pooling.py 78.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO: define pooling functions
16 17
from ...fluid.layers import utils, LayerHelper
from ...tensor.manipulation import unsqueeze, squeeze
18
from ...fluid.data_feeder import check_type, check_variable_and_dtype
W
wanghuancoder 已提交
19
from paddle import _C_ops
Z
zhiboniu 已提交
20
from paddle import in_dynamic_mode
F
From00 已提交
21 22
from paddle.fluid.framework import _in_legacy_dygraph
from paddle.fluid.framework import in_dygraph_mode
23

24 25
__all__ = []

26

27 28 29 30 31
def _is_list_or_tuple(input):
    return isinstance(input, (list, tuple))


def _check_input(x, dimension):
32
    if len(x.shape) != dimension:
33 34 35
        raise ValueError(
            "Excepted Input X is {}-D tensor, but received {}-D {}".format(
                dimension, len(x.shape), type(x)))
36 37


38
def _check_instance(x, x_name, types=(int, float)):
39 40 41 42 43 44

    if not isinstance(x, types):
        raise ValueError("Excepted {} type for {} but received type: {}. ".
                         format(types, x_name, type(x)))


D
Double_V 已提交
45 46 47 48 49 50 51 52 53 54 55
def _check_value_limitation(x, x_name, min_limit=1e-3):
    def _check_value(x, x_name, min_limit=1e-3):
        if isinstance(x, int) and min_limit is not None and x < min_limit:
            raise ValueError(
                "Excepted the input {} to be greater than {} but received x: {}. ".
                format(x_name, min_limit, x))

    for ele in x:
        _check_value(ele, x_name)


56 57 58
def _zero_padding_in_batch_and_channel(padding, channel_last):
    if channel_last:
        return list(padding[0]) == [0, 0] and list(padding[-1]) == [0, 0]
59
    else:
60
        return list(padding[0]) == [0, 0] and list(padding[1]) == [0, 0]
61 62


63 64 65 66
def _exclude_padding_in_batch_and_channel(padding, channel_last):
    padding_ = padding[1:-1] if channel_last else padding[2:]
    padding_ = [elem for pad_a_dim in padding_ for elem in pad_a_dim]
    return padding_
67 68


69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
def _channel_last(data_format, num_dims):
    if num_dims == 1:
        if data_format not in ['NCL', 'NLC']:
            raise ValueError(
                "Attr(data_format) should be 'NCL' or 'NLC'. Received "
                "Attr(data_format): %s" % str(data_format))
        else:
            return True if data_format == "NLC" else False
    if num_dims == 2:
        if data_format not in ['NCHW', 'NHWC']:
            raise ValueError(
                "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
                "Attr(data_format): %s" % str(data_format))
        else:
            return True if data_format == "NHWC" else False
    if num_dims == 3:
        if data_format not in ['NCDHW', 'NDHWC']:
            raise ValueError(
                "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
                "Attr(data_format): %s" % str(data_format))
        else:
            return True if data_format == "NDHWC" else False
91 92


93 94 95 96 97 98 99 100 101
def _update_padding_nd(padding, num_dims, channel_last=False, ceil_mode=False):
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '{}'. It can only be 'SAME' or 'VALID'.".
                format(padding))
        if padding == "VALID":
            if ceil_mode != False:
102
                raise ValueError(
103 104 105 106 107 108 109 110 111 112 113 114 115 116
                    "When Attr(padding) is \"VALID\", Attr(ceil_mode) must be False. "
                    "Received ceil_mode: True.")

            padding_algorithm = "VALID"
            padding = [0] * num_dims
        else:
            padding_algorithm = "SAME"
            padding = [0] * num_dims
    elif _is_list_or_tuple(padding):
        # for padding like
        # [(pad_before, pad_after), (pad_before, pad_after), ...]
        # padding for batch_dim and channel_dim included
        if len(padding) == 2 + num_dims and _is_list_or_tuple(padding[0]):
            if not _zero_padding_in_batch_and_channel(padding, channel_last):
117
                raise ValueError(
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
                    "Non-zero padding({}) in the batch or channel dimensions "
                    "is not supported.".format(padding))
            padding_algorithm = "EXPLICIT"
            padding = _exclude_padding_in_batch_and_channel(padding,
                                                            channel_last)
            if utils._is_symmetric_padding(padding, num_dims):
                padding = padding[0::2]
        # for padding like [pad_before, pad_after, pad_before, pad_after, ...]
        elif len(padding) == 2 * num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
            padding = utils.convert_to_list(padding, 2 * num_dims, 'padding')
            if utils._is_symmetric_padding(padding, num_dims):
                padding = padding[0::2]
        # for padding like [pad_d1, pad_d2, ...]
        elif len(padding) == num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
            padding = utils.convert_to_list(padding, num_dims, 'padding')
        else:
            raise ValueError("Invalid padding: {}".format(padding))
    # for integer padding
138
    else:
139 140 141 142
        padding_algorithm = "EXPLICIT"
        padding = utils.convert_to_list(padding, num_dims, 'padding')
    return padding, padding_algorithm

143

144 145 146 147 148 149 150 151 152 153
def _expand_low_nd_padding(padding):
    #1d to 2d fake input
    if len(padding) == 2:
        padding = [0] * 2 + padding
    elif len(padding) == 1:
        padding = [0] + padding
    else:
        raise ValueError(
            "The size of padding's dimmention should be 1 or 2. But got padding={}".
            format(padding))
154 155 156 157 158 159 160
    return padding


def avg_pool1d(x,
               kernel_size,
               stride=None,
               padding=0,
161
               exclusive=True,
162 163
               ceil_mode=False,
               name=None):
D
Double_V 已提交
164
    """
165 166
    This API implements average pooling 1d operation,
    See more details in :ref:`api_nn_pooling_AvgPool1d` .
167 168 169 170

    Args:
        x (Tensor): The input tensor of pooling operator which is a 3-D tensor with
                          shape [N, C, L]. where `N` is batch size, `C` is the number of channels,
171
                          `L` is the length of the feature. The data type is float32 or float64.
172
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
173
            it must contain an integer.
174
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
175 176 177 178 179 180 181 182
            it must contain an integer.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
            4. A list[int] or tuple(int) whose length is 2. It has the form [pad_before, pad_after].
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
183
        exclusive (bool): Whether to exclude padding points in average pooling
184
                          mode, default is `True`.
185
        ceil_mode (bool): ${ceil_mode_comment}Whether to use the ceil function to calculate output height and width.
186
            If it is set to False, the floor function will be used. The default value is False.
187 188 189 190 191 192 193 194 195
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.

    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
196 197
        ValueError: If `padding` is a list or tuple but its length is greater than 1.
        ShapeError: If the input is not a 3-D tensor.
198 199 200 201
        ShapeError: If the output's shape calculated is not greater than 0.

    Examples:
        .. code-block:: python
C
Chen Long 已提交
202 203 204 205 206 207 208 209
          
            import paddle
            import paddle.nn.functional as F
            import numpy as np

            data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
            out = F.avg_pool1d(data, kernel_size=2, stride=2, padding=0)
            # out shape: [1, 3, 16]
210 211 212
    """
    """NCL to NCHW"""
    data_format = "NCHW"
Z
zhiboniu 已提交
213
    if not in_dynamic_mode():
214
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'avg_pool1d')
215
    _check_input(x, 3)
216
    x = unsqueeze(x, [2])
217
    kernel_size = utils.convert_to_list(kernel_size, 1, 'kernel_size')
218 219 220 221 222 223 224
    kernel_size = [1] + kernel_size
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 1, 'pool_stride')
        stride = [1] + stride

D
Double_V 已提交
225 226 227
    _check_value_limitation(kernel_size, "kernel_size", min_limit=1e-3)
    _check_value_limitation(stride, "stride", min_limit=1e-3)

228 229 230
    channel_last = _channel_last("NCL", 1)
    padding, padding_algorithm = _update_padding_nd(
        padding, 1, channel_last=channel_last, ceil_mode=ceil_mode)
231

232 233
    # use 2d to implenment 1d should expand padding in advance.
    padding = _expand_low_nd_padding(padding)
234

Z
zhiboniu 已提交
235
    if in_dynamic_mode():
W
wanghuancoder 已提交
236
        output = _C_ops.pool2d(
237 238
            x, 'pooling_type', 'avg', 'ksize', kernel_size, 'global_pooling',
            False, 'strides', stride, 'paddings', padding, 'padding_algorithm',
239
            padding_algorithm, 'use_cudnn', True, 'ceil_mode', ceil_mode,
D
Double_V 已提交
240
            'use_mkldnn', False, 'exclusive', exclusive, 'data_format',
241
            data_format)
242 243 244 245
        return squeeze(output, [2])

    op_type = 'pool2d'
    helper = LayerHelper(op_type, **locals())
246
    dtype = helper.input_dtype(input_param_name='x')
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
    pool_out = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type=op_type,
        inputs={"X": x},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": 'avg',
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
263
            "exclusive": exclusive,
264 265 266 267 268 269
            "data_format": data_format,
        })

    return squeeze(pool_out, [2])


270
def avg_pool2d(x,
271 272 273 274
               kernel_size,
               stride=None,
               padding=0,
               ceil_mode=False,
275
               exclusive=True,
276 277
               divisor_override=None,
               data_format="NCHW",
278 279
               name=None):
    """
280 281
    This API implements average pooling 2d operation.
    See more details in :ref:`api_nn_pooling_AvgPool2d` .
D
Double_V 已提交
282

283
    Args:
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
        x (Tensor): The input tensor of pooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` or
                          `"NHWC"`, where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
        kernel_size (int|list|tuple): The pool kernel size. If it is a tuple or list,
            it must contain two integers, (kernel_size_Height, kernel_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
        stride (int|list|tuple): The stride size. If it is a tuple or list,
            it must contain two integers, (stride_Height, stride_Width).
            Otherwise, the stride size will be a square of an int.

        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 2, [pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 4. [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        ceil_mode (bool): when True, will use `ceil` instead of `floor` to compute the output shape
304
        exclusive (bool): Whether to exclude padding points in average pooling
305 306 307 308 309
                          mode, default is `true`.
        divisor_override (float): if specified, it will be used as divisor, otherwise kernel_size will be used. Default None.
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
                        The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_height, input_width]`.
310 311 312
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
C
Chen Long 已提交
313
    
314 315
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
C
Chen Long 已提交
316
    
317 318 319 320
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
C
Chen Long 已提交
321
    
322 323
    Examples:
        .. code-block:: python
C
Chen Long 已提交
324 325 326 327 328 329 330 331 332 333 334
          
            import paddle
            import paddle.nn.functional as F
            import numpy as np
            
            # avg pool2d
            x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32]).astype(np.float32))
            out = F.avg_pool2d(x,
                            kernel_size=2,
                            stride=2, padding=0)
            # out.shape [1, 3, 16, 16]
335
    """
336
    kernel_size = utils.convert_to_list(kernel_size, 2, 'pool_size')
337 338 339
    if stride is None:
        stride = kernel_size
    else:
340
        stride = utils.convert_to_list(stride, 2, 'pool_stride')
341

D
Double_V 已提交
342 343 344
    _check_value_limitation(kernel_size, "kernel_size", min_limit=1e-3)
    _check_value_limitation(stride, "stride", min_limit=1e-3)

345 346 347
    channel_last = _channel_last(data_format, 2)
    padding, padding_algorithm = _update_padding_nd(
        padding, 2, channel_last, ceil_mode=ceil_mode)
348

F
From00 已提交
349 350 351 352 353 354 355 356 357 358 359 360
    if in_dygraph_mode() or _in_legacy_dygraph():
        if in_dygraph_mode():
            output = _C_ops.final_state_pool2d(
                x, kernel_size, stride, padding, ceil_mode, exclusive,
                data_format, 'avg', False, False, padding_algorithm)
        else:
            output = _C_ops.pool2d(
                x, 'pooling_type', 'avg', 'ksize', kernel_size,
                'global_pooling', False, 'padding_algorithm', padding_algorithm,
                'strides', stride, 'paddings', padding, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive',
                exclusive, 'data_format', data_format)
361 362 363 364 365
        if divisor_override is None:
            return output
        else:
            _check_instance(divisor_override, "divisor_override")
            return output * (kernel_size[0] * kernel_size[1]) / divisor_override
366

367
    op_type = 'pool2d'
368
    helper = LayerHelper(op_type, **locals())
369
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'avg_pool2d')
370
    dtype = helper.input_dtype(input_param_name='x')
371 372 373 374 375
    pool_out = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type=op_type,
        inputs={"X": x},
376
        outputs={"Out": pool_out},
377
        attrs={
378
            "pooling_type": "avg",
379 380 381 382 383 384 385 386
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
387
            "exclusive": exclusive,
388 389 390
            "data_format": data_format,
        })

391 392 393 394 395
    if divisor_override is None:
        return pool_out
    else:
        _check_instance(divisor_override, "divisor_override")
        return pool_out * (kernel_size[0] * kernel_size[1]) / divisor_override
396 397


398 399 400 401 402
def avg_pool3d(x,
               kernel_size,
               stride=None,
               padding=0,
               ceil_mode=False,
403
               exclusive=True,
404 405 406
               divisor_override=None,
               data_format="NCDHW",
               name=None):
407
    """
408 409
    This API implements average pooling 3d operation.
    See more details in :ref:`api_nn_pooling_AvgPool3d` .
410 411

    Args:
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
        x (Tensor): The input tensor of pooling operator, which is a 5-D tensor with
                          shape [N, C, D, H, W], where `N` represents the batch size, `C` represents
                          the number of channels, `D`, `H` and `W` represent the depth, height and width of the feature respectively.
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size
            is a tuple or list, it must contain three integers,
            (kernel_size_Depth, kernel_size_Height, kernel_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain three integers, [stride_Depth, stride_Height, stride_Width).
            Otherwise, the pool stride size will be a cube of an int.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        ceil_mode (bool): ${ceil_mode_comment}
430
        exclusive (bool): Whether to exclude padding points in average pooling
431 432 433 434 435
                          mode, default is True.
        divisor_override (int|float) if specified, it will be used as divisor, otherwise kernel_size will be used. Default None.
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
436
        name(str, optional): For detailed information, please refer
437 438
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
C
Chen Long 已提交
439
    
440
    Returns:
441
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
C
Chen Long 已提交
442
    
443
    Raises:
444 445 446
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
C
Chen Long 已提交
447
    
448 449
    Examples:
        .. code-block:: python
C
Chen Long 已提交
450
          
451
          import paddle
C
Chen Long 已提交
452 453
          import numpy as np

454 455 456 457 458 459 460 461
          x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32, 32]).astype(np.float32))
          # avg pool3d
          out = paddle.nn.functional.avg_pool3d(
                                            x,
                                            kernel_size = 2,
                                            stride = 2,
                                            padding=0)
          # out.shape: [1, 3, 16, 16, 16]
462
    """
463 464 465 466 467
    kernel_size = utils.convert_to_list(kernel_size, 3, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 3, 'pool_stride')
468

469 470 471
    channel_last = _channel_last(data_format, 3)
    padding, padding_algorithm = _update_padding_nd(
        padding, 3, channel_last=channel_last, ceil_mode=ceil_mode)
472

D
Double_V 已提交
473 474 475
    _check_value_limitation(kernel_size, "kernel_size", min_limit=1e-3)
    _check_value_limitation(stride, "stride", min_limit=1e-3)

F
From00 已提交
476 477 478 479 480 481 482 483 484 485 486 487
    if in_dygraph_mode() or _in_legacy_dygraph():
        if in_dygraph_mode():
            output = _C_ops.final_state_pool3d(
                x, kernel_size, stride, padding, ceil_mode, exclusive,
                data_format, 'avg', False, False, padding_algorithm)
        if _in_legacy_dygraph():
            output = _C_ops.pool3d(
                x, 'pooling_type', 'avg', 'ksize', kernel_size, 'strides',
                stride, 'paddings', padding, 'global_pooling', False,
                'padding_algorithm', padding_algorithm, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive',
                exclusive, 'data_format', data_format)
488 489 490 491 492 493
        if divisor_override is None:
            return output
        else:
            _check_instance(divisor_override, "divisor_override")
            return output * (kernel_size[0] * kernel_size[1] *
                             kernel_size[2]) / divisor_override
494

495 496
    op_type = "pool3d"
    helper = LayerHelper(op_type, **locals())
497
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool3d')
498
    dtype = helper.input_dtype(input_param_name='x')
499 500
    pool_out = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out}
501 502

    helper.append_op(
503
        type=op_type,
504 505 506
        inputs={"X": x},
        outputs=outputs,
        attrs={
507 508 509 510 511 512 513 514 515
            "pooling_type": 'avg',
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
516
            "exclusive": exclusive,
517
            "data_format": data_format,
518 519
        })

520 521 522 523 524 525
    if divisor_override is None:
        return pool_out
    else:
        _check_instance(divisor_override, "divisor_override")
        return pool_out * (kernel_size[0] * kernel_size[1] *
                           kernel_size[2]) / divisor_override
526 527


528
def max_pool1d(x,
529 530 531
               kernel_size,
               stride=None,
               padding=0,
532
               return_mask=False,
533 534 535
               ceil_mode=False,
               name=None):
    """
536 537
    This API implements max pooling 1d opereation.
    See more details in :ref:`api_nn_pooling_MaxPool1d` .
538 539

    Args:
540 541 542
        x (Tensor): The input tensor of pooling operator which is a 3-D tensor with
                          shape [N, C, L], where `N` is batch size, `C` is the number of channels,
                          `L` is the length of the feature. The data type if float32 or float64.
543
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
544
            it must contain an integer.
545
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
546 547 548 549 550 551 552 553
            it must contain an integer.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An integer, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
            4. A list[int] or tuple(int) whose length is 2. It has the form [pad_before, pad_after].
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
554
        return_mask (bool): Whether return the max indices along with the outputs. default is `False`.
555 556
        ceil_mode (bool): Whether to use the ceil function to calculate output height and width. False is the default.
            If it is set to False, the floor function will be used. Default False.
557 558 559 560 561
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
562

563 564 565
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
566
        ShapeError: If the input is not a 3-D tensor.
567
        ShapeError: If the output's shape calculated is not greater than 0.
568

569 570
    Examples:
        .. code-block:: python
571

572 573
          import paddle
          import paddle.nn.functional as F
C
Chen Long 已提交
574 575
          import numpy as np

576 577 578
          data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
          pool_out = F.max_pool1d(data, kernel_size=2, stride=2, padding=0)
          # pool_out shape: [1, 3, 16]
579
          pool_out, indices = F.max_pool1d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
580
          # pool_out shape: [1, 3, 16],  indices shape: [1, 3, 16]
581
    """
582 583
    """NCL to NCHW"""
    data_format = "NCHW"
Z
zhiboniu 已提交
584
    if not in_dynamic_mode():
585
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool1d')
586 587 588
    _check_input(x, 3)
    x = unsqueeze(x, [2])
    kernel_size = [1] + utils.convert_to_list(kernel_size, 1, 'pool_size')
589 590 591
    if stride is None:
        stride = kernel_size
    else:
592
        stride = [1] + utils.convert_to_list(stride, 1, 'pool_stride')
593

594 595
    padding, padding_algorithm = _update_padding_nd(
        padding, 1, ceil_mode=ceil_mode)
596

597 598
    # use 2d to implenment 1d should expand padding in advance.
    padding = _expand_low_nd_padding(padding)
599

F
From00 已提交
600 601 602 603 604 605 606 607 608 609 610 611 612 613
    if in_dygraph_mode():
        if return_mask:
            pool_out = _C_ops.final_state_max_pool2d_with_index(
                x, kernel_size, stride, padding, False, False)
            return (squeeze(pool_out[0], [2]),
                    squeeze(pool_out[1],
                            [2])) if return_mask else squeeze(pool_out[0], [2])
        else:
            pool_out = _C_ops.final_state_pool2d(
                x, kernel_size, stride, padding, ceil_mode, True, data_format,
                'max', False, False, padding_algorithm)
            return squeeze(pool_out, [2])

    if _in_legacy_dygraph():
614
        if return_mask:
W
wanghuancoder 已提交
615
            pool_out = _C_ops.max_pool2d_with_index(
D
Double_V 已提交
616 617 618 619 620
                x, 'ksize', kernel_size, 'global_pooling', False, 'strides',
                stride, 'paddings', padding, 'padding_algorithm',
                padding_algorithm, 'use_cudnn', True, 'ceil_mode', ceil_mode,
                'use_mkldnn', False, 'exclusive', True, 'data_format',
                data_format)
621 622 623
            return (squeeze(pool_out[0], [2]),
                    squeeze(pool_out[1],
                            [2])) if return_mask else squeeze(pool_out[0], [2])
D
Double_V 已提交
624
        else:
W
wanghuancoder 已提交
625
            pool_out = _C_ops.pool2d(
D
Double_V 已提交
626 627 628 629 630 631 632
                x, 'pooling_type', 'max', 'ksize', kernel_size,
                'global_pooling', False, 'padding_algorithm', padding_algorithm,
                'strides', stride, 'paddings', padding, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
                'data_format', data_format)
            return squeeze(pool_out, [2])

633
    op_type = 'max_pool2d_with_index' if return_mask else "pool2d"
634
    helper = LayerHelper(op_type, **locals())
635
    dtype = helper.input_dtype(input_param_name='x')
636
    pool_out = helper.create_variable_for_type_inference(dtype)
637
    mask = helper.create_variable_for_type_inference('int32')
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
    outputs = {"Out": pool_out, "Mask": mask}

    helper.append_op(
        type=op_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": 'max',
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
            "exclusive": True,
            "data_format": data_format,
        })

658
    return (squeeze(pool_out, [2]),
659
            squeeze(mask, [2])) if return_mask else squeeze(pool_out, [2])
660 661


662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
def _unpool_output_size(x, kernel_size, stride, padding, output_size):
    input_size = x.shape
    default_size = []
    for d in range(len(kernel_size)):
        default_size.append((input_size[-len(kernel_size) + d] - 1) * stride[d]
                            + kernel_size[d] - 2 * padding[d])
    if output_size is None:
        ret = default_size
    else:
        if len(output_size) == len(kernel_size) + 2:
            output_size = output_size[2:]
        if len(output_size) != len(kernel_size):
            raise ValueError(
                "output_size should be a sequence containing "
                "{} or {} elements, but it has a length of '{}'".format(
                    len(kernel_size), len(kernel_size) + 2, len(output_size)))
        for d in range(len(kernel_size)):
            min_size = default_size[d] - stride[d]
            max_size = default_size[d] + stride[d]
            if not (min_size < output_size[d] < max_size):
                raise ValueError(
                    'invalid output_size "{}" (dim {} must be between {} and {})'.
                    format(output_size, d, min_size, max_size))

        ret = output_size
    return ret


690 691 692 693 694 695 696 697
def max_unpool1d(x,
                 indices,
                 kernel_size,
                 stride=None,
                 padding=0,
                 data_format="NCL",
                 output_size=None,
                 name=None):
698
    r"""
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
    This API implements max unpooling 1d opereation.
    `max_unpool1d` accepts the output of `max_pool1d` as input, 
    including the indices of the maximum value and calculate the partial inverse. 
    All non-maximum values ​​are set to zero.

    - Input: :math:`(N, C, L_{in})`
    - Output: :math:`(N, C, L_{out})`, where
    
    .. math::
        L_{out} = (L_{in} - 1) * stride - 2 * padding + kernel\_size

    or as given by :attr:`output_size` in the call operator.


    Args:
        x (Tensor): The input tensor of unpooling operator which is a 3-D tensor with
                          shape [N, C, L]. The format of input tensor is `"NCL"`, 
                          where `N` is batch size, `C` is the number of channels, `L` is
                          the length of the feature. The data type is float32 or float64.
        indices (Tensor): The indices given out by maxpooling1d which is a 3-D tensor with
                          shape [N, C, L]. The format of input tensor is `"NCL"` , 
                          where `N` is batch size, `C` is the number of channels, `L` is
                          the length of the featuree. The data type is float32 or float64.
        kernel_size (int|list|tuple): The unpool kernel size. If unpool kernel size is a tuple or list,
            it must contain an integer.
        stride (int|list|tuple): The unpool stride size. If unpool stride size is a tuple or list,
            it must contain an integer.
        padding (int | tuple): Padding that was added to the input.
        output_size(list|tuple, optional): The target output size. If output_size is not specified, 
                           the actual output shape will be automatically calculated by (input_shape,
                           kernel_size, stride, padding).
        data_format (string): The data format of the input and output data.
                        The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_length]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.

    Returns:
        Tensor: The output tensor of unpooling result. 

    Examples:
        .. code-block:: python
        
            import paddle
            import paddle.nn.functional as F

            data = paddle.rand(shape=[1, 3, 16])
            pool_out, indices = F.max_pool1d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
            # pool_out shape: [1, 3, 8],  indices shape: [1, 3, 8]
            unpool_out = F.max_unpool1d(pool_out, indices, kernel_size=2, padding=0)
            # unpool_out shape: [1, 3, 16]

    """
    """NCL to NCHW"""
    if data_format not in ["NCL"]:
        raise ValueError("Attr(data_format) should be 'NCL'. Received "
                         "Attr(data_format): %s." % str(data_format))
    data_format = "NCHW"
    x = unsqueeze(x, [2])
    indices = unsqueeze(indices, [2])
    kernel_size = [1] + utils.convert_to_list(kernel_size, 1, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = [1] + utils.convert_to_list(stride, 1, 'pool_stride')
    padding, padding_algorithm = _update_padding_nd(padding, 1)
    # use 2d to implenment 1d should expand padding in advance.
    padding = _expand_low_nd_padding(padding)

    output_size = _unpool_output_size(x, kernel_size, stride, padding,
                                      output_size)

Z
zhiboniu 已提交
772
    if in_dynamic_mode():
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
        output = _C_ops.unpool(x, indices, 'unpooling_type', 'max', 'ksize',
                               kernel_size, 'strides', stride, 'paddings',
                               padding, "output_size", output_size,
                               "data_format", data_format)
        return squeeze(output, [2])

    op_type = "unpool"
    helper = LayerHelper(op_type, **locals())
    dtype = helper.input_dtype(input_param_name="x")
    unpool_out = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type=op_type,
        inputs={"X": x,
                "Indices": indices},
        outputs={"Out": unpool_out},
        attrs={
            "unpooling_type": "max",
            "ksize": kernel_size,
            "strides": stride,
            "paddings": padding,
            "output_size": output_size
        })
    return squeeze(unpool_out, [2])


799 800 801 802 803 804 805 806
def max_unpool2d(x,
                 indices,
                 kernel_size,
                 stride=None,
                 padding=0,
                 data_format="NCHW",
                 output_size=None,
                 name=None):
807
    r"""
808
    This API implements max unpooling 2d opereation.
809
    See more details in :ref:`api_nn_pooling_MaxUnPool2D` .
810

811 812

    Args:
813 814 815
        x (Tensor): The input tensor of unpooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"`, 
                          where `N` is batch size, `C` is the number of channels,
816 817
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
818 819 820 821 822 823 824 825 826 827 828 829 830 831
        indices (Tensor): The indices given out by maxpooling2d which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` , 
                          where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
        kernel_size (int|list|tuple): The unpool kernel size. If unpool kernel size is a tuple or list,
            it must contain an integer.
        stride (int|list|tuple): The unpool stride size. If unpool stride size is a tuple or list,
            it must contain an integer.
        kernel_size (int|tuple): Size of the max unpooling window.
        padding (int | tuple): Padding that was added to the input.
        output_size(list|tuple, optional): The target output size. If output_size is not specified, 
                           the actual output shape will be automatically calculated by (input_shape,
                           kernel_size, padding).
832 833 834
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
835

836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858

        - Input: :math:`(N, C, H_{in}, W_{in})`
        - Output: :math:`(N, C, H_{out}, W_{out})`, where

          .. math::
            H_{out} = (H_{in} - 1) \times \text{stride[0]} - 2 \times \text{padding[0]} + \text{kernel\_size[0]}

          .. math::
            W_{out} = (W_{in} - 1) \times \text{stride[1]} - 2 \times \text{padding[1]} + \text{kernel\_size[1]}

          or as given by :attr:`output_size` in the call operator

        Returns:
            Tensor: The output tensor of unpooling result. 

        Raises:
            ValueError: If the input is not a 4-D tensor.
            ValueError: If indeces shape is not equal input shape.
            

        Examples:
            .. code-block:: python
          
C
Chen Long 已提交
859 860
            import paddle
            import paddle.nn.functional as F
861

862
            data = paddle.rand(shape=[1,1,6,6])
863 864 865 866 867 868 869 870 871
            pool_out, indices = F.max_pool2d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
            # pool_out shape: [1, 1, 3, 3],  indices shape: [1, 1, 3, 3]
            unpool_out = F.max_unpool2d(pool_out, indices, kernel_size=2, padding=0)
            # unpool_out shape: [1, 1, 6, 6]

            # specify a different output size than input size 
            unpool_out = F.max_unpool2d(pool_out, indices, kernel_size=2, padding=0, output_size=[7,7])
            # unpool_out shape: [1, 1, 7, 7] 

872 873
    """
    kernel_size = utils.convert_to_list(kernel_size, 2, 'pool_size')
874 875 876 877 878 879 880 881 882 883 884 885 886
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 2, 'pool_stride')
    padding = utils.convert_to_list(padding, 2, 'padding')

    if data_format not in ["NCHW"]:
        raise ValueError("Attr(data_format) should be 'NCHW'. Received "
                         "Attr(data_format): %s." % str(data_format))

    output_size = _unpool_output_size(x, kernel_size, stride, padding,
                                      output_size)

Z
zhiboniu 已提交
887
    if in_dynamic_mode():
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
        output = _C_ops.unpool(x, indices, 'unpooling_type', 'max', 'ksize',
                               kernel_size, 'strides', stride, 'paddings',
                               padding, "output_size", output_size,
                               "data_format", data_format)
        return output

    op_type = "unpool"
    helper = LayerHelper(op_type, **locals())
    dtype = helper.input_dtype(input_param_name="x")
    unpool_out = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type=op_type,
        inputs={"X": x,
                "Indices": indices},
        outputs={"Out": unpool_out},
        attrs={
            "unpooling_type": "max",
            "ksize": kernel_size,
            "strides": stride,
            "paddings": padding,
            "output_size": output_size
        })
    return unpool_out


914 915 916 917 918 919 920 921
def max_unpool3d(x,
                 indices,
                 kernel_size,
                 stride=None,
                 padding=0,
                 data_format="NCDHW",
                 output_size=None,
                 name=None):
922
    r"""
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
    This API implements max unpooling 3d opereation.
    `max_unpool3d` accepts the output of `max_pool3d` as input, 
    including the indices of the maximum value and calculate the partial inverse. 
    All non-maximum values ​​are set to zero.

    - Input: :math:`(N, C, D_{in}, H_{in}, W_{in})`
    - Output: :math:`(N, C, D_{out}, H_{out}, W_{out})`, where
    
    .. math::
        D_{out} = (D_{in} - 1) * stride[0] - 2 * padding[0] + kernel\_size[0]

    .. math::
        H_{out} = (H_{in} - 1) * stride[1] - 2 * padding[1] + kernel\_size[1]

    .. math::
        W_{out} = (W_{in} - 1) * stride[2] - 2 * padding[2] + kernel\_size[2]

    or as given by :attr:`output_size` in the call operator


    Args:
        x (Tensor): The input tensor of unpooling operator which is a 5-D tensor with
                          shape [N, C, D, H, W]. The format of input tensor is `"NCDHW"`, 
                          where `N` is batch size, `C` is the number of channels, `D` is
                          the depth of the feature, `H` is the height of the feature, 
                          and `W` is the width of the feature. The data type is float32 or float64.
        indices (Tensor): The indices given out by maxpooling3d which is a 5-D tensor with
                          shape [N, C, D, H, W]. The format of input tensor is `"NCDHW"` , 
                          where `N` is batch size, `C` is the number of channels, `D` is
                          the depth of the feature, `H` is the height of the feature, 
                          and `W` is the width of the feature. The data type is float32 or float64.
        kernel_size (int|list|tuple): The unpool kernel size. If unpool kernel size is a tuple or list,
            it must contain an integer.
        stride (int|list|tuple): The unpool stride size. If unpool stride size is a tuple or list,
            it must contain an integer.
        padding (int | tuple): Padding that was added to the input.
        output_size(list|tuple, optional): The target output size. If output_size is not specified, 
                           the actual output shape will be automatically calculated by (input_shape,
                           kernel_size, stride, padding).
        data_format (string): The data format of the input and output data.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.

    Returns:
        Tensor: The output tensor of unpooling result. 

    Examples:
        .. code-block:: python
        
            import paddle
            import paddle.nn.functional as F

            data = paddle.rand(shape=[1, 1, 4, 4, 6])
            pool_out, indices = F.max_pool3d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
            # pool_out shape: [1, 1, 2, 2, 3],  indices shape: [1, 1, 2, 2, 3]
            unpool_out = F.max_unpool3d(pool_out, indices, kernel_size=2, padding=0)
            # unpool_out shape: [1, 1, 4, 4, 6]

    """
    kernel_size = utils.convert_to_list(kernel_size, 3, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 3, 'pool_stride')
    padding = utils.convert_to_list(padding, 3, 'padding')

    if data_format not in ["NCDHW"]:
        raise ValueError("Attr(data_format) should be 'NCDHW'. Received "
                         "Attr(data_format): %s." % str(data_format))

    output_size = _unpool_output_size(x, kernel_size, stride, padding,
                                      output_size)

Z
zhiboniu 已提交
999
    if in_dynamic_mode():
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
        output = _C_ops.unpool3d(x, indices, 'unpooling_type', 'max', 'ksize',
                                 kernel_size, 'strides', stride, 'paddings',
                                 padding, "output_size", output_size,
                                 "data_format", data_format)
        return output

    op_type = "unpool3d"
    helper = LayerHelper(op_type, **locals())
    dtype = helper.input_dtype(input_param_name="x")
    unpool_out = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type=op_type,
        inputs={"X": x,
                "Indices": indices},
        outputs={"Out": unpool_out},
        attrs={
            "unpooling_type": "max",
            "ksize": kernel_size,
            "strides": stride,
            "paddings": padding,
            "output_size": output_size
        })
    return unpool_out


1026 1027 1028 1029 1030 1031 1032 1033 1034
def max_pool2d(x,
               kernel_size,
               stride=None,
               padding=0,
               return_mask=False,
               ceil_mode=False,
               data_format="NCHW",
               name=None):
    kernel_size = utils.convert_to_list(kernel_size, 2, 'pool_size')
1035 1036 1037 1038 1039 1040 1041 1042 1043
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 2, 'pool_stride')

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))
1044 1045 1046 1047 1048

    channel_last = True if data_format == "NHWC" else False

    padding, padding_algorithm = _update_padding_nd(
        padding, num_dims=2, channel_last=channel_last, ceil_mode=ceil_mode)
1049

1050
    if data_format == "NHWC" and return_mask:
D
Double_V 已提交
1051
        raise ValueError(
1052
            "When setting return_mask to true, data_format must be set to NCHW in API:max_pool2d"
D
Double_V 已提交
1053 1054
        )

F
From00 已提交
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
    if in_dygraph_mode():
        if return_mask:
            output = _C_ops.final_state_max_pool2d_with_index(
                x, kernel_size, stride, padding, False, False)
            return output if return_mask else output[0]
        else:
            return _C_ops.final_state_pool2d(
                x, kernel_size, stride, padding, ceil_mode, True, data_format,
                'max', False, False, padding_algorithm)

    if _in_legacy_dygraph():
1066
        if return_mask:
W
wanghuancoder 已提交
1067
            output = _C_ops.max_pool2d_with_index(
D
Double_V 已提交
1068 1069 1070 1071 1072
                x, 'ksize', kernel_size, 'global_pooling', False, 'strides',
                stride, 'paddings', padding, 'padding_algorithm',
                padding_algorithm, 'use_cudnn', True, 'ceil_mode', ceil_mode,
                'use_mkldnn', False, 'exclusive', True, 'data_format',
                data_format)
1073
            return output if return_mask else output[0]
D
Double_V 已提交
1074
        else:
W
wanghuancoder 已提交
1075
            output = _C_ops.pool2d(
D
Double_V 已提交
1076 1077 1078 1079 1080 1081
                x, 'pooling_type', 'max', 'ksize', kernel_size,
                'global_pooling', False, 'padding_algorithm', padding_algorithm,
                'strides', stride, 'paddings', padding, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
                'data_format', data_format)
            return output
1082

1083
    op_type = 'max_pool2d_with_index' if return_mask else "pool2d"
1084
    helper = LayerHelper(op_type, **locals())
1085 1086
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'max_pool2d')
1087
    dtype = helper.input_dtype(input_param_name='x')
1088
    pool_out = helper.create_variable_for_type_inference(dtype)
1089
    mask = helper.create_variable_for_type_inference("int32")
1090
    outputs = {"Out": pool_out, "Mask": mask}
1091 1092 1093 1094

    helper.append_op(
        type=op_type,
        inputs={"X": x},
1095
        outputs=outputs,
1096
        attrs={
1097
            "pooling_type": 'max',
1098 1099 1100
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
1101
            "paddings": padding,
1102 1103 1104 1105
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
1106
            "exclusive": True,
1107 1108 1109
            "data_format": data_format,
        })

1110
    return (pool_out, mask) if return_mask else pool_out
1111 1112 1113 1114 1115 1116


def max_pool3d(x,
               kernel_size,
               stride=None,
               padding=0,
1117
               return_mask=False,
1118 1119 1120 1121
               ceil_mode=False,
               data_format="NCDHW",
               name=None):
    """
1122 1123
    This API implements max pooling 2d operation.
    See more details in :ref:`api_nn_pooling_MaxPool3d` .
1124 1125
    Args:
        x (Tensor): The input tensor of pooling operator, which is a 5-D tensor with
D
Double_V 已提交
1126
                          shape [N, C, D, H, W]. The format of input tensor is `"NCDHW"` or `"NDHWC"`, where N represents batch size, C represents the number of channels, D, H and W represent the depth, height and width of the feature respectively.
1127
        kernel_size (int|list|tuple): The pool kernel size. If the kernel size
1128
            is a tuple or list, it must contain three integers,
1129
            (kernel_size_Depth, kernel_size_Height, kernel_size_Width).
1130
            Otherwise, the pool kernel size will be the cube of an int.
1131 1132
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain three integers, [stride_Depth, stride_Height, stride_Width).
1133
            Otherwise, the pool stride size will be a cube of an int.
1134 1135 1136 1137 1138 1139 1140
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
1141
        ceil_mode (bool): ${ceil_mode_comment}
1142
        return_mask (bool): Whether to return the max indices along with the outputs. Default False. Only support "NDCHW" data_format.
1143 1144 1145 1146 1147 1148
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
C
Chen Long 已提交
1149
    
1150 1151
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
C
Chen Long 已提交
1152
    
1153 1154 1155 1156
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
C
Chen Long 已提交
1157
    
1158 1159
    Examples:
        .. code-block:: python
1160

C
Chen Long 已提交
1161 1162 1163
            import paddle
            import paddle.nn.functional as F
            import numpy as np
1164

C
Chen Long 已提交
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
            # max pool3d
            x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32, 32]).astype(np.float32))
            output = F.max_pool2d(x,
                                  kernel_size=2,
                                  stride=2, padding=0)
            output.shape [1, 3, 16, 16, 16]
            # for return_mask=True
            x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32, 32]).astype(np.float32))
            output, max_indices = paddle.nn.functional.max_pool3d(x,
                                          kernel_size = 2,
                                          stride = 2,
                                          padding=0,
                                          return_mask=True)
            # output.shape [None, 3, 16, 16, 16], max_indices.shape [None, 3, 16, 16, 16],
1179 1180 1181 1182 1183 1184 1185
    """
    kernel_size = utils.convert_to_list(kernel_size, 3, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 3, 'pool_stride')

1186
    channel_last = _channel_last(data_format, 3)
1187

1188 1189
    padding, padding_algorithm = _update_padding_nd(
        padding, 3, channel_last=channel_last, ceil_mode=ceil_mode)
1190

1191
    if data_format == "NDHWC" and return_mask:
D
Double_V 已提交
1192
        raise ValueError(
1193
            "When setting return_mask to true, data_format must be set to NCDHW in API:max_pool3d"
D
Double_V 已提交
1194 1195
        )

F
From00 已提交
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
    if in_dygraph_mode():
        if return_mask:
            output = _C_ops.final_state_max_pool3d_with_index(
                x, kernel_size, stride, padding, False, False)
            return output if return_mask else output[0]
        else:
            return _C_ops.final_state_pool3d(
                x, kernel_size, stride, padding, ceil_mode, True, data_format,
                'max', False, False, padding_algorithm)

    if _in_legacy_dygraph():
1207
        if return_mask:
W
wanghuancoder 已提交
1208
            output = _C_ops.max_pool3d_with_index(
D
Double_V 已提交
1209 1210 1211 1212 1213
                x, 'pooling_type', 'max', 'ksize', kernel_size, 'strides',
                stride, 'paddings', padding, 'global_pooling', False,
                'padding_algorithm', padding_algorithm, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
                'data_format', data_format)
1214
            return output if return_mask else output[0]
D
Double_V 已提交
1215
        else:
W
wanghuancoder 已提交
1216
            output = _C_ops.pool3d(
D
Double_V 已提交
1217 1218 1219 1220 1221 1222
                x, 'pooling_type', 'max', 'ksize', kernel_size,
                'global_pooling', False, 'padding_algorithm', padding_algorithm,
                'strides', stride, 'paddings', padding, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
                'data_format', data_format)
            return output
1223

1224
    op_type = "max_pool3d_with_index" if return_mask else "pool3d"
1225
    helper = LayerHelper(op_type, **locals())
1226
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool3d')
1227
    dtype = helper.input_dtype(input_param_name='x')
1228
    pool_out = helper.create_variable_for_type_inference(dtype)
1229
    mask = helper.create_variable_for_type_inference('int32')
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
    outputs = {"Out": pool_out, "Mask": mask}

    helper.append_op(
        type=op_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": 'max',
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
            "exclusive": False,
            "data_format": data_format,
        })

1250
    return (pool_out, mask) if return_mask else pool_out
1251 1252


1253
def adaptive_avg_pool1d(x, output_size, name=None):
1254
    """
1255 1256
    This API implements adaptive average pooling 1d operation.
    See more details in :ref:`api_nn_pooling_AdaptiveAvgPool1d` .
D
Double_V 已提交
1257

1258
    Args:
1259 1260 1261 1262
        x (Tensor): The input tensor of pooling operator, which is a 3-D tensor
                              with shape [N, C, L].  The format of input tensor is NCL,
                              where N is batch size, C is the number of channels, L is the
                              length of the feature. The data type is float32 or float64.
1263
        output_size (int): The target output size. It must be an integer.
1264
        name(str, optional): For detailed information, please refer
1265 1266
                                 to :ref:`api_guide_Name`. Usually name is no need to set and
                                 None by default.
1267
    Returns:
1268 1269
            Tensor: The output tensor of adaptive average pooling result. The data type is same
                      as input tensor.
1270
    Raises:
1271
            ValueError: 'output_size' should be an integer.
1272 1273
    Examples:
        .. code-block:: python
B
Bai Yifan 已提交
1274

1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
              # average adaptive pool1d
              # suppose input data in shape of [N, C, L], `output_size` is m or [m],
              # output shape is [N, C, m], adaptive pool divide L dimension
              # of input data into m grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(m):
              #         lstart = floor(i * L / m)
              #         lend = ceil((i + 1) * L / m)
              #         output[:, :, i] = sum(input[:, :, lstart: lend])/(lstart - lend)
              #
              import paddle
              import paddle.nn.functional as F
C
Chen Long 已提交
1289
              import numpy as np
1290

1291 1292 1293 1294 1295
              data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
              pool_out = F.adaptive_average_pool1d(data, output_size=16)
              # pool_out shape: [1, 3, 16])
    """
    pool_type = 'avg'
Z
zhiboniu 已提交
1296
    if not in_dynamic_mode():
1297 1298 1299
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'adaptive_pool2d')
        check_type(output_size, 'pool_size', (int), 'adaptive_pool1d')
1300 1301
    _check_input(x, 3)
    pool_size = [1] + utils.convert_to_list(output_size, 1, 'pool_size')
1302

1303
    x = unsqueeze(x, [2])
Z
zhiboniu 已提交
1304
    if in_dynamic_mode():
W
wanghuancoder 已提交
1305 1306
        pool_out = _C_ops.pool2d(x, 'pooling_type', pool_type, 'ksize',
                                 pool_size, 'adaptive', True)
1307
        return squeeze(pool_out, [2])
1308

1309 1310
    l_type = "pool2d"

1311
    helper = LayerHelper(l_type, **locals())
1312
    dtype = helper.input_dtype(input_param_name='x')
1313 1314
    pool_out = helper.create_variable_for_type_inference(dtype)

1315
    outputs = {"Out": pool_out}
1316
    helper.append_op(
1317
        type=l_type,
1318 1319 1320
        inputs={"X": x},
        outputs=outputs,
        attrs={
1321 1322 1323
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
1324 1325
        })

1326
    return squeeze(pool_out, [2])
1327 1328


1329 1330
def adaptive_avg_pool2d(x, output_size, data_format='NCHW', name=None):
    """
1331 1332
    This API implements adaptive average pooling 2d operation.
    See more details in :ref:`api_nn_pooling_AdaptiveAvgPool2d` .
1333 1334 1335

    Args:
        x (Tensor): The input tensor of adaptive avg pool2d operator, which is a 4-D tensor.
1336
                          The data type can be float32 or float64.
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two element, (H, W). H and W can be either a int, or None which means
            the size will be the same as that of the input.
        data_format (str): The data format of the input and output data. An optional string
            from: "NCHW", "NHWC". The default is "NCHW". When it is "NCHW", the data is stored in
            the order of: [batch_size, input_channels, input_height, input_width].
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of avg adaptive pool2d result. The data type is same as input tensor.
    Raises:
        ValueError: If `data_format` is not "NCHW" or "NHWC".
    Examples:
        .. code-block:: python
B
Bai Yifan 已提交
1352

1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
            # adaptive avg pool2d
            # suppose input data in shape of [N, C, H, W], `output_size` is [m, n],
            # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
            # of input data into m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive avg pool performs calculations as follow:
            #
            #     for i in range(m):
            #         for j in range(n):
            #             hstart = floor(i * H / m)
            #             hend = ceil((i + 1) * H / m)
            #             wstart = floor(i * W / n)
            #             wend = ceil((i + 1) * W / n)
            #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
            #
            import paddle
            import numpy as np
1370

1371 1372 1373
            input_data = np.random.rand(2, 3, 32, 32)
            x = paddle.to_tensor(input_data)
            # x.shape is [2, 3, 32, 32]
1374
            out = paddle.nn.functional.adaptive_avg_pool2d(
1375 1376
                            x = x,
                            output_size=[3, 3])
1377
            # out.shape is [2, 3, 3, 3]
1378
    """
Z
zhiboniu 已提交
1379
    if not in_dynamic_mode():
1380
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
1381
                                 'adaptive_avg_pool2d')
1382
        check_type(data_format, 'data_format', str, 'adaptive_avg_pool2d')
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    if data_format == "NCHW":
        in_h, in_w = x.shape[2:4]
    else:
        in_h, in_w = x.shape[1:3]

    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
1397
        output_size = list(output_size)
1398 1399 1400 1401 1402
        if output_size[0] == None:
            output_size[0] = in_h
        if output_size[1] == None:
            output_size[1] = in_w

F
From00 已提交
1403 1404 1405 1406 1407 1408 1409 1410 1411
    if in_dygraph_mode():
        return _C_ops.final_state_pool2d(x, output_size, [1, 1], [0, 0], False,
                                         True, data_format, 'avg', False, True,
                                         "EXPLICIT")

    if _in_legacy_dygraph():
        return _C_ops.pool2d(x, 'pooling_type', 'avg', 'ksize', output_size,
                             'global_pooling', False, 'adaptive', True,
                             'data_format', data_format)
1412 1413 1414 1415

    l_type = 'pool2d'

    helper = LayerHelper(l_type, **locals())
1416
    dtype = helper.input_dtype(input_param_name='x')
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}

    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": "avg",
            "ksize": output_size,
            "adaptive": True,
            "data_format": data_format,
        })

    return pool_out


def adaptive_avg_pool3d(x, output_size, data_format='NCDHW', name=None):
    """
1437 1438
    This API implements adaptive average pooling 3d operation.
    See more details in :ref:`api_nn_pooling_AdaptiveAvgPool3d` .
1439 1440 1441

    Args:
        x (Tensor): The input tensor of adaptive avg pool3d operator, which is a 5-D tensor.
1442
                          The data type can be float32, float64.
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain three elements, (D, H, W). D, H and W can be either a int, or None which means
            the size will be the same as that of the input.
        data_format (str): The data format of the input and output data. An optional string
            from: "NCDHW", "NDHWC". The default is "NCDHW". When it is "NCDHW", the data is stored in
            the order of: [batch_size, input_channels, input_depth, input_height, input_width].
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of avg adaptive pool3d result. The data type is same as input tensor.
    Raises:
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
    Examples:
        .. code-block:: python
B
Bai Yifan 已提交
1458

1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
            # adaptive avg pool3d
            # suppose input data in shape of [N, C, D, H, W], `output_size` is [l, m, n],
            # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
            # of input data into l * m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive avg pool performs calculations as follow:
            #
            #     for i in range(l):
            #         for j in range(m):
            #             for k in range(n):
            #                 dstart = floor(i * D / l)
            #                 dend = ceil((i + 1) * D / l)
            #                 hstart = floor(j * H / m)
            #                 hend = ceil((j + 1) * H / m)
            #                 wstart = floor(k * W / n)
            #                 wend = ceil((k + 1) * W / n)
            #                 output[:, :, i, j, k] =
            #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
            import paddle
            import numpy as np
            input_data = np.random.rand(2, 3, 8, 32, 32)
            x = paddle.to_tensor(input_data)
            # x.shape is [2, 3, 8, 32, 32]
1482
            out = paddle.nn.functional.adaptive_avg_pool3d(
1483 1484
                            x = x,
                            output_size=[3, 3, 3])
1485
            # out.shape is [2, 3, 3, 3, 3]
1486
    """
Z
zhiboniu 已提交
1487
    if not in_dynamic_mode():
1488 1489
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_avg_pool3d')
1490
        check_type(data_format, 'data_format', str, 'adaptive_avg_pool3d')
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    if data_format == "NCDHW":
        in_l, in_h, in_w = x.shape[2:5]
    else:
        in_l, in_h, in_w = x.shape[1:4]

    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 3, 'output_size')
    else:
1505
        output_size = list(output_size)
1506 1507 1508 1509 1510 1511 1512
        if output_size[0] == None:
            output_size[0] = in_l
        if output_size[1] == None:
            output_size[1] = in_h
        if output_size[2] == None:
            output_size[2] = in_w

Z
zhiboniu 已提交
1513
    if in_dynamic_mode():
F
From00 已提交
1514 1515 1516
        return _C_ops.pool3d(x, 'pooling_type', 'avg', 'ksize', output_size,
                             'global_pooling', False, 'adaptive', True,
                             'data_format', data_format)
1517 1518 1519 1520

    l_type = 'pool3d'

    helper = LayerHelper(l_type, **locals())
1521
    dtype = helper.input_dtype(input_param_name='x')
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
    pool_out = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out}

    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": "avg",
            "ksize": output_size,
            "adaptive": True,
            "data_format": data_format,
        })

    return pool_out
1537 1538


1539
def adaptive_max_pool1d(x, output_size, return_mask=False, name=None):
1540 1541 1542 1543 1544 1545 1546 1547 1548
    """
    This API implements adaptive max pooling 1d operation.
    See more details in :ref:`api_nn_pooling_AdaptiveMaxPool1d` .

    Args:
        x (Tensor): The input tensor of pooling operator, which is a 3-D tensor
                              with shape [N, C, L].  The format of input tensor is NCL,
                              where N is batch size, C is the number of channels, L is the
                              length of the feature. The data type is float32 or float64.
1549
        output_size (int): The pool kernel size. The value should be an integer.
1550
        return_mask (bool): If true, the index of max pooling point will be returned along
1551 1552 1553 1554 1555 1556 1557 1558
                with outputs. It cannot be set in average pooling type. Default False.
        name(str, optional): For detailed information, please refer
                                 to :ref:`api_guide_Name`. Usually name is no need to set and
                                 None by default.
    Returns:
            Tensor: The output tensor of adaptive pooling result. The data type is same
                      as input tensor.
    Raises:
1559
            ValueError: 'output_size' should be an integer.
1560 1561
    Examples:
        .. code-block:: python
1562

1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
              # max adaptive pool1d
              # suppose input data in shape of [N, C, L], `output_size` is m or [m],
              # output shape is [N, C, m], adaptive pool divide L dimension
              # of input data into m grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(m):
              #         lstart = floor(i * L / m)
              #         lend = ceil((i + 1) * L / m)
              #         output[:, :, i] = max(input[:, :, lstart: lend])
              #
              import paddle
              import paddle.nn.functional as F
C
Chen Long 已提交
1577
              import numpy as np
1578

1579 1580 1581
              data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
              pool_out = F.adaptive_max_pool1d(data, output_size=16)
              # pool_out shape: [1, 3, 16])
1582
              pool_out, indices = F.adaptive_max_pool1d(data, output_size=16, return_mask=True)
1583 1584 1585
              # pool_out shape: [1, 3, 16] indices  shape: [1, 3, 16]
    """
    pool_type = 'max'
Z
zhiboniu 已提交
1586
    if not in_dynamic_mode():
1587 1588 1589 1590
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_max_pool1d')
        check_type(output_size, 'pool_size', int, 'adaptive_max_pool1d')
        check_type(return_mask, 'return_mask', bool, 'adaptive_max_pool1d')
1591 1592 1593 1594 1595
    _check_input(x, 3)

    pool_size = [1] + utils.convert_to_list(output_size, 1, 'pool_size')

    x = unsqueeze(x, [2])
Z
zhiboniu 已提交
1596
    if in_dynamic_mode():
W
wanghuancoder 已提交
1597
        pool_out = _C_ops.max_pool2d_with_index(
1598 1599
            x, 'pooling_type', pool_type, 'ksize', pool_size, 'adaptive', True)
        return (squeeze(pool_out[0], [2]), squeeze(
1600
            pool_out[1], [2])) if return_mask else squeeze(pool_out[0], [2])
1601

1602 1603
    l_type = 'max_pool2d_with_index'

1604
    helper = LayerHelper(l_type, **locals())
1605
    dtype = helper.input_dtype(input_param_name='x')
1606 1607
    pool_out = helper.create_variable_for_type_inference(dtype)

1608
    mask = helper.create_variable_for_type_inference('int32')
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
    outputs = {"Out": pool_out, "Mask": mask}

    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

    return (squeeze(pool_out, [2]),
1622
            squeeze(mask, [2])) if return_mask else squeeze(pool_out, [2])
1623 1624


1625
def adaptive_max_pool2d(x, output_size, return_mask=False, name=None):
1626 1627 1628
    """
        This operation applies a 2D adaptive max pooling on input tensor.
        See more details in :ref:`api_nn_pooling_AdaptiveMaxPool2d` .
1629

1630 1631 1632
        Args:
            x (Tensor): The input tensor of adaptive max pool2d operator, which is a 4-D tensor. The data type can be float16, float32, float64, int32 or int64.
            output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain two elements, (H, W). H and W can be either a int, or None which means the size will be the same as that of the input.
1633
            return_mask (bool): If true, the index of max pooling point will be returned along with outputs. Default False.
1634
            name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default.
1635

1636 1637
        Returns:
            Tensor: The output tensor of adaptive max pool2d result. The data type is same as input tensor.
1638

1639 1640
        Examples:
            .. code-block:: python
1641

1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
              # max adaptive pool2d
              # suppose input data in the shape of [N, C, H, W], `output_size` is [m, n]
              # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
              # of input data into m*n grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(m):
              #         for j in range(n):
              #             hstart = floor(i * H / m)
              #             hend = ceil((i + 1) * H / m)
              #             wstart = floor(i * W / n)
              #             wend = ceil((i + 1) * W / n)
              #             output[:, :, i, j] = max(input[:, :, hstart: hend, wstart: wend])
              #
              import paddle
              import numpy as np
1659

1660 1661 1662 1663 1664 1665 1666 1667
              input_data = np.random.rand(2, 3, 32, 32)
              x = paddle.to_tensor(input_data)
              # x.shape is [2, 3, 32, 32]
              out = paddle.nn.functional.adaptive_max_pool2d(
                            x = x,
                            output_size=[3, 3])
              # out.shape is [2, 3, 3, 3]
    """
Z
zhiboniu 已提交
1668
    if not in_dynamic_mode():
1669 1670
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_max_pool2d')
1671 1672
        check_type(return_mask, 'return_mask', bool, 'adaptive_max_pool2d')
        #check_type(output_size, 'pool_size', (int), 'adaptive_max_pool2d')
1673 1674 1675 1676 1677 1678
    _check_input(x, 4)

    in_h, in_w = x.shape[2:4]
    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
1679
        output_size = list(output_size)
1680 1681 1682 1683 1684
        if output_size[0] == None:
            output_size[0] = in_h
        if output_size[1] == None:
            output_size[1] = in_w

Z
zhiboniu 已提交
1685
    if in_dynamic_mode():
W
wanghuancoder 已提交
1686
        pool_out = _C_ops.max_pool2d_with_index(
1687
            x, 'pooling_type', 'max', 'ksize', output_size, 'adaptive', True)
1688
        return pool_out if return_mask else pool_out[0]
1689 1690 1691 1692

    l_type = 'max_pool2d_with_index'

    helper = LayerHelper(l_type, **locals())
1693
    dtype = helper.input_dtype(input_param_name='x')
1694 1695
    pool_out = helper.create_variable_for_type_inference(dtype)

1696
    mask = helper.create_variable_for_type_inference('int32')
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
    outputs = {"Out": pool_out, "Mask": mask}

    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": 'max',
            "ksize": output_size,
            "adaptive": True,
        })
1708
    #return (pool_out, mask) if return_mask else pool_out
1709 1710 1711
    return pool_out


1712
def adaptive_max_pool3d(x, output_size, return_mask=False, name=None):
1713 1714 1715
    """
        This operation applies a 3D adaptive max pooling on input tensor.
        See more details in :ref:`api_nn_pooling_AdaptiveMaxPool3d` .
1716

1717 1718 1719
        Args:
            x (Tensor): The input tensor of adaptive max pool3d operator, which is a 5-D tensor. The data type can be float32, float64.
            output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain three elements, (D, H, W). D, H and W can be either a int, or None which means the size will be the same as that of the input.
1720
            return_mask (bool): If true, the index of max pooling point will be returned along with outputs. Default False.
1721
            name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default.
1722

1723 1724
        Returns:
            Tensor: The output tensor of adaptive max pool3d result. The data type is same as input tensor.
1725

1726 1727
        Examples:
            .. code-block:: python
1728

1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
              # adaptive max pool3d
              # suppose input data in the shape of [N, C, D, H, W], `output_size` is [l, m, n]
              # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
              # of input data into m*n grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(l):
              #         for j in range(m):
              #             for k in range(n):
              #                 dstart = floor(i * D / l)
              #                 dend = ceil((i + 1) * D / l)
              #                 hstart = floor(i * H / m)
              #                 hend = ceil((i + 1) * H / m)
              #                 wstart = floor(i * W / n)
              #                 wend = ceil((i + 1) * W / n)
              #             output[:, :, i, j, k] = max(input[:, :, dstart: dend, hstart: hend, wstart: wend])
              #
              import paddle
              import numpy as np
1749

1750 1751 1752 1753 1754 1755 1756 1757 1758
              input_data = np.random.rand(2, 3, 8, 32, 32)
              x = paddle.to_tensor(input_data)
              # x.shape is [2, 3, 8, 32, 32]
              out = paddle.nn.functional.adaptive_max_pool3d(
                            x = x,
                            output_size=[3, 3, 3])
              # out.shape is [2, 3, 3, 3, 3]
    """

Z
zhiboniu 已提交
1759
    if not in_dynamic_mode():
1760 1761
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_max_pool3d')
1762 1763
        check_type(return_mask, 'return_mask', bool, 'adaptive_max_pool3d')
        #check_type(output_size, 'pool_size', (int), 'adaptive_max_pool3d')
1764 1765 1766 1767 1768 1769
    _check_input(x, 5)

    in_l, in_h, in_w = x.shape[2:5]
    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 3, 'output_size')
    else:
1770
        output_size = list(output_size)
1771 1772 1773 1774 1775 1776 1777
        if output_size[0] == None:
            output_size[0] = in_l
        if output_size[1] == None:
            output_size[1] = in_h
        if output_size[2] == None:
            output_size[2] = in_w

Z
zhiboniu 已提交
1778
    if in_dynamic_mode():
W
wanghuancoder 已提交
1779
        pool_out = _C_ops.max_pool3d_with_index(
1780
            x, 'pooling_type', 'max', 'ksize', output_size, 'adaptive', True)
1781
        return pool_out if return_mask else pool_out[0]
1782 1783 1784 1785

    l_type = 'max_pool3d_with_index'

    helper = LayerHelper(l_type, **locals())
1786
    dtype = helper.input_dtype(input_param_name='x')
1787 1788
    pool_out = helper.create_variable_for_type_inference(dtype)

1789
    mask = helper.create_variable_for_type_inference('int32')
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
    outputs = {"Out": pool_out, "Mask": mask}

    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": 'max',
            "ksize": output_size,
            "adaptive": True,
        })

1802
    return (pool_out, mask) if return_mask else pool_out