the program that needs to be run,
2009
                if not provided, then default_main_program (not compiled) will be used.
2010
            dataset(paddle.fluid.Dataset): dataset created outside this function,
2011 2012
                a user should provide a well-defined dataset before calling this function.
                Please check the document of Dataset if needed. default is None
2013
            scope(Scope): the scope used to run this program, you can switch it to different scope
2014 2015 2016
                for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. Default is 0, which
                means using thread num of dataset
2017
            debug(bool): whether a user wants to run infer_from_dataset, default is False
2018
            fetch_list(Tensor List): fetch Tensor list, each Tensor will be printed during
2019
                training, default is None
2020
            fetch_info(String List): print information for each Tensor, default is None
2021
            print_period(int): the number of mini-batches for each print, default is 100
2022
            fetch_handler(FetchHandler): a user define class for fetch output.
2023

2024 2025 2026 2027
        Returns:
            None

        Examples:
2028 2029

            .. code-block:: python
2030

2031
                import paddle
2032

2033 2034 2035 2036 2037 2038
                paddle.enable_static()
                place = paddle.CPUPlace()  # you can set place = paddle.CUDAPlace(0) to use gpu
                exe = paddle.static.Executor(place)
                x = paddle.static.data(name="x", shape=[None, 10, 10], dtype="int64")
                y = paddle.static.data(name="y", shape=[None, 1], dtype="int64", lod_level=1)
                dataset = paddle.fluid.DatasetFactory().create_dataset()
2039
                dataset.set_use_var([x, y])
2040
                dataset.set_thread(1)
2041 2042
                # you should set your own filelist, e.g. filelist = ["dataA.txt"]
                filelist = []
2043
                dataset.set_filelist(filelist)
2044 2045 2046
                exe.run(paddle.static.default_startup_program())
                exe.infer_from_dataset(program=paddle.static.default_main_program(),
                                       dataset=dataset)
2047

2048
        """
2049 2050 2051
        return self._run_from_dataset(program, dataset, scope, thread, True,
                                      debug, fetch_list, fetch_info,
                                      print_period, fetch_handler)
2052

T
Thunderbrook 已提交
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
    def start_heter_trainer(self,
                            program=None,
                            scope=None,
                            debug=False,
                            fetch_list=None,
                            fetch_info=None,
                            print_period=100,
                            fetch_handler=None):
        return self._start_heter_trainer(program, scope, False, debug,
                                         fetch_list, fetch_info, print_period,
                                         fetch_handler)

    def _start_heter_trainer(self,
                             program=None,
                             scope=None,
                             is_infer=False,
                             debug=False,
                             fetch_list=None,
                             fetch_info=None,
                             print_period=100,
                             fetch_handler=None):

        scope, trainer = self._prepare_trainer(
            program=program,
            dataset=None,
            scope=scope,
            thread=1,
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period)

        trainer._set_infer(is_infer)
        trainer._gen_trainer_desc()

        self._dump_debug_info(program=program, trainer=trainer)

        trainer_instance = self._default_executor.init_for_dataset(
            program.desc, trainer._desc(), scope, None)

        #if fetch_handler is not None:
        #    scope0 = trainer_instance.get_worker_scope(0)
        #    fetch_monitor = FetchHandlerMonitor(scope0, fetch_handler)
        #    fetch_monitor.start()
        #    self._default_executor.run_from_dataset(trainer_instance)
        #    fetch_monitor.stop()
        #    self._default_executor.release_trainer(trainer_instance)
        #else:

        self._default_executor.run_from_dataset(trainer_instance)
        #self._default_executor.release_trainer(trainer_instance)

        return trainer_instance

2107 2108 2109 2110 2111 2112 2113 2114
    def train_from_dataset(self,
                           program=None,
                           dataset=None,
                           scope=None,
                           thread=0,
                           debug=False,
                           fetch_list=None,
                           fetch_info=None,
2115 2116
                           print_period=100,
                           fetch_handler=None):
2117 2118 2119 2120 2121 2122 2123 2124
        """
        Train from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, train_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current training task.
2125

2126 2127 2128 2129
        Note: train_from_dataset will destroy all resources created within executor for each run.

        Args:
            program(Program|CompiledProgram): the program that needs to be run,
2130
                if not provided, then default_main_program (not compiled) will be used.
2131
            dataset(paddle.fluid.Dataset): dataset created outside this function,
2132 2133
                a user should provide a well-defined dataset before calling this function.
                Please check the document of Dataset if needed.
2134
            scope(Scope): the scope used to run this program, you can switch it to different scope
2135 2136 2137
                for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. Default is 0, which
                means using thread num of dataset
2138
            debug(bool): whether a user wants to run train_from_dataset 
2139
            fetch_list(Tensor List): fetch Tensor list, each variable will be printed
2140
                during training
2141
            fetch_info(String List): print information for each Tensor, its length should be equal
2142 2143
                to fetch_list
            print_period(int): the number of mini-batches for each print, default is 100
2144
            fetch_handler(FetchHandler): a user define class for fetch output.
2145 2146 2147

        Returns:
            None
2148
        
2149
        Examples:
2150
        
2151 2152
            .. code-block:: python

2153
              import paddle
2154

2155 2156 2157 2158 2159 2160
              paddle.enable_static()
              place = paddle.CPUPlace() # you can set place = paddle.CUDAPlace(0) to use gpu
              exe = paddle.static.Executor(place)
              x = paddle.static.data(name="x", shape=[None, 10, 10], dtype="int64")
              y = paddle.static.data(name="y", shape=[None, 1], dtype="int64", lod_level=1)
              dataset = paddle.fluid.DatasetFactory().create_dataset()
2161
              dataset.set_use_var([x, y])
2162
              dataset.set_thread(1)
2163 2164
              # you should set your own filelist, e.g. filelist = ["dataA.txt"]
              filelist = []
2165
              dataset.set_filelist(filelist)
2166 2167
              exe.run(paddle.static.default_startup_program())
              exe.train_from_dataset(program=paddle.static.default_main_program(),
2168
                                     dataset=dataset)
2169 2170

        """
2171 2172 2173
        return self._run_from_dataset(program, dataset, scope, thread, False,
                                      debug, fetch_list, fetch_info,
                                      print_period, fetch_handler)