executor.py 63.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Z
Zeng Jinle 已提交
17
import logging
18 19
import os
import multiprocessing
C
chengduo 已提交
20
import sys
21
import warnings
D
dzhwinter 已提交
22
import numpy as np
S
rename  
sneaxiy 已提交
23
from .wrapped_decorator import signature_safe_contextmanager
24
import six
25
from .data_feeder import convert_dtype
26
from .framework import Program, default_main_program, Variable, Operator, convert_np_dtype_to_dtype_
27
from . import core
28 29
from . import compiler
from .. import compat as cpt
30
from .trainer_factory import TrainerFactory
31
from .trainer_factory import FetchHandlerMonitor
32
import copy
33

T
Tink_Y 已提交
34
__all__ = ['Executor', 'global_scope', 'scope_guard']
Y
Yu Yang 已提交
35

Y
Yu Yang 已提交
36
g_scope = core.Scope()
F
flame 已提交
37 38
InferNativeConfig = core.NativeConfig
InferAnalysisConfig = core.AnalysisConfig
Y
Yu Yang 已提交
39

Y
Yu Yang 已提交
40

Y
Yang Yu 已提交
41
def global_scope():
Y
yuyang18 已提交
42
    """
43 44
    :api_attr: Static Graph

Y
yuyang18 已提交
45 46 47
    Get the global/default scope instance. There are a lot of APIs use
    :code:`global_scope` as its default value, e.g., :code:`Executor.run`

C
chengduo 已提交
48 49 50
    Returns:
        Scope: The global/default scope instance.

51 52 53 54 55 56 57 58
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
          numpy.array(fluid.global_scope().find_var("data").get_tensor())
Y
yuyang18 已提交
59
    """
Y
Yang Yu 已提交
60 61 62
    return g_scope


63
def _switch_scope(scope):
Y
Yang Yu 已提交
64 65 66 67 68 69
    global g_scope
    ex = g_scope
    g_scope = scope
    return ex


S
rename  
sneaxiy 已提交
70
@signature_safe_contextmanager
Y
Yang Yu 已提交
71
def scope_guard(scope):
Y
yuyang18 已提交
72
    """
73 74
    :api_attr: Static Graph
    
75 76 77 78 79 80 81 82 83 84 85 86
    This function switches scope through python `with` statement.
    Scope records the mapping between variable names and variables ( :ref:`api_guide_Variable` ),
    similar to brackets in programming languages.
    If this function is not invoked, all variables and variable names are recorded in the default global scope.
    When users need to create variables with the same name,
    they need to switch scopes through this function
    if they do not want the mapping of variables with the same name to be overwritten.
    After switching through the `with` statement,
    all variables created in the `with` block will be assigned to a new scope.

    Parameters:
        scope: The new scope.
Y
yuyang18 已提交
87

88 89
    Returns:
        None
L
lujun 已提交
90

Y
yuyang18 已提交
91
    Examples:
92 93
        .. code-block:: python

94
            import paddle.fluid as fluid
L
lujun 已提交
95
            import numpy
Y
yuyang18 已提交
96

L
lujun 已提交
97 98 99 100
            new_scope = fluid.Scope()
            with fluid.scope_guard(new_scope):
                 fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
            numpy.array(new_scope.find_var("data").get_tensor())
Y
yuyang18 已提交
101
    """
L
lujun 已提交
102

103
    ex = _switch_scope(scope)
104 105 106 107
    try:
        yield
    finally:
        _switch_scope(ex)
Y
Yang Yu 已提交
108 109


D
dzhwinter 已提交
110
def as_numpy(tensor):
111 112 113
    """
    Convert a Tensor to a numpy.ndarray, its only support Tensor without LoD information.
    For higher dimensional sequence data, please use LoDTensor directly.
114

115
    Examples:
116 117 118 119 120 121 122 123 124 125
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          new_scope = fluid.Scope()
          with fluid.scope_guard(new_scope):
              fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
          tensor = new_scope.find_var("data").get_tensor()
          fluid.executor.as_numpy(tensor) # or numpy.array(new_scope.find_var("data").get_tensor())
126 127 128 129 130 131 132

    Args:
       tensor(Variable): a instance of Tensor

    Returns:
        numpy.ndarray
    """
C
chengduo 已提交
133 134
    if isinstance(tensor, core.LoDTensorArray):
        return [as_numpy(t) for t in tensor]
D
dzhwinter 已提交
135 136 137 138
    if isinstance(tensor, list):
        return [as_numpy(t) for t in tensor]
    assert isinstance(tensor, core.LoDTensor)
    lod = tensor.lod()
139
    if len(lod) > 0:
D
dzhwinter 已提交
140
        raise RuntimeError("Some of your fetched tensors hold LoD information. \
141 142 143
            They can not be completely cast to Python ndarray. \
            Please set the parameter 'return_numpy' as 'False' to \
            return LoDTensor itself directly.")
Q
qingqing01 已提交
144 145 146 147
    if tensor._is_initialized():
        return np.array(tensor)
    else:
        return None
D
dzhwinter 已提交
148 149


H
Huihuang Zheng 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
def dtype_is_compatible_with(first, second):
    """
    Returns True if the first dtype can be compatible the second one.
    Currently, we require the two dtype's have to be same.
      
    Args:
        dtype (np.dtype|VarType|str): The type of data: float32, int64, etc.
    
    Returns:
        True if the two types are same.
    """
    if not isinstance(first, core.VarDesc.VarType):
        first = convert_np_dtype_to_dtype_(first)
    if not isinstance(second, core.VarDesc.VarType):
        second = convert_np_dtype_to_dtype_(second)
    return first == second


def dimension_is_compatible_with(first, second):
    """
    Returns True if the two dimensions are compatible.

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
T
tianshuo78520a 已提交
174 175
    2. Each non-negative number of the two dimensions are same.
    3. For negative number or 'None' in a dimension, it means unknown so it
H
Huihuang Zheng 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
       is compatible with any number.

    Args:
        first (list/tuple): integers representing shape. "None" or negative
            number means unknown.
        second (list/tuple): integers representing shape. "None" or negative
            number means unknown.

    Returns:
        True if the two dimensions are compatible.
    """

    dim_len = len(first)
    if dim_len != len(second):
        return False

    for i in range(dim_len):
        if first[i] is None or first[i] < 0:
            continue
        if second[i] is None or second[i] < 0:
            continue
        if first[i] != second[i]:
            return False

    return True


203
def check_feed_shape_type(var, feed, num_places=1):
H
Huihuang Zheng 已提交
204 205
    """
    Returns True if the variable doesn't require feed check or it is compatible
T
tianshuo78520a 已提交
206
    with the shape and have same dtype as the fed value.
H
Huihuang Zheng 已提交
207 208 209

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
T
tianshuo78520a 已提交
210 211
    2. Each non-negative number of the two dimensions are same.
    3. For negative number or 'None' in a dimension, it means unknown so it
H
Huihuang Zheng 已提交
212 213 214 215
       is compatible with any number.
    
    Args:
        var (Variable): the Variable object
T
tianshuo78520a 已提交
216
        feed (LoDTensor): the fed value, which must be a LoDTensor
217 218
        num_places: an integer value indicating the number of places.
            ParallelExecutor will divide data into devices (CPU/GPU) evenly.
H
Huihuang Zheng 已提交
219 220 221 222 223 224 225
    Returns:
        True if the shape and dtype of variable is compatible with the feed value
    Raises:
        ValueError: if the shape or dtype of the variable is not compatible with
            the feed value
    """
    if var.desc.need_check_feed():
226 227
        diff_shape = core.diff_tensor_shape(feed, var.desc, num_places)
        if diff_shape is not None:
228
            raise ValueError(
T
tianshuo78520a 已提交
229 230
                'The fed Variable %r should have dimensions = %d, shape = '
                '%r, but received fed shape %r on each device' %
231
                (var.name, len(var.shape), var.shape, diff_shape))
H
Huihuang Zheng 已提交
232
        if not dtype_is_compatible_with(feed._dtype(), var.dtype):
233 234 235 236 237
            var_dtype_format = convert_dtype(var.dtype) if isinstance(
                var.dtype, core.VarDesc.VarType) else var.dtype
            feed_dtype_format = convert_dtype(feed._dtype()) if isinstance(
                feed._dtype(), core.VarDesc.VarType) else feed._dtype()
            raise ValueError(
T
tianshuo78520a 已提交
238 239
                'The data type of fed Variable %r must be %r, but received %r' %
                (var.name, var_dtype_format, feed_dtype_format))
H
Huihuang Zheng 已提交
240 241 242
    return True


243 244 245 246 247 248 249 250 251 252 253 254
def has_feed_operators(block, feed_targets, feed_holder_name):
    """ Check whether the block already has feed operators.

    Return false if the block does not have any feed operators.
    If some feed operators have been prepended to the block, check that
    the info contained in these feed operators matches the feed_targets
    and feed_holder_name. Raise exception when any mismatch is found.
    Return true when the block has feed operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        feed_targets: a dictionary of {feed_target_name: feed_target_data}
X
xuwei06 已提交
255 256
        feed_holder_name: the name of the variable that holds the data of
            all feed targets. The type of this feed_holder variable is
257 258 259
            FEED_MINIBATCH, which is essentially vector<LoDTensor>.

    Returns:
X
xuwei06 已提交
260
        A boolean value that indicates whether a block has feed operators
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
        that match the info contained in feed_targets and feed_holder_name.
    """

    feed_count = 0
    for op in block.ops:
        if op.desc.type() == 'feed':
            feed_count += 1
            assert op.desc.input('X')[0] == feed_holder_name
            feed_target_name = op.desc.output('Out')[0]
            if feed_target_name not in feed_targets:
                raise Exception("'feed_targets' does not have {} variable".
                                format(feed_target_name))
        else:
            break
    if feed_count > 0 and feed_count != len(feed_targets):
        raise Exception(
            "Feed operators in program desc do not match 'feed_targets'")
    return feed_count > 0


def has_fetch_operators(block, fetch_targets, fetch_holder_name):
    """ Check whether the block already has fetch operators.
X
xuwei06 已提交
283

284 285 286 287 288 289 290 291 292
    Return false if the block does not have any fetch operators.
    If some fetch operators have been appended to the block, check that
    the info contained in these fetch operators matches the fetch_targets
    and fetch_holder_name. Raise exception when any mismatch is found.
    Return true when the block has fetch operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        fetch_targets: a dictionary of {fetch_target_name: fetch_target_data}
X
xuwei06 已提交
293 294 295
        fetch_holder_name: the name of the variable that holds the data of
            all fetch targets. The type of this fetch_holder variable is
            FETCH_LIST, which is essentially vector<LoDTensor>.
296

X
xuwei06 已提交
297 298 299
    Return:
        A boolean value that indicates whether a block has fetch operators
        that match the info contained in fetch_targets and fetch_holder_name.
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
    """

    fetch_count = 0
    for op in block.ops:
        if op.desc.type() == 'fetch':
            fetch_count += 1
            assert op.desc.output('Out')[0] == fetch_holder_name
            fetch_target_name = op.desc.input('X')[0]
            if fetch_target_name not in [
                    var.desc.name() for var in fetch_targets
            ]:
                raise Exception("'fetch_targets' does not have {} variable".
                                format(fetch_target_name))
            idx = op.desc.attr('col')
            assert fetch_target_name == fetch_targets[idx].desc.name()
    if fetch_count > 0 and fetch_count != len(fetch_targets):
        raise Exception(
            "Fetch operators in program desc do not match 'fetch_targets'")
    return fetch_count > 0


W
Wu Yi 已提交
321
def _fetch_var(name, scope=None, return_numpy=True):
X
xuwei06 已提交
322
    """
C
chengduoZH 已提交
323 324 325
    Fetch the value of the variable with the given name from the
    given scope.

X
xuwei06 已提交
326
    Args:
327 328 329 330
        name(str): name of the variable. Typically, only persistable variables
            can be found in the scope used for running the program.
        scope(core.Scope|None): scope object. It should be the scope where
            you pass to Executor.run() when running your program.
C
chengduoZH 已提交
331 332 333 334
            If None, global_scope() will be used. Default None.
        return_numpy(bool): whether convert the tensor to numpy.ndarray.
            Default True.

X
xuwei06 已提交
335 336 337
    Returns:
       LodTensor|numpy.ndarray
    """
338
    assert isinstance(name, six.string_types)
X
xuwei06 已提交
339 340
    if scope is None:
        scope = global_scope()
S
sneaxiy 已提交
341
    assert isinstance(scope, core._Scope)
X
xuwei06 已提交
342

343
    var = scope.find_var(_to_name_str(name))
344 345 346 347
    assert var is not None, (
        "Cannot find " + name + " in scope. Perhaps you need to make the"
        " variable persistable by using var.persistable = True in your"
        " program.")
X
xuwei06 已提交
348 349 350 351 352 353
    tensor = var.get_tensor()
    if return_numpy:
        tensor = as_numpy(tensor)
    return tensor


X
polish  
Xin Pan 已提交
354
def _to_name_str(var):
355 356 357 358 359 360 361 362
    def _to_str(var):
        if isinstance(var, Variable):
            return var.desc.name()
        elif isinstance(var, str):
            return var
        elif isinstance(var, six.string_types):
            return str(var)
        elif isinstance(var, Operator):
363
            return str(id(var))
364 365 366 367 368 369 370 371 372 373
        else:
            raise TypeError(str(var) + " should be Variable, Operator or str")

    # NOTEz(zhiqiu): The item in fetch_list may be tuple returned by Optimizer.minimize(),
    # see comments in _split_optimize_ops_in_fetch_list for more details.
    if isinstance(var, tuple):
        var = var[0]
    if isinstance(var, list):
        s = [_to_str(item) for item in var]
        return ','.join(s)
X
polish  
Xin Pan 已提交
374
    else:
375
        return _to_str(var)
Q
qiaolongfei 已提交
376 377


378 379 380 381
def _get_strong_program_cache_key(program, feed, fetch_list):
    return str(id(program)) + _get_program_cache_key(feed, fetch_list)


X
polish  
Xin Pan 已提交
382
def _get_program_cache_key(feed, fetch_list):
383 384 385 386 387 388
    feed_var_names = []
    if isinstance(feed, dict):
        feed_var_names = list(feed.keys())
    elif isinstance(feed, list) or isinstance(feed, tuple):
        for i, each in enumerate(feed):
            feed_var_names += list(each.keys())
X
polish  
Xin Pan 已提交
389
    fetch_var_names = list(map(_to_name_str, fetch_list))
Q
qiaolongfei 已提交
390 391 392
    return str(feed_var_names + fetch_var_names)


393
def _as_lodtensor(data, place, dtype=None):
W
Wu Yi 已提交
394 395 396 397 398 399 400 401 402 403 404 405 406 407
    """
        Convert numpy.ndarray to Tensor, its only support Tensor without LoD information.
        For higher dimensional sequence data, please use LoDTensor directly.

        Examples:
            >>> import paddle.fluid as fluid
            >>> place = fluid.CPUPlace()
            >>> exe = fluid.executor(place)
            >>> data = np.array(size=(100, 200, 300))
            >>> np_outs = map(lambda x: fluid.executor._as_lodtensor(x, place), data)
            >>>     ...

        Args:
            data(numpy.ndarray): a instance of array
408 409
            data(core.Place): the place of created tensor
            dtype(core.VarDesc.VarType): the expected data type of created tensor
W
Wu Yi 已提交
410 411 412 413 414 415 416 417 418 419

        Returns:
            LoDTensor
        """
    if isinstance(data, list):
        raise RuntimeError("Some of your feed data hold LoD information. \
                They can not be completely cast from a list of Python \
                ndarray to LoDTensor. Please convert data to LoDTensor \
                directly before feeding the data.\
                ")
420 421 422 423 424 425 426 427 428

    #NOTE(zhiqiu): convert python builtin ,like float and int, to numpy array
    if not isinstance(data, np.ndarray):
        if np.isscalar(data):
            assert dtype is not None, 'dtype should be given when casting python scalar to tensor'
            dtype = convert_dtype(dtype) if isinstance(
                dtype, core.VarDesc.VarType) else dtype
            data = np.array([data]).astype(dtype)

W
Wu Yi 已提交
429 430 431 432 433 434
    # single tensor case
    tensor = core.LoDTensor()
    tensor.set(data, place)
    return tensor


435
class FetchHandler(object):
D
Dong Daxiang 已提交
436 437 438
    def __init__(self, var_dict=None, period_secs=60):
        assert var_dict != None
        self.var_dict = var_dict
439 440
        self.period_secs = period_secs

D
Dong Daxiang 已提交
441 442 443 444 445
    def handler(self, res_dict):
        for key in res_dict:
            if type(res_dict[key]) is np.ndarray:
                sys.stdout.write("{}[0]: {} ".format(key, res_dict[key][0]))
        sys.stdout.write("\n")
446 447 448 449

    @staticmethod
    def help():
        print("""
D
Dong Daxiang 已提交
450 451 452 453 454 455 456 457
class FetchHandlerExample(FetchHandler):
    def handler(self, res_dict):
        print(res_dict["auc"])
        print("auc: {}, {}".format(res_dict["auc"], time.ctime()))

auc = Variable()
var_dict = {"auc": auc}
handler = FetchHandlerExample(var_dict=var_dict)
458 459 460
""")


Y
Yu Yang 已提交
461
class Executor(object):
462
    """
463 464
    :api_attr: Static Graph

465
    An Executor in Python, supports single/multiple-GPU running,
466
    and single/multiple-CPU running.
C
chengduo 已提交
467 468

    Args:
469 470 471 472 473
        place(fluid.CPUPlace()|fluid.CUDAPlace(n)|None): This parameter represents
            which device the executor runs on. When this parameter is None, PaddlePaddle
            will set the default device according to its installation version. If Paddle
            is CPU version, the default device would be set to `CPUPlace()` . If Paddle is
            GPU version, the default device would be set to `CUDAPlace(0)` . Default is None.
C
chengduo 已提交
474 475 476

    Returns:
        Executor
S
Fix doc  
sneaxiy 已提交
477

478
    Examples:
S
Fix doc  
sneaxiy 已提交
479 480
        .. code-block:: python

481 482 483 484 485
          import paddle.fluid as fluid
          import paddle.fluid.compiler as compiler
          import numpy
          import os

486 487 488 489 490 491 492
          # Set place explicitly.
          # use_cuda = True
          # place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
          # exe = fluid.Executor(place)

          # If you don't set place, PaddlePaddle sets the default device.
          exe = fluid.Executor()
493 494 495 496

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
C
chengduo 已提交
497
              data = fluid.data(name='X', shape=[None, 1], dtype='float32')
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
              fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

          # Run the startup program once and only once.
          # Not need to optimize/compile the startup program.
          startup_program.random_seed=1
          exe.run(startup_program)

          # Run the main program directly without compile.
          x = numpy.random.random(size=(10, 1)).astype('float32')
          loss_data, = exe.run(train_program,
                               feed={"X": x},
                               fetch_list=[loss.name])

          # Or, compiled the program and run. See `CompiledProgram`
          # for more detail.
515 516 517 518 519
          # NOTE: If you use CPU to run the program or Paddle is
          # CPU version, you need to specify the CPU_NUM, otherwise,
          # fluid will use all the number of the logic core as
          # the CPU_NUM, in that case, the batch size of the input
          # should be greater than CPU_NUM, if not, the process will be
520
          # failed by an exception.
521 522 523 524 525 526

          # Set place explicitly.
          # if not use_cuda:
          #     os.environ['CPU_NUM'] = str(2)

          # If you don't set place and PaddlePaddle is CPU version
527
          os.environ['CPU_NUM'] = str(2)
528 529 530 531 532 533 534

          compiled_prog = compiler.CompiledProgram(
              train_program).with_data_parallel(
              loss_name=loss.name)
          loss_data, = exe.run(compiled_prog,
                               feed={"X": x},
                               fetch_list=[loss.name])
535 536
    """

537 538 539 540 541 542 543 544
    def __init__(self, place=None):
        if place is None:
            if core.is_compiled_with_cuda():
                self.place = core.CUDAPlace(0)
            else:
                self.place = core.CPUPlace()
        else:
            self.place = place
Q
qiaolongfei 已提交
545
        self.program_caches = dict()
546
        self.ctx_caches = dict()
547 548
        self.scope_caches = dict()
        self.var_caches = dict()
549
        self.pruned_program_caches = dict()
550 551 552
        p = core.Place()
        p.set_place(self.place)
        self._default_executor = core.Executor(p)
Y
Yancey1989 已提交
553
        self._closed = False
554
        self.pruned_program_scope_caches = dict()
D
dzhwinter 已提交
555

556 557 558
    def _get_scope_cache(self, program_cache_key):
        return self.scope_caches.get(program_cache_key, None)

559 560 561
    def _get_ctx_cache(self, program_cache_key):
        return self.ctx_caches.get(program_cache_key, None)

Q
Qiao Longfei 已提交
562 563 564 565 566 567
    def _get_program_cache(self, program_cache_key):
        return self.program_caches.get(program_cache_key, None)

    def _add_program_cache(self, program_cache_key, program):
        self.program_caches[program_cache_key] = program

568 569 570 571 572 573 574 575 576 577 578 579
    def _get_pruned_program_cache(self, program_cache_key):
        return self.pruned_program_caches.get(program_cache_key, None)

    def _add_pruned_program_cache(self, program_cache_key, program):
        self.pruned_program_caches[program_cache_key] = program

    def _get_pruned_program_scope_cache(self, program_cache_key):
        return self.pruned_program_scope_caches.get(program_cache_key, None)

    def _add_pruned_program_scope_cache(self, program_cache_key, program):
        self.pruned_program_scope_caches[program_cache_key] = program

580 581 582
    def _add_ctx_cache(self, ctx_cache_key, ctx):
        self.ctx_caches[ctx_cache_key] = ctx

583 584 585
    def _add_scope_cache(self, scope_cache_key, scope):
        self.scope_caches[scope_cache_key] = scope

Q
Qiao Longfei 已提交
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
    def _add_feed_fetch_ops(self, program, feed, fetch_list, feed_var_name,
                            fetch_var_name):
        tmp_program = program.clone()

        global_block = tmp_program.global_block()

        if feed_var_name in global_block.vars:
            feed_var = global_block.var(feed_var_name)
        else:
            feed_var = global_block.create_var(
                name=feed_var_name,
                type=core.VarDesc.VarType.FEED_MINIBATCH,
                persistable=True)

        if fetch_var_name in global_block.vars:
            fetch_var = global_block.var(fetch_var_name)
        else:
            fetch_var = global_block.create_var(
                name=fetch_var_name,
                type=core.VarDesc.VarType.FETCH_LIST,
                persistable=True)

        # prepend feed operators
        if not has_feed_operators(global_block, feed, feed_var_name):
            for i, name in enumerate(feed):
611 612 613 614 615 616 617 618 619 620 621
                if global_block.has_var(name):
                    out = global_block.var(name)
                    global_block._prepend_op(
                        type='feed',
                        inputs={'X': [feed_var]},
                        outputs={'Out': [out]},
                        attrs={'col': i})
                else:
                    warnings.warn(
                        "The variable %s is not found in program. It is not declared or is pruned."
                        % name)
Q
Qiao Longfei 已提交
622 623 624
        # append fetch_operators
        if not has_fetch_operators(global_block, fetch_list, fetch_var_name):
            for i, var in enumerate(fetch_list):
M
minqiyang 已提交
625 626 627
                assert isinstance(var, Variable) or isinstance(
                    var, six.string_types), (
                        "Wrong type for fetch_list[%s]: %s" % (i, type(var)))
Q
Qiao Longfei 已提交
628 629 630 631 632 633 634 635 636 637
                global_block.append_op(
                    type='fetch',
                    inputs={'X': [var]},
                    outputs={'Out': [fetch_var]},
                    attrs={'col': i})

        return tmp_program

    def _feed_data(self, program, feed, feed_var_name, scope):
        # feed var to framework
H
Huihuang Zheng 已提交
638 639
        global_block = program.global_block()
        for op in global_block.ops:
Q
Qiao Longfei 已提交
640 641 642
            if op.desc.type() == 'feed':
                feed_target_name = op.desc.output('Out')[0]
                cur_feed = feed[feed_target_name]
H
Huihuang Zheng 已提交
643
                var = global_block.var(feed_target_name)
644 645
                if not isinstance(cur_feed, core.LoDTensor):
                    cur_feed = _as_lodtensor(cur_feed, self.place, var.dtype)
H
Huihuang Zheng 已提交
646
                check_feed_shape_type(var, cur_feed)
Q
Qiao Longfei 已提交
647 648 649 650 651 652 653 654
                idx = op.desc.attr('col')
                core.set_feed_variable(scope, cur_feed, feed_var_name, idx)
            else:
                break

    def _fetch_data(self, fetch_list, fetch_var_name, scope):
        outs = [
            core.get_fetch_variable(scope, fetch_var_name, i)
M
minqiyang 已提交
655
            for i in six.moves.range(len(fetch_list))
Q
Qiao Longfei 已提交
656 657 658
        ]
        return outs

659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
    def _split_optimize_ops_in_fetch_list(self, fetch_list):
        """
        Split optimize_ops from fetch_list, which provided to specify program prunning.
        Args:
            fetch_list(list): The original fetch_list.
            Possible types of fetch_list are:
                fetch_list = ['loss']
                fetch_list = [[sgd, sgd], 'loss']
                fetch_list = [([sgd, sgd], [(param, grad)]), 'loss']

        Returns:
            optimize_ops(list): The optimize operators splited from fetch_list.
            fetch_list(list):  The updated fetch_list which does not contain optimize operators.  
        """
        _optimize_ops = []
        _fetch_list = []

        def _get_targets(_optimize_ops, _fetch_list, item):
            if isinstance(item, Operator):
                if item._is_optimize_op():
                    _optimize_ops.append(item)
                else:
                    raise TypeError(
                        "The operator in fetch_list is not an optimize_op")
            elif isinstance(item, Variable) or isinstance(
                    item, str) or isinstance(item, six.string_types):
                _fetch_list.append(item)
            else:
                raise TypeError(
                    "The item in fetch_list should be str, variable or optimize_op, but recieved %s.",
                    type(item))

        for item in fetch_list:
            # NOTE(zhiqiu): to support (optimizer_ops, param_and_grads) and optimizer_ops in fetch_list
            # we should handle tuple and list in fetch_list.
            # TODO(zhiqiu): find a better way to handle that.
            if isinstance(item, list):
                for i in item:
                    _get_targets(_optimize_ops, _fetch_list, i)
            elif isinstance(item, tuple):
                for i in item[0]:
                    _get_targets(_optimize_ops, _fetch_list, i)
            else:
                _get_targets(_optimize_ops, _fetch_list, item)

        return _fetch_list, _optimize_ops

    def _prune_program(self,
                       program,
                       feed=None,
                       fetch_list=None,
                       optimize_ops=None):
        """
        Prune operators and variables which are not needed to generate
        :code:`fetch_list` and optimize operators. 
        Prune operators and variables which are needed 
        to generate variables to be feeded.  

        Notes: This is a very low level API. Users should not use this API
        directly. 

        Args:
            program(Program): the origin program
            feed(list|dict): feed dict or list.
            fetch_list(list|Variable): A list of variables need to be fetched
            optimize_ops(list[Operator]): A list of optimizer operators

        Returns:
            Program:  A new, pruned program.
        """
        compiled = isinstance(program, compiler.CompiledProgram)
        if compiled:
            if program._program:
                origin_program = program._program
            else:
                warnings.warn(
                    "The program holds no _program, maybe it is constructed by graph, which can't be pruned yet."
                )
                return
        else:
            origin_program = program

        feed_names = []
        if isinstance(feed, dict):
            feed_names = list(feed.keys())
        elif isinstance(feed, list) or isinstance(feed, tuple):
            for i, each in enumerate(feed):
                feed_names += list(each.keys())

        # if optimize_ops is [], all optimize ops in the program is used.
        if not optimize_ops:
            for block in origin_program.blocks:
                for op in block.ops:
                    if op._is_optimize_op():
                        optimize_ops.append(op)

        targets = fetch_list + optimize_ops
        pruned_program = origin_program._prune_with_input(feed_names, targets)

        if compiled:
            # for compiled program, update the underlying program, re-generate graph,
            # and reset the flag so it can be compiled again.
            program._program = pruned_program
            program._graph = core.Graph(pruned_program.desc)
            program._compiled = False
        else:
            program = pruned_program

        return program

    def _update_feed(self, program, feed):
        """
        Update the feed dict, remove the feed item which is pruned in program.  

        Notes: This is a very low level API. Users should not use this API
        directly. 

        Args:
            program(Program): the pruned program.
            feed(list|dict): feed dict or list.

        Returns:
            feed:(list|dict)  updated feed.
        """
        compiled = isinstance(program, compiler.CompiledProgram)
        if compiled:
            if program._program:
                global_block = program._program.global_block()
            else:
                warnings.warn(
                    "The program holds no _program, maybe it is constructed by graph."
                )
        else:
            global_block = program.global_block()

        if isinstance(feed, dict):
            for feed_name in list(feed.keys()):
                if not global_block.has_var(feed_name):
                    feed.pop(feed_name)
                    warnings.warn(
                        "The variable %s is not found in program. It is not declared or is pruned."
                        % feed_name)

        elif isinstance(feed, list) or isinstance(feed, tuple):
            for i, each in enumerate(feed):
                for feed_name in list(each.keys()):
                    if not global_block.has_var(feed_name):
                        each.pop(feed_name)
                        warnings.warn(
                            "The variable %s is not found in program. It is not declared or is pruned."
                            % feed_name)
        return feed

S
Fix doc  
sneaxiy 已提交
812 813 814 815 816 817
    '''
    TODO(typhoonzero): Define "no longer use" meaning? Can user create
    a new Executor for the same program and run?
    TODO(panyx0718): Why ParallelExecutor doesn't have close?
    '''

Y
Yancey1989 已提交
818 819
    def close(self):
        """
C
chengduo 已提交
820 821 822
        Close the executor. This interface is used for distributed training (PServers mode).
        This executor can not be used after calling the interface, because
        this interface releases resources associated with the current Trainer.
Y
Yancey1989 已提交
823

C
chengduo 已提交
824 825
        Returns:
            None
826 827 828 829 830 831 832 833 834 835

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid

              cpu = fluid.CPUPlace()
              exe = fluid.Executor(cpu)
              # execute training or testing
              exe.close()
Y
Yancey1989 已提交
836
        """
837 838
        if not self._closed:
            self._default_executor.close()
Y
Yancey1989 已提交
839
            self._closed = True
Y
Yancey1989 已提交
840

X
fix  
Xin Pan 已提交
841
    def _run_parallel(self, program, scope, feed, fetch_list, fetch_var_name,
Z
Zhen Wang 已提交
842
                      return_numpy, return_merged):
843
        exe = program._executor
H
Huihuang Zheng 已提交
844 845 846 847 848
        # TODO(zhenghuihuang): quantization uses Graph in CompiledProgram
        # instead of program. We will add support for checking Vars in Graph
        need_check_feed = program._program is not None
        if need_check_feed:
            global_block = program._program.global_block()
849 850 851 852
        if isinstance(feed, dict):
            feed_tensor_dict = dict()
            for feed_name in feed:
                feed_tensor = feed[feed_name]
853
                var = global_block.var(feed_name) if need_check_feed else None
854
                if not isinstance(feed_tensor, core.LoDTensor):
855
                    # always set to CPU place, since the tensor need to be split
856
                    # it is fast in CPU
857 858 859
                    feed_tensor = _as_lodtensor(feed[feed_name],
                                                core.CPUPlace(), var.dtype
                                                if var else None)
H
Huihuang Zheng 已提交
860
                if need_check_feed:
861
                    check_feed_shape_type(var, feed_tensor, exe.device_count())
862 863
                feed_tensor_dict[feed_name] = feed_tensor

864
            exe.feed_and_split_tensor_into_local_scopes(feed_tensor_dict)
865 866 867 868 869 870 871 872 873
        elif isinstance(feed, list) or isinstance(feed, tuple):
            res = list()
            for i, each in enumerate(feed):
                if not isinstance(each, dict):
                    raise TypeError(
                        "Each element of feed list should be a dict")
                res_dict = dict()
                for feed_name in each:
                    tensor = each[feed_name]
874 875
                    var = global_block.var(
                        feed_name) if need_check_feed else None
876
                    if not isinstance(tensor, core.LoDTensor):
877 878 879
                        tensor = _as_lodtensor(each[feed_name],
                                               program._places[i], var.dtype
                                               if var else None)
H
Huihuang Zheng 已提交
880 881
                    if need_check_feed:
                        check_feed_shape_type(var, tensor)
882 883
                    res_dict[feed_name] = tensor
                res.append(res_dict)
884
            exe.feed_tensors_into_local_scopes(res)
885

X
polish  
Xin Pan 已提交
886
        fetch_var_names = list(map(_to_name_str, fetch_list))
Z
Zhen Wang 已提交
887
        tensors = exe.run(fetch_var_names, return_merged)._move_to_list()
888
        return as_numpy(tensors) if return_numpy else tensors
889

Y
Yu Yang 已提交
890
    def run(self,
Y
Yu Yang 已提交
891
            program=None,
892 893
            feed=None,
            fetch_list=None,
Y
Yu Yang 已提交
894
            feed_var_name='feed',
Y
Yu Yang 已提交
895
            fetch_var_name='fetch',
D
dzhwinter 已提交
896
            scope=None,
897
            return_numpy=True,
Z
Zhen Wang 已提交
898
            use_program_cache=False,
899 900
            return_merged=True,
            use_prune=False):
901
        """
C
chengduo 已提交
902 903 904 905 906
        Run the specified :code:`Program` or :code:`CompiledProgram`. It should be noted that the executor
        will execute all the operators in :code:`Program` or :code:`CompiledProgram` without pruning some
        operators of the :code:`Program` or :code:`CompiledProgram` according to fetch_list. And you could
        specify the scope to store the :code:`Variables` during the executor running if the scope
        is not set, the executor will use the global scope, i.e. :code:`fluid.global_scope()`.
907

C
chengduo 已提交
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
        Args:
            program(Program|CompiledProgram): This parameter represents the :code:`Program` or
                :code:`CompiledProgram` to be executed. If this parameter is not provided, that
                parameter is None, the program will be set to :code:`fluid.default_main_program()`.
                The default is None.
            feed(list|dict): This parameter represents the input variables of the model.
                If it is single card training, the feed is dict type, and if it is multi-card
                training, the parameter feed can be dict or list type variable. If the
                parameter type is dict, the data in the feed will be split and sent to
                multiple devices (CPU/GPU), that is to say, the input data will be evenly
                sent to different devices, so you should make sure the number of samples of
                the current mini-batch must be greater than the number of places;
                if the parameter type is list, those data are copied directly to each device,
                so the length of this list should be equal to the number of places.
                The default is None.
            fetch_list(list): This parameter represents the variables that need to be returned
924
                after the model runs. The default is None. 
C
chengduo 已提交
925 926 927 928 929 930 931 932 933 934 935 936 937 938
            feed_var_name(str): This parameter represents the name of the input variable of
                the feed operator. The default is "feed".
            fetch_var_name(str): This parameter represents the name of the output variable of
                the fetch operator. The default is "fetch".
            scope(Scope): the scope used to run this program, you can switch 
                it to different scope. default is :code:`fluid.global_scope()`
            return_numpy(bool): This parameter indicates whether convert the fetched variables
                (the variable specified in the fetch list) to numpy.ndarray. if it is False,
                the type of the return value is a list of :code:`LoDTensor`. The default is True.
            use_program_cache(bool): This parameter indicates whether the input :code:`Program` is cached.
                If the parameter is True, the model may run faster in the following cases:
                the input program is :code:`fluid.Program`, and the parameters(program, feed variable name
                and fetch_list variable) of this interface remains unchanged during running.
                The default is False.
Z
Zhen Wang 已提交
939 940 941
            return_merged(bool): This parameter indicates whether fetched variables (the variables
                specified in the fetch list) should be merged according to the execution device dimension.
                If :code:`return_merged` is False, the type of the return value is a two-dimensional list
942 943 944 945 946 947 948 949
                of :code:`Tensor` / :code:`LoDTensorArray` ( :code:`return_numpy` is False) or a two-dimensional
                list of :code:`numpy.ndarray` ( :code:`return_numpy` is True). If :code:`return_merged` is True,
                the type of the return value is an one-dimensional list of :code:`Tensor` / :code:`LoDTensorArray`
                ( :code:`return_numpy` is False) or an one-dimensional list of :code:`numpy.ndarray`
                ( :code:`return_numpy` is True). Please see Examples 2 for more details. If the lengths of fetched
                results are variant, please set :code:`return_merged` as False, which denotes that the fetched
                results will not be merged. The default is True, but it is just for the compatibility, and may
                use False as default value in the future version.
950 951 952 953 954 955 956
            use_prune(bool): This parameter indicates whether the input :code:`Program` will be pruned. 
                If the parameter is True, the program will be pruned accroding to the given feed and fetch_list,
                which means the operators and variables in program that generate :code:`feed` and are not 
                needed to generate :code:`fetch_list` will be pruned. The default is False, which means the 
                program will not pruned and all the operators and variables will be executed during running.
                Note that if the tuple returned from :code:`Optimizer.minimize()` is passed to :code:`fetch_list`, 
                :code:`use_prune` will be overrided to True, and the program will be pruned.
C
chengduo 已提交
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
                
        Returns:

            List: The fetched result list.

        NOTES:
            1. If it is multi-card running and the feed parameter is dict type, the input data
               will be evenly sent to different cards. For example, using two GPUs to run the model,
               the input sample number is 3, that is, [0, 1, 2], the sample number on GPU0 is 1,
               that is, [0], and the sample number on GPU1 is 2, that is, [1, 2].
               If the number of samples is less than the number of devices, the program will
               throw an exception, so when running the model, you should make sure that the
               number of samples of the last batch of the data set should be greater than the
               number of CPU cores or GPU cards, if it is less than, it is recommended that
               the batch be discarded.
            2. If the number of CPU cores or GPU cards available is greater than 1, the fetch
               results are spliced together in dimension 0 for the same variable values
               (variables in fetch_list) on different devices.
975

Z
Zhen Wang 已提交
976
        Examples 1:
977 978 979 980 981 982 983 984 985
            .. code-block:: python

              import paddle.fluid as fluid
              import numpy

              # First create the Executor.
              place = fluid.CPUPlace() # fluid.CUDAPlace(0)
              exe = fluid.Executor(place)

C
chengduo 已提交
986
              data = fluid.data(name='X', shape=[None, 1], dtype='float32')
987 988 989 990
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
              adam = fluid.optimizer.Adam()
              adam.minimize(loss)
991 992
              i = fluid.layers.zeros(shape=[1], dtype='int64')
              array = fluid.layers.array_write(x=loss, i=i)
993 994 995 996 997

              # Run the startup program once and only once.
              exe.run(fluid.default_startup_program())

              x = numpy.random.random(size=(10, 1)).astype('float32')
998 999 1000 1001
              loss_val, array_val = exe.run(feed={'X': x},
                                            fetch_list=[loss.name, array.name])
              print(array_val)
              # [array([0.02153828], dtype=float32)]
Z
Zhen Wang 已提交
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061

        Examples 2:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                # First create the Executor.
                place = fluid.CUDAPlace(0)
                exe = fluid.Executor(place)

                data = fluid.data(name='X', shape=[None, 1], dtype='float32')
                class_dim = 2
                prediction = fluid.layers.fc(input=data, size=class_dim)
                loss = fluid.layers.mean(prediction)
                adam = fluid.optimizer.Adam()
                adam.minimize(loss)

                # Run the startup program once and only once.
                exe.run(fluid.default_startup_program())
                build_strategy = fluid.BuildStrategy()
                binary = fluid.CompiledProgram(fluid.default_main_program()).with_data_parallel(
                    loss_name=loss.name, build_strategy=build_strategy)
                batch_size = 6
                x = np.random.random(size=(batch_size, 1)).astype('float32')

                # Set return_merged as False to fetch unmerged results:
                unmerged_prediction, = exe.run(binary, feed={'X': x},
                    fetch_list=[prediction.name],
                    return_merged=False)
                # If the user uses two GPU cards to run this python code, the printed result will be
                # (2, 3, class_dim). The first dimension value of the printed result is the number of used
                # GPU cards, and the second dimension value is the quotient of batch_size and the
                # number of used GPU cards.
                print("The unmerged prediction shape: {}".format(np.array(unmerged_prediction).shape))
                print(unmerged_prediction)

                # Set return_merged as True to fetch merged results:
                merged_prediction, = exe.run(binary, feed={'X': x},
                    fetch_list=[prediction.name],
                    return_merged=True)
                # If the user uses two GPU cards to run this python code, the printed result will be
                # (6, class_dim). The first dimension value of the printed result is the batch_size.
                print("The merged prediction shape: {}".format(np.array(merged_prediction).shape))
                print(merged_prediction)

                # Out:
                # The unmerged prediction shape: (2, 3, 2)
                # [array([[-0.37620035, -0.19752218],
                #        [-0.3561043 , -0.18697084],
                #        [-0.24129935, -0.12669306]], dtype=float32), array([[-0.24489994, -0.12858354],
                #        [-0.49041364, -0.25748932],
                #        [-0.44331917, -0.23276259]], dtype=float32)]
                # The merged prediction shape: (6, 2)
                # [[-0.37789783 -0.19921964]
                #  [-0.3577645  -0.18863106]
                #  [-0.24274671 -0.12814042]
                #  [-0.24635398 -0.13003758]
                #  [-0.49232286 -0.25939852]
                #  [-0.44514108 -0.2345845 ]]
1062
        """
C
chengduo 已提交
1063 1064 1065 1066 1067 1068 1069 1070 1071
        try:
            return self._run_impl(
                program=program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name,
                scope=scope,
                return_numpy=return_numpy,
Z
Zhen Wang 已提交
1072
                use_program_cache=use_program_cache,
1073
                use_prune=use_prune,
Z
Zhen Wang 已提交
1074
                return_merged=return_merged)
C
chengduo 已提交
1075 1076
        except Exception as e:
            if not isinstance(e, core.EOFException):
1077 1078
                warnings.warn(
                    "The following exception is not an EOF exception.")
1079
            six.reraise(*sys.exc_info())
C
chengduo 已提交
1080 1081

    def _run_impl(self, program, feed, fetch_list, feed_var_name,
Z
Zhen Wang 已提交
1082
                  fetch_var_name, scope, return_numpy, use_program_cache,
1083
                  return_merged, use_prune):
Y
Yancey1989 已提交
1084 1085 1086
        if self._closed:
            raise RuntimeError("Attempted to use a closed Executor")

C
chengduo 已提交
1087
        use_default_main_program = program is None
1088 1089
        if program is None:
            program = default_main_program()
C
chengduo 已提交
1090
        if isinstance(program, Program) and \
1091
                        len(program.global_block().ops) == 0:
C
chengduo 已提交
1092
            if use_default_main_program:
1093 1094 1095 1096 1097 1098 1099 1100
                error_info = "Now you are using default_main_program, "\
                    "but there are no operators in the program to be executed. "\
                    "Please ensure you create model correctly or you can pass "\
                    "the Program or the CompiledProgram manually."
            else:
                error_info = "There are no operators in the program to be executed. "\
                    "If you pass Program manually, please use fluid.program_guard "\
                    "to ensure the current Program is being used."
C
chengduo 已提交
1101
            warnings.warn(error_info)
1102

1103 1104
        if scope is None:
            scope = global_scope()
1105 1106

        if fetch_list is not None:
1107 1108 1109
            if isinstance(fetch_list, Variable) or isinstance(
                    fetch_list, str) or isinstance(fetch_list,
                                                   six.string_types):
1110 1111 1112 1113 1114 1115
                fetch_list = [fetch_list]
            assert isinstance(fetch_list, tuple) or isinstance(fetch_list, list), \
                "Currently , The fetch_list type only should be list or tuple, \n"\
                "but the input type is {}. For more information please refer to \n"\
                "the executor.run(...).".format(type(fetch_list))
        else:
X
polish  
Xin Pan 已提交
1116
            fetch_list = []
1117

1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
        # use_prune can be overrided by putting optimize_ops in fetch_list
        _origin_fetch_list = fetch_list
        _origin_program = program
        fetch_list, optimize_ops = self._split_optimize_ops_in_fetch_list(
            fetch_list)
        if optimize_ops:
            use_prune = True
        if use_prune:
            cache_key = _get_strong_program_cache_key(program, feed,
                                                      _origin_fetch_list)
            cached_pruned_program = self._get_pruned_program_cache(cache_key)
            if cached_pruned_program is None:
                if isinstance(program, compiler.CompiledProgram):
                    program_scope_cache = self._get_pruned_program_scope_cache(
                        str(id(_origin_program)))
                    # copy the original program, so it can be cached.
                    program = copy.copy(program)
                    # share the local scopes for same original CompiledProgram.
                    program._share_vars_from = program_scope_cache
                    if self._get_pruned_program_scope_cache(
                            str(id(_origin_program))) is None:
                        self._add_pruned_program_scope_cache(
                            str(id(_origin_program)), program)
                pruned_program = self._prune_program(program, feed, fetch_list,
                                                     optimize_ops)
                self._add_pruned_program_cache(cache_key, pruned_program)
            else:
                pruned_program = cached_pruned_program

            feed = self._update_feed(pruned_program, feed)
            program = pruned_program

X
polish  
Xin Pan 已提交
1150
        compiled = isinstance(program, compiler.CompiledProgram)
H
Huihuang Zheng 已提交
1151

X
polish  
Xin Pan 已提交
1152
        # For backward compatibility, run directly.
1153
        if not compiled:
C
chengduo 已提交
1154
            return self._run_program(
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
                program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name,
                scope=scope,
                return_numpy=return_numpy,
                use_program_cache=use_program_cache)

        program._compile(scope, self.place)
C
chengduo 已提交
1165 1166 1167
        if program._is_inference:
            return self._run_inference(program._executor, feed)
        else:
1168
            return self._run_parallel(
X
fix  
Xin Pan 已提交
1169
                program,
1170 1171 1172
                scope=scope,
                feed=feed,
                fetch_list=fetch_list,
X
polish  
Xin Pan 已提交
1173
                fetch_var_name=fetch_var_name,
Z
Zhen Wang 已提交
1174 1175
                return_numpy=return_numpy,
                return_merged=return_merged)
1176

C
chengduo 已提交
1177
    def _run_program(self, program, feed, fetch_list, feed_var_name,
C
chengduo 已提交
1178
                     fetch_var_name, scope, return_numpy, use_program_cache):
1179

1180 1181
        if feed is None:
            feed = {}
S
sneaxiy 已提交
1182 1183 1184 1185
        elif isinstance(feed, (list, tuple)):
            assert len(feed) == 1, "Not compiled with data parallel"
            feed = feed[0]

Q
qiaolongfei 已提交
1186
        if not isinstance(feed, dict):
D
dzhwinter 已提交
1187 1188 1189
            raise TypeError(
                "feed requires dict as its Parameter. But you passed in %s" %
                (type(feed)))
Y
Yu Yang 已提交
1190

1191
        assert program is not None, "The program should not be Empty"
Y
Yu Yang 已提交
1192
        if not isinstance(program, Program):
D
dzhwinter 已提交
1193 1194 1195
            raise TypeError(
                "Executor requires Program as its Parameter. But you passed in %s"
                % (type(program)))
Y
Yu Yang 已提交
1196

1197
        if use_program_cache:
1198
            cache_key = _get_strong_program_cache_key(program, feed, fetch_list)
Q
Qiao Longfei 已提交
1199
            cached_program = self._get_program_cache(cache_key)
1200
            cached_ctx = self._get_ctx_cache(cache_key)
1201
            cached_scope = self._get_scope_cache(cache_key)
Q
Qiao Longfei 已提交
1202 1203 1204 1205 1206 1207 1208 1209
            if cached_program is None:
                cached_program = self._add_feed_fetch_ops(
                    program=program,
                    feed=feed,
                    fetch_list=fetch_list,
                    feed_var_name=feed_var_name,
                    fetch_var_name=fetch_var_name)
                self._add_program_cache(cache_key, cached_program)
1210
                fetch_list_str = list(map(_to_name_str, fetch_list))
1211
                cached_ctx = self._default_executor.prepare(
1212 1213 1214 1215 1216 1217 1218
                    cached_program.desc, 0, fetch_list_str, False)
                # currently, we cache program, vars, sub_scope here
                # we suppose that in a life cycle of training, a user
                # will not create many programs. So, here the basic
                # rule of caching is to cache all unseen (program, var, scope)
                # when a user use use_program_cache.
                cached_scope = scope.new_scope()
1219 1220
                self._default_executor.create_variables(cached_program.desc,
                                                        cached_scope, 0)
1221
                self._add_ctx_cache(cache_key, cached_ctx)
1222
                self._add_scope_cache(cache_key, cached_scope)
Q
Qiao Longfei 已提交
1223
            program = cached_program
1224
            ctx = cached_ctx
1225
            scope = cached_scope
1226
        else:
Q
Qiao Longfei 已提交
1227 1228 1229 1230 1231 1232 1233 1234
            program = self._add_feed_fetch_ops(
                program=program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name)

        self._feed_data(program, feed, feed_var_name, scope)
1235
        if not use_program_cache:
C
chengduo 已提交
1236 1237
            self._default_executor.run(program.desc, scope, 0, True, True,
                                       fetch_var_name)
1238
        else:
1239 1240
            self._default_executor.run_prepared_ctx(ctx, scope, False, False,
                                                    False)
1241
        arr = scope.find_var(fetch_var_name).get_fetch_list()
1242
        tensors = arr._move_to_list()
D
dzhwinter 已提交
1243
        if return_numpy:
1244 1245 1246
            return as_numpy(tensors)
        else:
            return tensors
F
flame 已提交
1247

X
Xin Pan 已提交
1248 1249
    def _run_inference(self, exe, feed):
        return exe.run(feed)
D
dongdaxiang 已提交
1250

1251 1252
    def _dump_debug_info(self, program=None, trainer=None):
        with open(str(id(program)) + "_train_desc.prototxt", "w") as fout:
H
hutuxian 已提交
1253
            fout.write(str(trainer))
1254
        if program._fleet_opt and "fleet_desc" in program._fleet_opt:
1255 1256 1257
            with open("fleet_desc.prototxt", "w") as fout:
                fout.write(str(program._fleet_opt["fleet_desc"]))

1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
    def _adjust_pipeline_resource(self, pipeline_opt, dataset, pipeline_num):
        filelist_length = len(dataset.dataset.get_filelist())
        if filelist_length < pipeline_num:
            pipeline_num = filelist_length
            print(
                "Pipeline training: setting the pipeline num to %d is enough because there are only %d files"
                % (filelist_length, filelist_length))
        if filelist_length < pipeline_num * pipeline_opt["concurrency_list"][0]:
            print(
                "Pipeline training: setting the 1st element in concurrency_list to %d is enough because there are only %d files"
                % (filelist_length // pipeline_num, filelist_length))
            pipeline_opt["concurrency_list"][
                0] = filelist_length // pipeline_num
        dataset.set_thread(pipeline_opt["concurrency_list"][0] * pipeline_num)
        return pipeline_num

1274 1275 1276 1277 1278 1279 1280 1281 1282
    def _prepare_trainer(self,
                         program=None,
                         dataset=None,
                         scope=None,
                         thread=0,
                         debug=False,
                         fetch_list=None,
                         fetch_info=None,
                         print_period=100):
D
dongdaxiang 已提交
1283 1284 1285 1286
        if scope is None:
            scope = global_scope()
        if fetch_list is None:
            fetch_list = []
D
dongdaxiang 已提交
1287 1288 1289
        if fetch_info is None:
            fetch_info = []
        assert len(fetch_list) == len(fetch_info)
D
dongdaxiang 已提交
1290 1291
        compiled = isinstance(program, compiler.CompiledProgram)
        if not compiled:
H
hutuxian 已提交
1292 1293 1294 1295 1296 1297
            # TODO: Need a better way to distinguish and specify different execution mode
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program._pipeline_opt)
            else:
                trainer = TrainerFactory()._create_trainer(program._fleet_opt)
1298
                trainer._set_thread_barrier(program._is_distributed)
1299
            trainer._set_program(program)
1300
        else:
H
hutuxian 已提交
1301 1302 1303 1304 1305 1306
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program.program._pipeline_opt)
            else:
                trainer = TrainerFactory()._create_trainer(
                    program.program._fleet_opt)
1307
            trainer._set_program(program.program)
H
hutuxian 已提交
1308

1309
        if thread <= 0:
D
dongdaxiang 已提交
1310 1311
            if dataset.thread_num <= 0:
                raise RuntimeError(
1312 1313
                    "You should set thread num first, either in Dataset"
                    "or in Executor.train_from_dataset")
D
dongdaxiang 已提交
1314
            else:
1315
                trainer._set_thread(dataset.thread_num)
1316
        else:
1317
            trainer._set_thread(thread)
H
hutuxian 已提交
1318

1319 1320
        trainer._set_debug(debug)
        trainer._set_fetch_var_and_info(fetch_list, fetch_info, print_period)
1321
        return scope, trainer
1322

1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
    def _run_from_dataset(self,
                          program=None,
                          dataset=None,
                          scope=None,
                          thread=0,
                          is_infer=False,
                          debug=False,
                          fetch_list=None,
                          fetch_info=None,
                          print_period=100,
                          fetch_handler=None):
        if dataset is None:
            raise RuntimeError("dataset is need and should be initialized")

H
hutuxian 已提交
1337 1338 1339
        if program._pipeline_opt is not None and program._pipeline_opt[
                "sync_steps"] != -1:
            # hack for paddlebox: sync_steps(-1) denotes paddlebox
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
            thread = self._adjust_pipeline_resource(program._pipeline_opt,
                                                    dataset, thread)

        dataset._prepare_to_run()

        scope, trainer = self._prepare_trainer(
            program=program,
            dataset=dataset,
            scope=scope,
            thread=thread,
1350 1351 1352 1353
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period)
1354 1355 1356 1357 1358

        trainer._set_infer(is_infer)
        trainer._gen_trainer_desc()

        self._dump_debug_info(program=program, trainer=trainer)
T
tangwei12 已提交
1359
        dataset._dynamic_adjust_before_train(trainer.proto_desc.thread_num)
1360 1361 1362 1363

        trainer_instance = self._default_executor.init_for_dataset(
            program.desc, trainer._desc(), scope, dataset.dataset)

T
tangwei12 已提交
1364 1365 1366 1367 1368 1369
        if fetch_handler is not None:
            scope0 = trainer_instance.get_worker_scope(0)
            fetch_monitor = FetchHandlerMonitor(scope0, fetch_handler)
            fetch_monitor.start()
            self._default_executor.run_from_dataset(trainer_instance)
            fetch_monitor.stop()
D
Dong Daxiang 已提交
1370
            self._default_executor.release_trainer(trainer_instance)
T
tangwei12 已提交
1371 1372 1373
        else:

            self._default_executor.run_from_dataset(trainer_instance)
D
Dong Daxiang 已提交
1374
            self._default_executor.release_trainer(trainer_instance)
T
tangwei12 已提交
1375 1376

        dataset._dynamic_adjust_after_train()
1377
        dataset._finish_to_run()
T
tangwei12 已提交
1378

1379 1380
        return None

1381 1382 1383 1384 1385
    def infer_from_dataset(self,
                           program=None,
                           dataset=None,
                           scope=None,
                           thread=0,
1386 1387 1388
                           debug=False,
                           fetch_list=None,
                           fetch_info=None,
1389 1390
                           print_period=100,
                           fetch_handler=None):
1391
        """
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
        Infer from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, infer_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current infer task.

        The document of infer_from_dataset is almost the same as train_from_dataset,
        except that in distributed training, push gradients will be disabled in infer_from_dataset.
        infer_from_dataset() can be used for evaluation in multi-threadvery easily.
1403

1404 1405
        Args:
            program(Program|CompiledProgram): the program that needs to be run,
1406
                if not provided, then default_main_program (not compiled) will be used.
1407
            dataset(paddle.fluid.Dataset): dataset created outside this function,
1408 1409
                a user should provide a well-defined dataset before calling this function.
                Please check the document of Dataset if needed. default is None
1410
            scope(Scope): the scope used to run this program, you can switch it to different scope
1411 1412 1413
                for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. Default is 0, which
                means using thread num of dataset
1414
            debug(bool): whether a user wants to run infer_from_dataset, default is False
1415 1416
            fetch_list(Variable List): fetch variable list, each variable will be printed during
                training, default is None
1417 1418
            fetch_info(String List): print information for each variable, default is None
            print_period(int): the number of mini-batches for each print, default is 100
1419
            fetch_handler(FetchHandler): a user define class for fetch output.
1420

1421 1422 1423 1424
        Returns:
            None

        Examples:
1425 1426

            .. code-block:: python
1427

1428
                import paddle.fluid as fluid
1429 1430

                place = fluid.CPUPlace() # you can set place = fluid.CUDAPlace(0) to use gpu
1431
                exe = fluid.Executor(place)
1432 1433
                x = fluid.layers.data(name="x", shape=[10, 10], dtype="int64")
                y = fluid.layers.data(name="y", shape=[1], dtype="int64", lod_level=1)
1434 1435
                dataset = fluid.DatasetFactory().create_dataset()
                dataset.set_use_var([x, y])
1436 1437
                dataset.set_thread(1)
                filelist = [] # you should set your own filelist, e.g. filelist = ["dataA.txt"]
1438 1439 1440 1441
                dataset.set_filelist(filelist)
                exe.run(fluid.default_startup_program())
                exe.infer_from_dataset(program=fluid.default_main_program(),
                                       dataset=dataset)        
1442

1443
        """
1444 1445 1446
        return self._run_from_dataset(program, dataset, scope, thread, True,
                                      debug, fetch_list, fetch_info,
                                      print_period, fetch_handler)
1447 1448 1449 1450 1451 1452 1453 1454 1455

    def train_from_dataset(self,
                           program=None,
                           dataset=None,
                           scope=None,
                           thread=0,
                           debug=False,
                           fetch_list=None,
                           fetch_info=None,
1456 1457
                           print_period=100,
                           fetch_handler=None):
1458 1459 1460 1461 1462 1463 1464 1465
        """
        Train from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, train_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current training task.
1466

1467 1468 1469 1470
        Note: train_from_dataset will destroy all resources created within executor for each run.

        Args:
            program(Program|CompiledProgram): the program that needs to be run,
1471
                if not provided, then default_main_program (not compiled) will be used.
1472
            dataset(paddle.fluid.Dataset): dataset created outside this function,
1473 1474
                a user should provide a well-defined dataset before calling this function.
                Please check the document of Dataset if needed.
1475
            scope(Scope): the scope used to run this program, you can switch it to different scope
1476 1477 1478
                for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. Default is 0, which
                means using thread num of dataset
1479
            debug(bool): whether a user wants to run train_from_dataset 
1480 1481 1482 1483 1484
            fetch_list(Variable List): fetch variable list, each variable will be printed
                during training
            fetch_info(String List): print information for each variable, its length should be equal
                to fetch_list
            print_period(int): the number of mini-batches for each print, default is 100
1485
            fetch_handler(FetchHandler): a user define class for fetch output.
1486 1487 1488

        Returns:
            None
1489
        
1490
        Examples:
1491
        
1492 1493 1494
            .. code-block:: python

              import paddle.fluid as fluid
1495 1496

              place = fluid.CPUPlace() # you can set place = fluid.CUDAPlace(0) to use gpu
1497
              exe = fluid.Executor(place)
1498 1499
              x = fluid.layers.data(name="x", shape=[10, 10], dtype="int64")
              y = fluid.layers.data(name="y", shape=[1], dtype="int64", lod_level=1)
1500 1501
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_use_var([x, y])
1502 1503
              dataset.set_thread(1)
              filelist = [] # you should set your own filelist, e.g. filelist = ["dataA.txt"]
1504 1505 1506 1507
              dataset.set_filelist(filelist)
              exe.run(fluid.default_startup_program())
              exe.train_from_dataset(program=fluid.default_main_program(),
                                     dataset=dataset)
1508 1509

        """
1510 1511 1512
        return self._run_from_dataset(program, dataset, scope, thread, False,
                                      debug, fetch_list, fetch_info,
                                      print_period, fetch_handler)