tensor.cc 3.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yu Yang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yu Yang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yu Yang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yu Yang 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/tensor.h"
16
#include "paddle/fluid/framework/var_type.h"
Y
Yu Yang 已提交
17 18

namespace paddle {
19
namespace framework {
Y
Yu Yang 已提交
20
extern size_t SizeOfType(proto::VarType::Type type);
21 22 23 24 25 26 27 28 29 30
void Tensor::check_memory_size() const {
  PADDLE_ENFORCE_NOT_NULL(
      holder_, "Tensor holds no memory. Call Tensor::mutable_data first.");
  PADDLE_ENFORCE_LE(
      numel() * SizeOfType(type()), memory_size(),
      "Tensor's dims_ is out of bound. Call Tensor::mutable_data "
      "first to re-allocate memory.\n"
      "or maybe the required data-type mismatches the data already stored.");
}

C
chengduo 已提交
31
Tensor::Tensor(const proto::VarType::Type& dtype) : type_(dtype), offset_(0) {}
32

33 34 35 36
size_t Tensor::memory_size() const {
  return holder_ == nullptr ? 0UL : holder_->size() - offset_;
}

Y
Yu Yang 已提交
37
void* Tensor::mutable_data(platform::Place place, proto::VarType::Type type,
Y
Yu Yang 已提交
38
                           memory::Allocator::Attr attr,
39
                           size_t requested_size) {
40
  type_ = type;
41 42 43 44
  PADDLE_ENFORCE_GE(numel(), 0,
                    "When calling this method, the Tensor's numel must be "
                    "equal or larger than zero. "
                    "Please check Tensor::Resize has been called first.");
45 46 47 48 49
  size_t size = numel() * SizeOfType(type);
  if (requested_size) {
    PADDLE_ENFORCE_GE(requested_size, size);
    size = requested_size;
  }
50 51 52
  /* some versions of boost::variant don't have operator!= */
  if (holder_ == nullptr || !(holder_->place() == place) ||
      holder_->size() < size + offset_) {
Y
Yu Yang 已提交
53
    holder_ = memory::AllocShared(place, size, attr);
54 55 56 57 58 59
    offset_ = 0;
  }
  return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(holder_->ptr()) +
                                 offset_);
}

Y
Yu Yang 已提交
60 61
void* Tensor::mutable_data(platform::Place place, memory::Allocator::Attr attr,
                           size_t requested_size) {
62 63
  PADDLE_ENFORCE(this->holder_ != nullptr,
                 "Cannot invoke mutable data if current hold nothing.");
Y
Yu Yang 已提交
64
  return mutable_data(place, type_, attr, requested_size);
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
}

Tensor& Tensor::ShareDataWith(const Tensor& src) {
  src.check_memory_size();
  *this = src;
  return *this;
}

Tensor Tensor::Slice(int begin_idx, int end_idx) const {
  check_memory_size();
  PADDLE_ENFORCE_GE(begin_idx, 0,
                    "The start row index must be greater than 0.");
  PADDLE_ENFORCE_LE(end_idx, dims_[0], "The end row index is out of bound.");
  PADDLE_ENFORCE_LT(
      begin_idx, end_idx,
      "The start row index must be lesser than the end row index.");

  if (dims_[0] == 1) {
    return *this;
  } else {
    size_t base = numel() / dims_[0];
    Tensor dst;
    dst.holder_ = holder_;
    dst.set_layout(layout_);
89
    dst.type_ = type_;
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
    DDim dst_dims = dims_;
    dst_dims[0] = end_idx - begin_idx;
    dst.Resize(dst_dims);
    dst.offset_ = offset_ + begin_idx * base * SizeOfType(type());
    return dst;
  }
}

Tensor& Tensor::Resize(const DDim& dims) {
  dims_ = dims;
  return *this;
}

const DDim& Tensor::dims() const { return dims_; }

int64_t Tensor::numel() const { return product(dims_); }
106

107 108 109 110 111 112 113
void Tensor::ResetHolder(std::shared_ptr<memory::Allocation> holder) {
  if (holder_) {
    PADDLE_ENFORCE_EQ(numel() * SizeOfType(type()), holder->size());
  }
  holder_ = holder;
}

114
}  // namespace framework
Y
Yu Yang 已提交
115
}  // namespace paddle