tensor.cc 5.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yu Yang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yu Yang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yu Yang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yu Yang 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/tensor.h"
16
#include "paddle/fluid/framework/var_type.h"
Y
Yu Yang 已提交
17 18

namespace paddle {
19
namespace framework {
Y
Yu Yang 已提交
20
extern size_t SizeOfType(proto::VarType::Type type);
21
void Tensor::check_memory_size() const {
22 23 24
  PADDLE_ENFORCE_NOT_NULL(holder_, platform::errors::PreconditionNotMet(
                                       "Tensor holds no memory. "
                                       "Call Tensor::mutable_data firstly."));
25 26
  PADDLE_ENFORCE_LE(
      numel() * SizeOfType(type()), memory_size(),
27 28 29 30 31 32
      platform::errors::PreconditionNotMet(
          "Tensor's dimension is out of bound."
          "Tensor's dimension must be equal or less than the size of its "
          "memory."
          "But received  Tensor's dimension is d%, memory's size is %d.",
          numel() * SizeOfType(type()), memory_size()));
33 34
}

C
chengduo 已提交
35
Tensor::Tensor(const proto::VarType::Type& dtype) : type_(dtype), offset_(0) {}
36

37 38 39 40
size_t Tensor::memory_size() const {
  return holder_ == nullptr ? 0UL : holder_->size() - offset_;
}

41 42
void* Tensor::mutable_data(const platform::Place& place,
                           proto::VarType::Type type, size_t requested_size) {
43
  type_ = type;
44 45 46 47 48 49
  PADDLE_ENFORCE_GE(
      numel(), 0,
      platform::errors::PreconditionNotMet(
          "The Tensor's element number must be equal or greater than zero. "
          "The Tensor's shape is [",
          dims(), "] now"));
50 51
  size_t size = numel() * SizeOfType(type);
  if (requested_size) {
52 53 54 55 56 57 58
    PADDLE_ENFORCE_GE(
        requested_size, size,
        platform::errors::InvalidArgument(
            "The requested memory size is less than the memory size of Tensor. "
            "But received requested memory size is d%, "
            "memory size of Tensor is %d.",
            requested_size, size));
59 60
    size = requested_size;
  }
61 62 63
  /* some versions of boost::variant don't have operator!= */
  if (holder_ == nullptr || !(holder_->place() == place) ||
      holder_->size() < size + offset_) {
64 65
    // Reset holder first before re-allocate to save memory
    holder_.reset();
66
    holder_ = memory::AllocShared(place, size);
67 68 69 70 71 72
    offset_ = 0;
  }
  return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(holder_->ptr()) +
                                 offset_);
}

73 74
void* Tensor::mutable_data(const platform::Place& place,
                           size_t requested_size) {
75 76
  PADDLE_ENFORCE_NOT_NULL(this->holder_, platform::errors::PreconditionNotMet(
                                             "The tensor is not initialized."));
77
  return mutable_data(place, type_, requested_size);
78 79 80 81 82 83 84 85
}

Tensor& Tensor::ShareDataWith(const Tensor& src) {
  src.check_memory_size();
  *this = src;
  return *this;
}

C
chengduo 已提交
86
Tensor Tensor::Slice(int64_t begin_idx, int64_t end_idx) const {
87
  check_memory_size();
88 89 90 91 92 93 94 95
  PADDLE_ENFORCE_GE(
      begin_idx, 0,
      platform::errors::OutOfRange("The start row index must be greater than 0."
                                   "But received the start index is d%.",
                                   begin_idx));
  PADDLE_ENFORCE_LE(
      end_idx, dims_[0],
      platform::errors::OutOfRange("The end row index is out of bound."));
96 97
  PADDLE_ENFORCE_LT(
      begin_idx, end_idx,
98 99 100 101
      platform::errors::InvalidArgument(
          "The start row index must be less than the end row index."
          "But received the start index = %d, the end index = %d.",
          begin_idx, end_idx));
102 103 104 105 106 107 108 109

  if (dims_[0] == 1) {
    return *this;
  } else {
    size_t base = numel() / dims_[0];
    Tensor dst;
    dst.holder_ = holder_;
    dst.set_layout(layout_);
110
    dst.type_ = type_;
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
    DDim dst_dims = dims_;
    dst_dims[0] = end_idx - begin_idx;
    dst.Resize(dst_dims);
    dst.offset_ = offset_ + begin_idx * base * SizeOfType(type());
    return dst;
  }
}

Tensor& Tensor::Resize(const DDim& dims) {
  dims_ = dims;
  return *this;
}

const DDim& Tensor::dims() const { return dims_; }

int64_t Tensor::numel() const { return product(dims_); }
127

128
void Tensor::ResetHolder(std::shared_ptr<memory::Allocation> holder) {
129 130 131 132
  PADDLE_ENFORCE_EQ(
      offset_, 0,
      platform::errors::Fatal(
          "Only the offset is supported to zero when the holder is reset."));
133
  if (holder_) {
134 135 136 137
    PADDLE_ENFORCE_LE(
        numel() * SizeOfType(type()) + offset_, holder->size(),
        paddle::platform::errors::InvalidArgument(
            "The size of Holder is not enough to store the Tensor."));
138 139 140 141
  }
  holder_ = holder;
}

142 143 144 145 146 147
void Tensor::ResetHolderWithType(std::shared_ptr<memory::Allocation> holder,
                                 const proto::VarType::Type type) {
  ResetHolder(holder);
  type_ = type;
}

148
}  // namespace framework
Y
Yu Yang 已提交
149
}  // namespace paddle