executor.py 13.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

D
dzhwinter 已提交
15
import numpy as np
Y
Yang Yu 已提交
16
import contextlib
17
from framework import Program, default_main_program, Variable
18 19
from . import core

X
xuwei06 已提交
20 21 22
__all__ = [
    'Executor', 'global_scope', 'scope_guard', 'switch_scope', 'fetch_var'
]
Y
Yu Yang 已提交
23

Y
Yu Yang 已提交
24 25
g_scope = core.Scope()

Y
Yu Yang 已提交
26

Y
Yang Yu 已提交
27
def global_scope():
Y
yuyang18 已提交
28 29 30 31 32 33 34
    """
    Get the global/default scope instance. There are a lot of APIs use
    :code:`global_scope` as its default value, e.g., :code:`Executor.run`

    Returns:
        Scope: The global/default scope instance.
    """
Y
Yang Yu 已提交
35 36 37 38 39 40 41 42 43 44 45 46
    return g_scope


def switch_scope(scope):
    global g_scope
    ex = g_scope
    g_scope = scope
    return ex


@contextlib.contextmanager
def scope_guard(scope):
Y
yuyang18 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59
    """
    Change the global/default scope instance by Python `with` statement. All
    variable in runtime will assigned to the new scope.

    Examples:
        >>> import paddle.fluid as fluid
        >>> new_scope = fluid.Scope()
        >>> with fluid.scope_guard(new_scope):
        >>>     ...

    Args:
        scope: The new global/default scope.
    """
Y
Yang Yu 已提交
60 61 62 63 64
    ex = switch_scope(scope)
    yield
    switch_scope(ex)


D
dzhwinter 已提交
65 66 67 68 69
def as_numpy(tensor):
    if isinstance(tensor, list):
        return [as_numpy(t) for t in tensor]
    assert isinstance(tensor, core.LoDTensor)
    lod = tensor.lod()
70
    if len(lod) > 0:
D
dzhwinter 已提交
71
        raise RuntimeError("Some of your fetched tensors hold LoD information. \
72 73 74 75
            They can not be completely cast to Python ndarray. \
            Please set the parameter 'return_numpy' as 'False' to \
            return LoDTensor itself directly.")
    return np.array(tensor)
D
dzhwinter 已提交
76 77


78 79 80 81 82 83 84 85 86 87 88 89
def has_feed_operators(block, feed_targets, feed_holder_name):
    """ Check whether the block already has feed operators.

    Return false if the block does not have any feed operators.
    If some feed operators have been prepended to the block, check that
    the info contained in these feed operators matches the feed_targets
    and feed_holder_name. Raise exception when any mismatch is found.
    Return true when the block has feed operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        feed_targets: a dictionary of {feed_target_name: feed_target_data}
X
xuwei06 已提交
90 91
        feed_holder_name: the name of the variable that holds the data of
            all feed targets. The type of this feed_holder variable is
92 93 94
            FEED_MINIBATCH, which is essentially vector<LoDTensor>.

    Returns:
X
xuwei06 已提交
95
        A boolean value that indicates whether a block has feed operators
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
        that match the info contained in feed_targets and feed_holder_name.
    """

    feed_count = 0
    for op in block.ops:
        if op.desc.type() == 'feed':
            feed_count += 1
            assert op.desc.input('X')[0] == feed_holder_name
            feed_target_name = op.desc.output('Out')[0]
            if feed_target_name not in feed_targets:
                raise Exception("'feed_targets' does not have {} variable".
                                format(feed_target_name))
        else:
            break
    if feed_count > 0 and feed_count != len(feed_targets):
        raise Exception(
            "Feed operators in program desc do not match 'feed_targets'")
    return feed_count > 0


def has_fetch_operators(block, fetch_targets, fetch_holder_name):
    """ Check whether the block already has fetch operators.
X
xuwei06 已提交
118

119 120 121 122 123 124 125 126 127
    Return false if the block does not have any fetch operators.
    If some fetch operators have been appended to the block, check that
    the info contained in these fetch operators matches the fetch_targets
    and fetch_holder_name. Raise exception when any mismatch is found.
    Return true when the block has fetch operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        fetch_targets: a dictionary of {fetch_target_name: fetch_target_data}
X
xuwei06 已提交
128 129 130
        fetch_holder_name: the name of the variable that holds the data of
            all fetch targets. The type of this fetch_holder variable is
            FETCH_LIST, which is essentially vector<LoDTensor>.
131

X
xuwei06 已提交
132 133 134
    Return:
        A boolean value that indicates whether a block has fetch operators
        that match the info contained in fetch_targets and fetch_holder_name.
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
    """

    fetch_count = 0
    for op in block.ops:
        if op.desc.type() == 'fetch':
            fetch_count += 1
            assert op.desc.output('Out')[0] == fetch_holder_name
            fetch_target_name = op.desc.input('X')[0]
            if fetch_target_name not in [
                    var.desc.name() for var in fetch_targets
            ]:
                raise Exception("'fetch_targets' does not have {} variable".
                                format(fetch_target_name))
            idx = op.desc.attr('col')
            assert fetch_target_name == fetch_targets[idx].desc.name()
    if fetch_count > 0 and fetch_count != len(fetch_targets):
        raise Exception(
            "Fetch operators in program desc do not match 'fetch_targets'")
    return fetch_count > 0


X
xuwei06 已提交
156 157
def fetch_var(name, scope=None, return_numpy=True):
    """
C
chengduoZH 已提交
158 159 160
    Fetch the value of the variable with the given name from the
    given scope.

X
xuwei06 已提交
161
    Args:
162 163 164 165
        name(str): name of the variable. Typically, only persistable variables
            can be found in the scope used for running the program.
        scope(core.Scope|None): scope object. It should be the scope where
            you pass to Executor.run() when running your program.
C
chengduoZH 已提交
166 167 168 169
            If None, global_scope() will be used. Default None.
        return_numpy(bool): whether convert the tensor to numpy.ndarray.
            Default True.

X
xuwei06 已提交
170 171 172 173 174 175 176 177
    Returns:
       LodTensor|numpy.ndarray
    """
    assert isinstance(name, str)
    if scope is None:
        scope = global_scope()
    assert isinstance(scope, core.Scope)

Y
Yibing Liu 已提交
178
    var = scope.find_var(name)
179 180 181 182
    assert var is not None, (
        "Cannot find " + name + " in scope. Perhaps you need to make the"
        " variable persistable by using var.persistable = True in your"
        " program.")
X
xuwei06 已提交
183 184 185 186 187 188
    tensor = var.get_tensor()
    if return_numpy:
        tensor = as_numpy(tensor)
    return tensor


Q
qiaolongfei 已提交
189 190 191 192 193 194 195 196
def get_program_cache_key(feed, fetch_list):
    feed_var_names = feed.keys()

    def to_name_str(var):
        if isinstance(var, Variable):
            return var.desc.name()
        elif isinstance(var, str):
            return var
197 198
        elif isinstance(var, basestring):
            return str(var)
Q
qiaolongfei 已提交
199 200 201 202 203 204 205 206
        else:
            raise TypeError(str(var) + " should be Variable or str")

    fetch_var_names = map(to_name_str, fetch_list)

    return str(feed_var_names + fetch_var_names)


Y
Yu Yang 已提交
207
class Executor(object):
D
dzhwinter 已提交
208 209 210 211 212
    def __init__(self, place):
        self.place = place
        p = core.Place()
        p.set_place(place)
        self.executor = core.Executor(p)
Q
qiaolongfei 已提交
213
        self.program_caches = dict()
D
dzhwinter 已提交
214

D
dzhwinter 已提交
215 216 217 218 219 220 221 222 223 224 225
    def as_lodtensor(self, data):
        if isinstance(data, list):
            raise RuntimeError("Some of your feed data hold LoD information. \
                They can not be completely cast from a list of Python \
                ndarray to LoDTensor. Please convert data to LoDTensor \
                directly before feeding the data.\
                ")
        # single tensor case
        tensor = core.LoDTensor()
        tensor.set(data, self.place)
        return tensor
Y
Yu Yang 已提交
226

Q
Qiao Longfei 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
    def _get_program_cache(self, program_cache_key):
        return self.program_caches.get(program_cache_key, None)

    def _add_program_cache(self, program_cache_key, program):
        self.program_caches[program_cache_key] = program

    def _add_feed_fetch_ops(self, program, feed, fetch_list, feed_var_name,
                            fetch_var_name):
        tmp_program = program.clone()

        global_block = tmp_program.global_block()

        if feed_var_name in global_block.vars:
            feed_var = global_block.var(feed_var_name)
        else:
            feed_var = global_block.create_var(
                name=feed_var_name,
                type=core.VarDesc.VarType.FEED_MINIBATCH,
                persistable=True)

        if fetch_var_name in global_block.vars:
            fetch_var = global_block.var(fetch_var_name)
        else:
            fetch_var = global_block.create_var(
                name=fetch_var_name,
                type=core.VarDesc.VarType.FETCH_LIST,
                persistable=True)

        # prepend feed operators
        if not has_feed_operators(global_block, feed, feed_var_name):
            for i, name in enumerate(feed):
                out = global_block.var(name)
                global_block.prepend_op(
                    type='feed',
                    inputs={'X': [feed_var]},
                    outputs={'Out': [out]},
                    attrs={'col': i})

        # append fetch_operators
        if not has_fetch_operators(global_block, fetch_list, fetch_var_name):
            for i, var in enumerate(fetch_list):
                assert isinstance(var, Variable) or isinstance(var, str), (
                    "Wrong type for fetch_list[%s]: %s" % (i, type(var)))
                global_block.append_op(
                    type='fetch',
                    inputs={'X': [var]},
                    outputs={'Out': [fetch_var]},
                    attrs={'col': i})

        return tmp_program

    def _feed_data(self, program, feed, feed_var_name, scope):
        # feed var to framework
        for op in program.global_block().ops:
            if op.desc.type() == 'feed':
                feed_target_name = op.desc.output('Out')[0]
                cur_feed = feed[feed_target_name]
                if not isinstance(cur_feed, core.LoDTensor):
D
dzhwinter 已提交
285
                    cur_feed = self.as_lodtensor(cur_feed)
Q
Qiao Longfei 已提交
286 287 288 289 290 291 292 293 294 295 296 297
                idx = op.desc.attr('col')
                core.set_feed_variable(scope, cur_feed, feed_var_name, idx)
            else:
                break

    def _fetch_data(self, fetch_list, fetch_var_name, scope):
        outs = [
            core.get_fetch_variable(scope, fetch_var_name, i)
            for i in xrange(len(fetch_list))
        ]
        return outs

Y
Yu Yang 已提交
298
    def run(self,
Y
Yu Yang 已提交
299
            program=None,
300 301
            feed=None,
            fetch_list=None,
Y
Yu Yang 已提交
302
            feed_var_name='feed',
Y
Yu Yang 已提交
303
            fetch_var_name='fetch',
D
dzhwinter 已提交
304
            scope=None,
305 306
            return_numpy=True,
            use_program_cache=False):
Q
qiaolongfei 已提交
307 308 309 310
        """ Run program by this Executor. Feed data by feed map, fetch result by fetch_list.

        Python executor takes a program, add feed operators and fetch operators to this program according
        to feed map and fetch_list. Feed map provides input data for the program. fetch_list provides
Q
qiaolongfei 已提交
311
        the variables(or names) that user want to get after program run. Note: the executor will run all
Q
qiaolongfei 已提交
312 313 314 315
        operators in the program but not only the operators dependent by the fetch_list

        :param program: the program that need to run, if not provied, then default_main_program will be used.
        :param feed: feed variable map, e.g. {"image": ImageData, "label": LableData}
Q
qiaolongfei 已提交
316 317
        :param fetch_list: a list of variable or variable names that user want to get, run will return them according
        to this list.
Q
qiaolongfei 已提交
318 319 320 321
        :param feed_var_name: the name for the input variable of feed Operator.
        :param fetch_var_name: the name for the output variable of feed Operator.
        :param scope: the scope used to run this program, you can switch it to different scope. default is global_scope
        :param return_numpy: if convert the fetched tensor to numpy
322
        :param use_program_cache: set use_program_cache to true if program not changed compare to the last step.
Q
qiaolongfei 已提交
323
        :return: result according to fetch_list.
324
        """
325 326
        if feed is None:
            feed = {}
Q
qiaolongfei 已提交
327
        if not isinstance(feed, dict):
D
dzhwinter 已提交
328 329 330
            raise TypeError(
                "feed requires dict as its Parameter. But you passed in %s" %
                (type(feed)))
331 332
        if fetch_list is None:
            fetch_list = []
Y
Yu Yang 已提交
333
        if program is None:
Y
Yu Yang 已提交
334
            program = default_main_program()
Y
Yu Yang 已提交
335

Y
Yu Yang 已提交
336
        if not isinstance(program, Program):
D
dzhwinter 已提交
337 338 339
            raise TypeError(
                "Executor requires Program as its Parameter. But you passed in %s"
                % (type(program)))
Y
Yu Yang 已提交
340

Y
Yu Yang 已提交
341
        if scope is None:
Y
Yang Yu 已提交
342
            scope = global_scope()
Y
Yu Yang 已提交
343

Q
Qiao Longfei 已提交
344
        cache_key = get_program_cache_key(feed, fetch_list)
345
        if use_program_cache:
Q
Qiao Longfei 已提交
346 347 348 349 350 351 352 353 354 355
            cached_program = self._get_program_cache(cache_key)
            if cached_program is None:
                cached_program = self._add_feed_fetch_ops(
                    program=program,
                    feed=feed,
                    fetch_list=fetch_list,
                    feed_var_name=feed_var_name,
                    fetch_var_name=fetch_var_name)
                self._add_program_cache(cache_key, cached_program)
            program = cached_program
356
        else:
Q
Qiao Longfei 已提交
357 358 359 360 361 362 363 364 365 366 367
            self.program_caches.pop(cache_key, None)
            program = self._add_feed_fetch_ops(
                program=program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name)

        self._feed_data(program, feed, feed_var_name, scope)
        self.executor.run(program.desc, scope, 0, True, True)
        outs = self._fetch_data(fetch_list, fetch_var_name, scope)
D
dzhwinter 已提交
368 369 370
        if return_numpy:
            outs = as_numpy(outs)
        return outs