tensor.cc 5.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yu Yang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yu Yang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yu Yang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yu Yang 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/tensor.h"
W
wanghuancoder 已提交
16 17 18 19 20 21 22 23

namespace paddle {
namespace memory {
namespace allocation {
class Allocation;
}  // namespace allocation
}  // namespace memory
}  // namespace paddle
Y
Yu Yang 已提交
24 25

namespace paddle {
26
namespace framework {
Y
Yu Yang 已提交
27
extern size_t SizeOfType(proto::VarType::Type type);
28
void Tensor::check_memory_size() const {
29 30 31
  PADDLE_ENFORCE_NOT_NULL(holder_, platform::errors::PreconditionNotMet(
                                       "Tensor holds no memory. "
                                       "Call Tensor::mutable_data firstly."));
32 33
  PADDLE_ENFORCE_LE(
      numel() * SizeOfType(type()), memory_size(),
34 35 36 37 38 39
      platform::errors::PreconditionNotMet(
          "Tensor's dimension is out of bound."
          "Tensor's dimension must be equal or less than the size of its "
          "memory."
          "But received  Tensor's dimension is d%, memory's size is %d.",
          numel() * SizeOfType(type()), memory_size()));
40 41
}

C
chengduo 已提交
42
Tensor::Tensor(const proto::VarType::Type& dtype) : type_(dtype), offset_(0) {}
43

44 45 46 47
size_t Tensor::memory_size() const {
  return holder_ == nullptr ? 0UL : holder_->size() - offset_;
}

48 49
void* Tensor::mutable_data(const platform::Place& place,
                           proto::VarType::Type type, size_t requested_size) {
50
  type_ = type;
51 52 53 54 55 56
  PADDLE_ENFORCE_GE(
      numel(), 0,
      platform::errors::PreconditionNotMet(
          "The Tensor's element number must be equal or greater than zero. "
          "The Tensor's shape is [",
          dims(), "] now"));
57 58
  size_t size = numel() * SizeOfType(type);
  if (requested_size) {
59 60 61 62 63 64 65
    PADDLE_ENFORCE_GE(
        requested_size, size,
        platform::errors::InvalidArgument(
            "The requested memory size is less than the memory size of Tensor. "
            "But received requested memory size is d%, "
            "memory size of Tensor is %d.",
            requested_size, size));
66 67
    size = requested_size;
  }
68 69 70
  /* some versions of boost::variant don't have operator!= */
  if (holder_ == nullptr || !(holder_->place() == place) ||
      holder_->size() < size + offset_) {
71 72
    // Reset holder first before re-allocate to save memory
    holder_.reset();
73
    holder_ = memory::AllocShared(place, size);
74 75 76 77 78 79
    offset_ = 0;
  }
  return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(holder_->ptr()) +
                                 offset_);
}

80 81
void* Tensor::mutable_data(const platform::Place& place,
                           size_t requested_size) {
82 83
  PADDLE_ENFORCE_NOT_NULL(this->holder_, platform::errors::PreconditionNotMet(
                                             "The tensor is not initialized."));
84
  return mutable_data(place, type_, requested_size);
85 86 87 88 89 90 91 92
}

Tensor& Tensor::ShareDataWith(const Tensor& src) {
  src.check_memory_size();
  *this = src;
  return *this;
}

C
chengduo 已提交
93
Tensor Tensor::Slice(int64_t begin_idx, int64_t end_idx) const {
94
  check_memory_size();
95 96 97 98 99 100 101 102
  PADDLE_ENFORCE_GE(
      begin_idx, 0,
      platform::errors::OutOfRange("The start row index must be greater than 0."
                                   "But received the start index is d%.",
                                   begin_idx));
  PADDLE_ENFORCE_LE(
      end_idx, dims_[0],
      platform::errors::OutOfRange("The end row index is out of bound."));
103 104
  PADDLE_ENFORCE_LT(
      begin_idx, end_idx,
105 106 107 108
      platform::errors::InvalidArgument(
          "The start row index must be less than the end row index."
          "But received the start index = %d, the end index = %d.",
          begin_idx, end_idx));
109 110 111 112 113 114 115 116

  if (dims_[0] == 1) {
    return *this;
  } else {
    size_t base = numel() / dims_[0];
    Tensor dst;
    dst.holder_ = holder_;
    dst.set_layout(layout_);
117
    dst.type_ = type_;
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
    DDim dst_dims = dims_;
    dst_dims[0] = end_idx - begin_idx;
    dst.Resize(dst_dims);
    dst.offset_ = offset_ + begin_idx * base * SizeOfType(type());
    return dst;
  }
}

Tensor& Tensor::Resize(const DDim& dims) {
  dims_ = dims;
  return *this;
}

const DDim& Tensor::dims() const { return dims_; }

int64_t Tensor::numel() const { return product(dims_); }
134

135
void Tensor::ResetHolder(std::shared_ptr<memory::Allocation> holder) {
136 137 138 139
  PADDLE_ENFORCE_EQ(
      offset_, 0,
      platform::errors::Fatal(
          "Only the offset is supported to zero when the holder is reset."));
140
  if (holder_) {
141 142 143 144
    PADDLE_ENFORCE_LE(
        numel() * SizeOfType(type()) + offset_, holder->size(),
        paddle::platform::errors::InvalidArgument(
            "The size of Holder is not enough to store the Tensor."));
145 146 147 148
  }
  holder_ = holder;
}

149 150 151 152 153 154
void Tensor::ResetHolderWithType(std::shared_ptr<memory::Allocation> holder,
                                 const proto::VarType::Type type) {
  ResetHolder(holder);
  type_ = type;
}

155
}  // namespace framework
Y
Yu Yang 已提交
156
}  // namespace paddle