activation_op.cc 64.7 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Q
qijun 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Q
qijun 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Q
qijun 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/activation_op.h"
16

T
tink2123 已提交
17
#include <memory>
D
dzhwinter 已提交
18
#include <string>
19
#include <type_traits>
T
tink2123 已提交
20
#include <unordered_map>
21
#include <vector>
22

23
#include "paddle/fluid/framework/op_version_registry.h"
24
#include "paddle/fluid/operators/common_infer_shape_functions.h"
25
#include "paddle/fluid/operators/mkldnn/mkldnn_activation_op.h"
D
dzhwinter 已提交
26
#include "paddle/fluid/platform/port.h"
Q
qijun 已提交
27

A
Adam 已提交
28 29
DECLARE_bool(use_mkldnn);

Q
qijun 已提交
30 31 32
namespace paddle {
namespace operators {

33 34
using paddle::framework::Tensor;

35 36 37 38 39
template <typename GradFunctor>
static constexpr bool CanInplaceAct() {
  return GradFunctor::FwdDeps() == kDepOut || GradFunctor::FwdDeps() == kNoDeps;
}

40 41 42 43 44
#define REGISTER_ACTIVATION_OP_MAKER(OP_NAME, OP_COMMENT)                    \
  class OP_NAME##OpMaker                                                     \
      : public ::paddle::framework::OpProtoAndCheckerMaker {                 \
   public:                                                                   \
    void Make() override {                                                   \
45 46 47 48 49
      AddInput("X", "Input of " #OP_NAME                                     \
                    " operator, an N-D Tensor, with data type float32, "     \
                    "float64 or float16.");                                  \
      AddOutput("Out", "Output of " #OP_NAME                                 \
                       " operator, a Tensor with shape same as input.");     \
50 51
      AddAttr<bool>("use_mkldnn",                                            \
                    "(bool, default false) Only used in mkldnn kernel")      \
52 53
          .SetDefault(false)                                                 \
          .AsExtra();                                                        \
54 55 56
      AddAttr<bool>("use_cudnn",                                             \
                    "(bool, default false) Only used in cudnn kernel, need " \
                    "install cudnn")                                         \
57 58
          .SetDefault(false)                                                 \
          .AsExtra();                                                        \
59 60
      AddComment(OP_COMMENT);                                                \
    }                                                                        \
D
dzhwinter 已提交
61
  }
D
dzhwinter 已提交
62

H
hong 已提交
63 64
template <ActBwdOpFwdDeps kDepValue, typename T>
class ActivationGradOpMaker : public framework::SingleGradOpMaker<T> {
65
 public:
H
hong 已提交
66
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
67 68

 protected:
69
  void Apply(GradOpPtr<T> op) const override {
H
hong 已提交
70 71 72 73
    op->SetType(this->ForwardOpType() + "_grad");
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
74

A
Adam 已提交
75 76
    if ((static_cast<int>(kDepValue) &
         static_cast<int>(ActBwdOpFwdDeps::kDepX)) ||
77 78 79
        FLAGS_use_mkldnn ||
        (op->HasAttr("use_mkldnn") &&
         BOOST_GET_CONST(bool, op->GetAttr("use_mkldnn")))) {
80
      op->SetInput("X", this->Input("X"));  // x
81 82 83 84
    }

    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepOut)) {
85
      op->SetInput("Out", this->Output("Out"));  // out
86
    }
D
dzhwinter 已提交
87
  }
88
};
D
dzhwinter 已提交
89

90 91 92 93
framework::OpKernelType GetKernelType(const framework::ExecutionContext& ctx,
                                      const framework::OperatorWithKernel& oper,
                                      const std::string& name) {
  framework::LibraryType library{framework::LibraryType::kPlain};
M
mozga-intel 已提交
94
  framework::DataLayout layout = framework::DataLayout::kAnyLayout;
95
  auto data_type = oper.IndicateVarDataType(ctx, name);
96 97 98 99 100 101 102 103 104 105
// FIXME(liuwei1031) temporarily disable the code to unblock users
// TODO(liuwei1031) figure out the reason behind
// https://github.com/PaddlePaddle/Paddle/issues/16096
// and re-enable this in the future
// #ifdef PADDLE_WITH_CUDA
//   auto it1 = oper.Attrs().find("use_cudnn");
//   if (it1 != oper.Attrs().end() && platform::CanCUDNNBeUsed(ctx)) {
//     library = framework::LibraryType::kCUDNN;
//   }
// #endif
106 107 108
#ifdef PADDLE_WITH_MKLDNN
  auto it = oper.Attrs().find("use_mkldnn");
  if (library == framework::LibraryType::kPlain && it != oper.Attrs().end() &&
109
      oper.CanMKLDNNBeUsed(ctx, data_type)) {
110
    library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
111
    layout = framework::DataLayout::kMKLDNN;
112 113
  }
#endif
114
  return framework::OpKernelType(data_type, ctx.GetPlace(), layout, library);
115 116
}

Q
qijun 已提交
117 118 119 120
class ActivationOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

121
  void InferShape(framework::InferShapeContext* ctx) const override {
122
    ctx->ShareDim("X", /*->*/ "Out");
F
fengjiayi 已提交
123
    ctx->ShareLoD("X", /*->*/ "Out");
Q
qijun 已提交
124
  }
125

126
 protected:
127 128 129 130
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "X");
  }
Q
qijun 已提交
131 132
};

C
chengduo 已提交
133 134 135
class ActivationOpInferVarType
    : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
136
  std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
C
chengduo 已提交
137
      const override {
138 139
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
140 141 142
  }
};

Q
qijun 已提交
143 144 145 146
class ActivationOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

147
  void InferShape(framework::InferShapeContext* ctx) const override {
148 149 150
    auto out_grad_name = framework::GradVarName("Out");
    ctx->ShareDim(out_grad_name, framework::GradVarName("X"));
    ctx->ShareLoD(out_grad_name, framework::GradVarName("X"));
Q
qijun 已提交
151
  }
152

153
 protected:
154 155
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
156
    return GetKernelType(ctx, *this, framework::GradVarName("Out"));
157
  }
Q
qijun 已提交
158 159
};

D
dzhwinter 已提交
160
UNUSED constexpr char SigmoidDoc[] = R"DOC(
161
Sigmoid Activation Operator
K
Kexin Zhao 已提交
162

163
$$out = \\frac{1}{1 + e^{-x}}$$
K
Kexin Zhao 已提交
164

D
dzhwinter 已提交
165
)DOC";
Q
qijun 已提交
166

M
minghaoBD 已提交
167 168 169 170 171 172
UNUSED constexpr char SiluDoc[] = R"DOC(
Silu Activation Operator

$$out = x * \\frac{1}{1 + e^{-x}}$$
)DOC";

D
dzhwinter 已提交
173
UNUSED constexpr char LogSigmoidDoc[] = R"DOC(
174
Logsigmoid Activation Operator
K
Kexin Zhao 已提交
175

176
$$out = \\log \\frac{1}{1 + e^{-x}}$$
K
Kexin Zhao 已提交
177

D
dzhwinter 已提交
178
)DOC";
179

D
dzhwinter 已提交
180
UNUSED constexpr char ExpDoc[] = R"DOC(
181
Exp Operator. Computes exp of x element-wise with a natural number :math:`e` as the base.
K
Kexin Zhao 已提交
182

183
$$out = e^x$$
K
Kexin Zhao 已提交
184

D
dzhwinter 已提交
185
)DOC";
Q
qijun 已提交
186

R
ronnywang 已提交
187 188 189 190 191 192 193
UNUSED constexpr char Expm1Doc[] = R"DOC(
Expm1 Operator. Computes expm1 of x element-wise with a natural number :math:`e` as the base.

$$out = e^x - 1$$

)DOC";

D
dzhwinter 已提交
194
UNUSED constexpr char ReluDoc[] = R"DOC(
K
kexinzhao 已提交
195
Relu Activation Operator.
K
Kexin Zhao 已提交
196

197
$$out = \max(x, 0)$$
K
Kexin Zhao 已提交
198

D
dzhwinter 已提交
199
)DOC";
K
Kexin Zhao 已提交
200

D
dzhwinter 已提交
201
UNUSED constexpr char TanhDoc[] = R"DOC(
K
kexinzhao 已提交
202
Tanh Activation Operator.
K
Kexin Zhao 已提交
203

Q
update  
qiaolongfei 已提交
204
$$out = \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
K
Kexin Zhao 已提交
205

D
dzhwinter 已提交
206
)DOC";
207

D
dzhwinter 已提交
208
UNUSED constexpr char TanhShrinkDoc[] = R"DOC(
K
kexinzhao 已提交
209
TanhShrink Activation Operator.
K
Kexin Zhao 已提交
210

Y
Yan Chunwei 已提交
211
$$out = x - \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
K
Kexin Zhao 已提交
212

D
dzhwinter 已提交
213
)DOC";
K
Kexin Zhao 已提交
214

D
dzhwinter 已提交
215
UNUSED constexpr char SqrtDoc[] = R"DOC(
K
kexinzhao 已提交
216
Sqrt Activation Operator.
K
Kexin Zhao 已提交
217

N
Noel 已提交
218
$$out=\\sqrt{x}=x^{1/2}$$
219

220 221
**Note**:
  input value must be greater than or equal to zero.
K
Kexin Zhao 已提交
222

D
dzhwinter 已提交
223
)DOC";
224

Z
zhoukunsheng 已提交
225 226 227 228 229
UNUSED constexpr char RsqrtDoc[] = R"DOC(
Rsqrt Activation Operator.

Please make sure input is legal in case of numeric errors.

230
$$out = \\frac{1}{\\sqrt{x}}$$
Z
zhoukunsheng 已提交
231 232 233

)DOC";

D
dzhwinter 已提交
234
UNUSED constexpr char CeilDoc[] = R"DOC(
235
Ceil Operator. Computes ceil of x element-wise.
D
dzhwinter 已提交
236

N
Noel 已提交
237
$$out = \\lceil x \\rceil$$
D
dzhwinter 已提交
238

D
dzhwinter 已提交
239
)DOC";
D
dzhwinter 已提交
240

D
dzhwinter 已提交
241
UNUSED constexpr char FloorDoc[] = R"DOC(
242
Floor Activation Operator. Computes floor of x element-wise.
D
dzhwinter 已提交
243

N
Noel 已提交
244
$$out = \\lfloor x \\rfloor$$
D
dzhwinter 已提交
245

D
dzhwinter 已提交
246
)DOC";
D
dzhwinter 已提交
247

D
dzhwinter 已提交
248
UNUSED constexpr char CosDoc[] = R"DOC(
249
Cosine Operator. Computes cosine of x element-wise.
C
add cos  
chengduoZH 已提交
250

Y
Yang Zhang 已提交
251 252
Input range is `(-inf, inf)` and output range is `[-1,1]`.

253
$$out = cos(x)$$
C
add cos  
chengduoZH 已提交
254

D
dzhwinter 已提交
255
)DOC";
C
add cos  
chengduoZH 已提交
256

J
joejiong 已提交
257 258 259 260 261 262 263 264 265
UNUSED constexpr char TanDoc[] = R"DOC(
Tangent Operator. Computes tangent of x element-wise.

Input range is `(k*pi-pi/2, k*pi+pi/2)` and output range is `(-inf, inf)`.

$$out = tan(x)$$

)DOC";

D
dzhwinter 已提交
266
UNUSED constexpr char SinDoc[] = R"DOC(
C
add sin  
chengduoZH 已提交
267 268
Sine Activation Operator.

269
$$out = sin(x)$$
C
add sin  
chengduoZH 已提交
270

D
dzhwinter 已提交
271
)DOC";
C
add sin  
chengduoZH 已提交
272

273 274 275 276 277 278 279 280 281 282 283 284 285 286
UNUSED constexpr char SinhDoc[] = R"DOC(
Sinh Activation Operator.

$$out = sinh(x)$$

)DOC";

UNUSED constexpr char CoshDoc[] = R"DOC(
Cosh Activation Operator.

$$out = cosh(x)$$

)DOC";

D
dzhwinter 已提交
287
UNUSED constexpr char RoundDoc[] = R"DOC(
288
The OP rounds the values in the input to the nearest integer value.
D
dzhwinter 已提交
289

N
Noel 已提交
290
.. code-block:: text
291 292 293 294 295 296 297 298

  input:
    x.shape = [4]
    x.data = [1.2, -0.9, 3.4, 0.9]

  output:
    out.shape = [4]
    out.data = [1., -1., 3., 1.]
D
dzhwinter 已提交
299

D
dzhwinter 已提交
300
)DOC";
D
dzhwinter 已提交
301

D
dzhwinter 已提交
302
UNUSED constexpr char ReciprocalDoc[] = R"DOC(
K
kexinzhao 已提交
303
Reciprocal Activation Operator.
K
Kexin Zhao 已提交
304

305
$$out = \\frac{1}{x}$$
K
Kexin Zhao 已提交
306

D
dzhwinter 已提交
307
)DOC";
308

D
dzhwinter 已提交
309
UNUSED constexpr char LogDoc[] = R"DOC(
K
kexinzhao 已提交
310
Log Activation Operator.
K
Kexin Zhao 已提交
311

312
$$out = \ln(x)$$
K
Kexin Zhao 已提交
313 314 315

Natural logarithm of x.

D
dzhwinter 已提交
316 317
)DOC";

J
joejiong 已提交
318 319 320 321 322 323 324 325 326
UNUSED constexpr char Log2Doc[] = R"DOC(
Log2 Activation Operator.

$$out = \log_2x$$

logarithm of x base to 2.

)DOC";

J
joejiong 已提交
327 328 329 330 331 332 333 334 335
UNUSED constexpr char Log10Doc[] = R"DOC(
Log10 Activation Operator.

$$out = \log_10_x$$

logarithm of x base to 10.

)DOC";

336 337 338 339 340 341 342 343 344
UNUSED constexpr char Log1pDoc[] = R"DOC(
Log Activation Operator.

$out = \ln(x+1)$

Natural logarithm of x.

)DOC";

D
dzhwinter 已提交
345
UNUSED constexpr char SquareDoc[] = R"DOC(
346
The OP square each elements of the inputs.
D
dzhwinter 已提交
347

348
$$out = x^2$$
349

D
dzhwinter 已提交
350 351
)DOC";

D
dzhwinter 已提交
352
UNUSED constexpr char SoftsignDoc[] = R"DOC(
D
dzhwinter 已提交
353 354
Softsign Activation Operator.

355
$$out = \\frac{x}{1 + \|x\|}$$
D
dzhwinter 已提交
356 357 358

)DOC";

T
tink2123 已提交
359 360 361 362 363 364
class AcosOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of acos operator");
    AddOutput("Out", "Output of acos operator");
    AddComment(R"DOC(
365
Arccosine Operator.
366

T
tink2123 已提交
367
$$out = \cos^{-1}(x)$$
368

T
tink2123 已提交
369 370 371
)DOC");
  }
};
372

T
tink2123 已提交
373 374 375
class AsinOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
W
wawltor 已提交
376 377 378
    AddInput("X",
             "Input of asin operator, an N-D Tensor, with data type float32, "
             "float64 or float16.");
T
tink2123 已提交
379 380
    AddOutput("Out", "Output of asin operator");
    AddComment(R"DOC(
381
Arcsine Operator.
382

T
tink2123 已提交
383
$$out = \sin^{-1}(x)$$
384

T
tink2123 已提交
385 386 387
)DOC");
  }
};
388

T
tink2123 已提交
389 390 391
class AtanOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
W
wawltor 已提交
392 393 394
    AddInput("X",
             "Input of atan operator, an N-D Tensor, with data type float32, "
             "float64 or float16.");
T
tink2123 已提交
395 396
    AddOutput("Out", "Output of atan operator");
    AddComment(R"DOC(
397
Arctangent Operator.
398

399
$$out = \tan^{-1}(x)$$
400

T
tink2123 已提交
401 402 403
)DOC");
  }
};
404

D
dzhwinter 已提交
405
class LeakyReluOpMaker : public framework::OpProtoAndCheckerMaker {
406
 public:
Y
Yu Yang 已提交
407
  void Make() override {
W
Wilber 已提交
408 409 410 411 412 413 414 415
    AddInput("X",
             "A LoDTensor or Tensor representing preactivation values. Must be "
             "one of the following types: float32, float64.");
    AddOutput(
        "Out",
        "A LoDTensor or Tensor with the same type and size as that of x.");
    AddAttr<float>("alpha", "Slope of the activation function at x < 0.")
        .SetDefault(0.02f);
A
Adam 已提交
416 417
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
418 419
        .SetDefault(false)
        .AsExtra();
K
Kexin Zhao 已提交
420
    AddComment(R"DOC(
D
dzhwinter 已提交
421
LeakyRelu Activation Operator.
K
Kexin Zhao 已提交
422

W
Wilber 已提交
423
$$out = \max(x, \alpha * x)$$
K
Kexin Zhao 已提交
424 425

)DOC");
426 427 428
  }
};

429 430 431 432 433 434 435 436 437 438 439 440 441 442
class SoftplusOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "Input of Softplus operator, an N-D Tensor, with data type "
             "float32, float64 or float16.");
    AddOutput(
        "Out",
        "Output of Softplus operator, a Tensor with shape same as input.");
    AddAttr<float>("beta", "The value of beta for Softplus.").SetDefault(1.0f);
    AddAttr<float>("threshold", "The value of threshold for Softplus.")
        .SetDefault(20.0f);
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel.")
443 444
        .SetDefault(false)
        .AsExtra();
445 446 447
    AddAttr<bool>(
        "use_cudnn",
        "(bool, default false) Only used in cudnn kernel, need install cudnn.")
448 449
        .SetDefault(false)
        .AsExtra();
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
    AddAttr<std::string>(
        "fuse_activation_type",
        "Fused activation type used in softplus OneDNN kernel.")
        .SetDefault("")
        .AsExtra();
    AddAttr<float>(
        "fuse_activation_alpha",
        "Fused activation alpha parameter type used in softplus OneDNN kernel.")
        .SetDefault(0.0f)
        .AsExtra();
    AddAttr<float>(
        "fuse_activation_beta",
        "Fused activation beta parameter type used in softplus OneDNN kernel.")
        .SetDefault(0.0f)
        .AsExtra();
    AddAttr<float>(
        "fuse_activation_scale",
        "Fused activation scale parameter type used in softplus OneDNN kernel.")
        .SetDefault(1.0f)
        .AsExtra();
470 471 472 473 474 475 476 477 478 479 480
    AddComment(R"DOC(
:strong:`Softplus Activation Operator`

..  math::
    out = \frac{1}{\beta} * \log(1 + \exp(\beta * x)) \\
    \text{For numerical stability, the implementation reverts to the linear function when :}\,x \times \beta > threshold.

)DOC");
  }
};

D
dzhwinter 已提交
481
class SoftShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
K
kexinzhao 已提交
482
 public:
Y
Yu Yang 已提交
483
  void Make() override {
D
dzhwinter 已提交
484 485 486
    AddInput("X", "Input of Softshrink operator");
    AddOutput("Out", "Output of Softshrink operator");
    AddAttr<float>("lambda", "non-negative offset").SetDefault(0.5f);
K
Kexin Zhao 已提交
487
    AddComment(R"DOC(
488 489 490
:strong:`Softshrink Activation Operator`

..  math::
491
    out = \begin{cases}
492 493 494 495
         x - \lambda, \text{if } x > \lambda \\
         x + \lambda, \text{if } x < -\lambda \\
         0,  \text{otherwise}
         \end{cases}
K
Kexin Zhao 已提交
496 497

)DOC");
K
kexinzhao 已提交
498 499 500
  }
};

D
dzhwinter 已提交
501
class HardShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
502
 public:
Y
Yu Yang 已提交
503
  void Make() override {
D
dzhwinter 已提交
504 505
    AddInput("X", "Input of HardShrink operator");
    AddOutput("Out", "Output of HardShrink operator");
Y
yuyang18 已提交
506 507
    AddAttr<float>("threshold",
                   "The value of threshold for HardShrink. [default: 0.5]")
D
dzhwinter 已提交
508
        .SetDefault(0.5f);
K
Kexin Zhao 已提交
509
    AddComment(R"DOC(
Y
yuyang18 已提交
510
:strong:`HardShrink activation operator`
K
Kexin Zhao 已提交
511

Y
yuyang18 已提交
512 513 514 515 516 517
..  math::
    out = \begin{cases}
            x, \text{if } x > \lambda \\
            x, \text{if } x < -\lambda \\
            0,  \text{otherwise}
          \end{cases}
K
Kexin Zhao 已提交
518 519

)DOC");
520 521 522
  }
};

523 524
class BReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
525
  void Make() override {
526 527 528 529 530 531
    AddInput("X",
             "The input is a multi-dimensional Tensor. The data type is "
             "float32, float64.");
    AddOutput("Out",
              "The output is a multi-dimensional Tensor which has same "
              "dimension and data type as the ``X``.");
532 533 534 535
    AddAttr<float>("t_min", "The min marginal value of BRelu")
        .SetDefault(static_cast<float>(0));
    AddAttr<float>("t_max", "The max marginal value of BRelu")
        .SetDefault(static_cast<float>(24));
K
Kexin Zhao 已提交
536
    AddComment(R"DOC(
K
kexinzhao 已提交
537
BRelu Activation Operator.
K
Kexin Zhao 已提交
538

539
$$out = \min(\max(x, t_{min}), t_{max})$$
K
Kexin Zhao 已提交
540 541

)DOC");
542 543 544 545 546
  }
};

class SoftReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
547
  void Make() override {
548
    AddInput("X", "Input of SoftRelu operator");
F
fengjiayi 已提交
549
    AddOutput("Out", "Output of SoftRelu operator");
550 551
    AddAttr<float>("threshold", "The threshold value of SoftRelu")
        .SetDefault(40.0f);
K
Kexin Zhao 已提交
552
    AddComment(R"DOC(
K
kexinzhao 已提交
553
SoftRelu Activation Operator.
K
Kexin Zhao 已提交
554

555
$$out = \ln(1 + \exp(\max(\min(x, threshold), -threshold)))$$
K
Kexin Zhao 已提交
556 557

)DOC");
558 559 560
  }
};

561 562
class ELUOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
563
  void Make() override {
564 565 566 567 568 569
    AddInput("X",
             "The input is a multi-dimensional Tensor. The data type is "
             "float32 or float64.");
    AddOutput("Out",
              "The output is a multi-dimensional Tensor which has same "
              "dimension and data type as the ``x``.");
570
    AddAttr<float>("alpha", "The alpha value of ELU").SetDefault(1.0f);
J
jakpiase 已提交
571 572 573 574
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false)
        .AsExtra();
575
    AddComment(R"DOC(
K
kexinzhao 已提交
576
ELU Activation Operator.
K
Kexin Zhao 已提交
577 578 579 580

Applies the following element-wise computation on the input according to
https://arxiv.org/abs/1511.07289.

581
$$out = \max(0, x) + \min(0, \alpha * (e^x - 1))$$
K
Kexin Zhao 已提交
582 583

)DOC");
584 585 586
  }
};

Z
zhupengyang 已提交
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
template <typename T>
class ELUGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("elu_grad");
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetInput("Out", this->Output("Out"));
    op->SetInput("X", this->Input("X"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
  }
};

603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
class CELUOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "The input is a multi-dimensional Tensor. The data type is "
             "float32 or float64.");
    AddOutput("Out",
              "The output is a multi-dimensional Tensor which has same "
              "dimension and data type as the ``x``.");
    AddAttr<float>("alpha", "The alpha value of CELU").SetDefault(1.0f);
    AddComment(R"DOC(
CELU Activation Operator.

Applies the following element-wise computation on the input according to
https://arxiv.org/abs/1704.07483.

$$out = \max(0, x) + \min(0, \alpha * (e^(x/\alpha) - 1))$$

)DOC");
  }
};

625 626
class Relu6OpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
627
  void Make() override {
Z
zhupengyang 已提交
628 629 630 631 632 633 634 635
    AddInput("X",
             "Input of relu6 operator, an N-D Tensor, "
             "with data type float32, float64.");
    AddOutput(
        "Out",
        "Output of relu6 operator, a Tensor with the same shape as input.");
    AddAttr<float>("threshold",
                   "The threshold value of Relu6. Default is 6.0. ")
636
        .SetDefault(6.0f);
A
Adam 已提交
637 638
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
639 640
        .SetDefault(false)
        .AsExtra();
K
Kexin Zhao 已提交
641
    AddComment(R"DOC(
K
kexinzhao 已提交
642
Relu6 Activation Operator.
K
Kexin Zhao 已提交
643

644
$$out = \min(\max(0, x), threshold)$$
K
Kexin Zhao 已提交
645 646

)DOC");
647 648 649
  }
};

650 651
class PowOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
652
  void Make() override {
653
    AddInput("X", "Input of Pow operator");
654 655 656 657 658
    AddInput("FactorTensor",
             "(Tensor<float>, optional). If provided, pow will use this"
             "The shape of FactorTensor MUST BE [1]."
             "it has higher priority than attr(factor).")
        .AsDispensable();
F
fengjiayi 已提交
659
    AddOutput("Out", "Output of Pow operator");
660
    AddAttr<float>("factor", "The exponential factor of Pow").SetDefault(1.0f);
K
Kexin Zhao 已提交
661
    AddComment(R"DOC(
K
kexinzhao 已提交
662
Pow Activation Operator.
K
Kexin Zhao 已提交
663

664
$$out = x^{factor}$$
K
Kexin Zhao 已提交
665 666

)DOC");
667 668 669 670 671
  }
};

class STanhOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
672
  void Make() override {
673 674
    AddInput("X",
             "Input of STanh operator."
N
Noel 已提交
675
             " A Tensor with type float32, float64.");
676 677 678
    AddOutput("Out", "Output of STanh operator. A Tensor with type float32.");
    AddAttr<float>("scale_a", "The scale parameter of a for the input. ")
        .SetDefault(0.67f);
679 680
    AddAttr<float>("scale_b", "The scale parameter of b for the input")
        .SetDefault(1.7159f);
K
Kexin Zhao 已提交
681
    AddComment(R"DOC(
K
kexinzhao 已提交
682
STanh Activation Operator.
K
Kexin Zhao 已提交
683

Y
Yan Chunwei 已提交
684
$$out = b * \\frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}$$
K
Kexin Zhao 已提交
685 686

)DOC");
Q
qijun 已提交
687 688 689
  }
};

690 691
class ThresholdedReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
692
  void Make() override {
693
    AddInput("X", "Input of ThresholdedRelu operator");
F
fengjiayi 已提交
694
    AddOutput("Out", "Output of ThresholdedRelu operator");
Y
yuyang18 已提交
695 696
    AddAttr<float>("threshold",
                   "The threshold location of activation. [default 1.0].")
697
        .SetDefault(1.0f);
K
Kexin Zhao 已提交
698
    AddComment(R"DOC(
Y
yuyang18 已提交
699
:strong:`ThresholdedRelu activation operator`
K
Kexin Zhao 已提交
700

Y
yuyang18 已提交
701
..  math::
K
Kexin Zhao 已提交
702

Y
yuyang18 已提交
703
    out = \begin{cases}
Y
yuyang18 已提交
704
             x,  \text{if } x > threshold \\
Y
yuyang18 已提交
705 706
             0,  \text{otherwise}
          \end{cases}
K
Kexin Zhao 已提交
707
)DOC");
708 709 710
  }
};

711 712
class HardSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
713
  void Make() override {
714 715 716 717 718
    AddInput("X", "An N-D Tensor with data type float32, float64. ");
    AddOutput("Out", "A Tensor with the same shape as input. ");
    AddAttr<float>("slope",
                   "The slope of the linear approximation of sigmoid. Its "
                   "value MUST BE positive. Default is 0.2. ")
719
        .SetDefault(0.2f);
720 721 722
    AddAttr<float>(
        "offset",
        "The offset of the linear approximation of sigmoid. Default is 0.5. ")
723
        .SetDefault(0.5f);
724
    AddComment(R"DOC(
K
kexinzhao 已提交
725
HardSigmoid Activation Operator.
726

727
A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
K
Kexin Zhao 已提交
728
which is much faster than sigmoid.
729

730
$$out = \max(0, \min(1, slope * x + offset))$$
731

K
Kexin Zhao 已提交
732
)DOC");
733 734 735
  }
};

A
Abhinav Arora 已提交
736 737
class SwishOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
738
  void Make() override {
A
Abhinav Arora 已提交
739
    AddInput("X", "Input of Swish operator");
F
fengjiayi 已提交
740
    AddOutput("Out", "Output of Swish operator");
A
Abhinav Arora 已提交
741
    AddAttr<float>("beta", "Constant beta of swish operator").SetDefault(1.0f);
742 743
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
S
Shang Zhizhou 已提交
744 745
        .SetDefault(false)
        .AsExtra();
A
Abhinav Arora 已提交
746 747 748
    AddComment(R"DOC(
Swish Activation Operator.

749
$$out = \\frac{x}{1 + e^{- \beta \ x}}$$
A
Abhinav Arora 已提交
750 751 752 753 754

)DOC");
  }
};

H
huangjun12 已提交
755 756 757 758 759 760 761 762 763 764 765
class HardSwishOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of HardSwish operator");
    AddOutput("Out", "Output of HardSwish operator");
    AddAttr<float>("threshold", "The threshold parameter of HardSwish operator")
        .SetDefault(6.0f);
    AddAttr<float>("scale", "The scale parameter of HardSwish operator")
        .SetDefault(6.0f);
    AddAttr<float>("offset", "The offset parameter of HardSwish operator")
        .SetDefault(3.0f);
J
jakpiase 已提交
766 767 768 769
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false)
        .AsExtra();
H
huangjun12 已提交
770 771 772 773 774
    AddComment(R"DOC(
HardSwish Activation Operator.

The hard version of swish(https://arxiv.org/pdf/1905.02244.pdf).

775
$$out = \frac{x * (min(max(0, x+offset), threshold))}{scale}$$
H
huangjun12 已提交
776 777 778 779 780 781 782 783 784

The threshold and scale should be positive. The offset can be either positive or negative.
The default parameters are set according to the above reference.
It is recommended to use the defaults for this activation.

)DOC");
  }
};

D
dzhwinter 已提交
785
REGISTER_ACTIVATION_OP_MAKER(Sigmoid, SigmoidDoc);
M
minghaoBD 已提交
786
REGISTER_ACTIVATION_OP_MAKER(Silu, SiluDoc);
D
dzhwinter 已提交
787 788
REGISTER_ACTIVATION_OP_MAKER(LogSigmoid, LogSigmoidDoc);
REGISTER_ACTIVATION_OP_MAKER(Exp, ExpDoc);
R
ronnywang 已提交
789
REGISTER_ACTIVATION_OP_MAKER(Expm1, Expm1Doc);
D
dzhwinter 已提交
790 791 792 793
REGISTER_ACTIVATION_OP_MAKER(Relu, ReluDoc);
REGISTER_ACTIVATION_OP_MAKER(Tanh, TanhDoc);
REGISTER_ACTIVATION_OP_MAKER(TanhShrink, TanhShrinkDoc);
REGISTER_ACTIVATION_OP_MAKER(Sqrt, SqrtDoc);
Z
zhoukunsheng 已提交
794
REGISTER_ACTIVATION_OP_MAKER(Rsqrt, RsqrtDoc);
D
dzhwinter 已提交
795 796 797
REGISTER_ACTIVATION_OP_MAKER(Ceil, CeilDoc);
REGISTER_ACTIVATION_OP_MAKER(Floor, FloorDoc);
REGISTER_ACTIVATION_OP_MAKER(Cos, CosDoc);
J
joejiong 已提交
798
REGISTER_ACTIVATION_OP_MAKER(Tan, TanDoc);
D
dzhwinter 已提交
799
REGISTER_ACTIVATION_OP_MAKER(Sin, SinDoc);
800 801
REGISTER_ACTIVATION_OP_MAKER(Sinh, SinhDoc);
REGISTER_ACTIVATION_OP_MAKER(Cosh, CoshDoc);
D
dzhwinter 已提交
802 803 804
REGISTER_ACTIVATION_OP_MAKER(Round, RoundDoc);
REGISTER_ACTIVATION_OP_MAKER(Reciprocal, ReciprocalDoc);
REGISTER_ACTIVATION_OP_MAKER(Log, LogDoc);
J
joejiong 已提交
805
REGISTER_ACTIVATION_OP_MAKER(Log2, Log2Doc);
J
joejiong 已提交
806
REGISTER_ACTIVATION_OP_MAKER(Log10, Log10Doc);
807
REGISTER_ACTIVATION_OP_MAKER(Log1p, Log1pDoc);
D
dzhwinter 已提交
808 809 810
REGISTER_ACTIVATION_OP_MAKER(Square, SquareDoc);
REGISTER_ACTIVATION_OP_MAKER(Softsign, SoftsignDoc);

811
template <ActBwdOpFwdDeps kDepValue>
812 813 814 815 816
class ActivationOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
817
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepX)) {
818
      if (ctx->HasOutput("DX")) {
819 820 821
        ctx->ShareDim("X", "DX");
        ctx->ShareLoD("X", "DX");
      }
822
      if (ctx->HasOutput("DDOut")) {
823 824 825
        ctx->ShareDim("X", "DDOut");
        ctx->ShareLoD("X", "DDOut");
      }
826
    }
827
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepOut)) {
828
      if (ctx->HasOutput("DOut")) {
829 830 831
        ctx->ShareDim("Out", "DOut");
        ctx->ShareLoD("Out", "DOut");
      }
832 833 834 835
      if (ctx->HasOutput("DDOut")) {
        ctx->ShareDim("Out", "DDOut");
        ctx->ShareLoD("Out", "DDOut");
      }
836 837 838 839
      if (ctx->HasOutput("DOutNew")) {
        ctx->ShareDim("Out", "DOutNew");
        ctx->ShareLoD("Out", "DOutNew");
      }
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "DDX");
  }
};

template <ActBwdOpFwdDeps kDepValue>
class ActivationOpDoubleGrad2 : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepX)) {
      if (ctx->HasOutput("DDOut")) {
        ctx->ShareDim("X", "DDOut");
        ctx->ShareLoD("X", "DDOut");
      }
    }
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepOut)) {
      if (ctx->HasOutput("DDOut")) {
864 865 866
        ctx->ShareDim("Out", "DDOut");
        ctx->ShareLoD("Out", "DDOut");
      }
867 868 869 870 871 872 873 874 875 876
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "DDX");
  }
};

877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
template <ActBwdOpFwdDeps kDepValue>
class ActivationOpTripleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepX)) {
      if (ctx->HasOutput("DX")) {
        ctx->ShareDim("X", "DX");
        ctx->ShareLoD("X", "DX");
      }
      if (ctx->HasOutput("DDOut")) {
        ctx->ShareDim("X", "DDOut");
        ctx->ShareLoD("X", "DDOut");
      }
    }
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepOut)) {
      if (ctx->HasOutput("D_DOut")) {
        ctx->ShareDim("Out", "D_DOut");
        ctx->ShareLoD("Out", "D_DOut");
      }
      if (ctx->HasOutput("D_OutNew")) {
        ctx->ShareDim("Out", "D_OutNew");
        ctx->ShareLoD("Out", "D_OutNew");
      }
      if (ctx->HasOutput("D_DDx")) {
        ctx->ShareDim("DDX", "D_DDx");
        ctx->ShareLoD("DDX", "D_DDx");
      }
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "DDX");
  }
};

916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
template <typename T>
class SigmoidDoubleGradMaker
    : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("sigmoid_grad_grad");
    // input1: Out
    op->SetInput("Out", this->Input("Out"));
    // input2: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    op->SetAttrMap(this->Attrs());
    // output: ddy
    op->SetOutput("DOutNew", this->InputGrad("Out"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
template <typename T>
class SigmoidTripleGradMaker
    : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("sigmoid_triple_grad");
    // Out, DDX, DOut, D_DDOut, D_DOut_New   // input
    // D_OutNew, D_DOut, D_DDx               // output
    // input1: Out
    op->SetInput("Out", this->Input("Out"));
    // input2: ddx
    op->SetInput("DDX", this->Input("DDX"));
    // input3: dout
    op->SetInput("DOut", this->Input("DOut"));
    // input4: d_ddout
    op->SetInput("D_DDOut", this->OutputGrad("DDOut"));
    // input5: d_dout_new
    op->SetInput("D_DOut_New", this->OutputGrad("DOutNew"));
    op->SetAttrMap(this->Attrs());

    // output: d_dOut, d_OutNew, d_ddx
    op->SetOutput("D_OutNew", this->InputGrad("Out"));
    op->SetOutput("D_DOut", this->InputGrad("DOut"));
    op->SetOutput("D_DDx", this->InputGrad("DDX"));
  }
};

967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
template <typename T>
class TanhDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("tanh_grad_grad");
    // input1: Out
    op->SetInput("Out", this->Input("Out"));
    // input2: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    op->SetAttrMap(this->Attrs());
    // output: ddy
    op->SetOutput("DOutNew", this->InputGrad("Out"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
template <typename T>
class TanhTripleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("tanh_triple_grad");
    // Out, DDX, DOut, D_DDOut, D_DOut_New   // input
    // D_OutNew, D_DOut, D_DDx               // output
    // input1: Out
    op->SetInput("Out", this->Input("Out"));
    // input2: ddx
    op->SetInput("DDX", this->Input("DDX"));
    // input3: dout
    op->SetInput("DOut", this->Input("DOut"));
    // input4: d_ddout
    op->SetInput("D_DDOut", this->OutputGrad("DDOut"));
    // input5: d_dout_new
    op->SetInput("D_DOut_New", this->OutputGrad("DOutNew"));
    op->SetAttrMap(this->Attrs());

    // output: d_dOut, d_OutNew, d_ddx
    op->SetOutput("D_OutNew", this->InputGrad("Out"));
    op->SetOutput("D_DOut", this->InputGrad("DOut"));
    op->SetOutput("D_DDx", this->InputGrad("DDX"));
  }
};
1015 1016
// ReluGrad: dx = dy if y >= 0 else 0
// ReluGradGrad: ddy = ddx if y >= 0 else 0
H
hong 已提交
1017 1018
template <typename T>
class ReluDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
1019
 public:
H
hong 已提交
1020
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
1021 1022

 protected:
1023
  void Apply(GradOpPtr<T> op) const override {
1024 1025
    op->SetType("relu_grad_grad");
    // input1: Out
H
hong 已提交
1026
    op->SetInput("Out", this->Input("Out"));
Q
qingqing01 已提交
1027
    // input2: ddx
H
hong 已提交
1028 1029
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
1030
    // output: ddy
H
hong 已提交
1031
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
1032 1033 1034
  }
};

1035 1036
// leaky_relu Grad: dx=dy if x>=0 else alpha * dy
// leaky_relu GradGrad: ddy=ddx if x>=0 else alpha * ddx
H
hong 已提交
1037
template <typename T>
1038
class LeakyReluDoubleGradMaker
H
hong 已提交
1039
    : public ::paddle::framework::SingleGradOpMaker<T> {
1040
 public:
H
hong 已提交
1041
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
1042 1043

 protected:
1044
  void Apply(GradOpPtr<T> op) const override {
1045
    op->SetType("leaky_relu_grad_grad");
1046 1047
    // input1: X
    op->SetInput("X", this->Input("X"));
1048
    // X@GRAD@GRAD: ddx
H
hong 已提交
1049 1050
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
1051
    // Out@GRAD@GRAD: ddy
H
hong 已提交
1052
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
1053 1054 1055
  }
};

D
Double_V 已提交
1056 1057 1058 1059 1060 1061 1062 1063
// elu grad: dx=dy if y>0 else alpha*dy*x.exp()
// elu gradgrad: ddx=ddy if y>0 else alpha*ddy*x.exp()
template <typename T>
class ELUDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
1064
  void Apply(GradOpPtr<T> op) const override {
D
Double_V 已提交
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
    op->SetType("elu_grad_grad");

    op->SetInput("X", this->Input("X"));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    // X@GRAD@GRAD: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());

    // Out@GRAD@GRAD: ddy
    op->SetOutput("DX", this->InputGrad("X"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
// celu grad: dx=dy if y>0 else dy*(x/alpha).exp()
// celu gradgrad: ddx=ddy if y>0 else ddy*(x/alpha).exp()/alpha
template <typename T>
class CELUDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("celu_grad_grad");

    op->SetInput("X", this->Input("X"));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    // X@GRAD@GRAD: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());

    // Out@GRAD@GRAD: ddy
    op->SetOutput("DX", this->InputGrad("X"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

L
lvmengsi 已提交
1102 1103
// sqrt Grad: dx = 0.5 * dy / y
// sqrt GradGrad: ddy = 0.5 * ddx / y, dy = -1 * dx * ddx
H
hong 已提交
1104 1105
template <typename T>
class SqrtDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
L
lvmengsi 已提交
1106
 public:
H
hong 已提交
1107
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
L
lvmengsi 已提交
1108 1109

 protected:
1110
  void Apply(GradOpPtr<T> op) const override {
L
lvmengsi 已提交
1111
    op->SetType("sqrt_grad_grad");
H
hong 已提交
1112 1113 1114 1115 1116 1117
    op->SetInput("Out", this->Input("Out"));
    op->SetInput("DX", this->Output(framework::GradVarName("X")));
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
    op->SetOutput("DOut", this->InputGrad("Out"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
L
lvmengsi 已提交
1118 1119 1120
  }
};

W
whs 已提交
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
// rsqrt Grad: dx = -0.5 * dy * y * y * y
// rsqrt GradGrad: ddy = -0.5 * ddx * y * y * y, dy = (3/y) * ddx
template <typename T>
class RsqrtDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("rsqrt_grad_grad");
    op->SetInput("Out", this->Input("Out"));
    op->SetInput("DX", this->Output(framework::GradVarName("X")));
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
    op->SetOutput("DOut", this->InputGrad("Out"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

1140 1141
// square Grad: dx=2x*dy
// square GradGrad: ddy=2x*ddx, dx=2dy*ddx
H
hong 已提交
1142 1143
template <typename T>
class SquareDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
1144
 public:
H
hong 已提交
1145
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
1146 1147

 protected:
1148
  void Apply(GradOpPtr<T> op) const override {
1149
    op->SetType("square_grad_grad");
H
hong 已提交
1150
    op->SetInput("X", this->Input("X"));
1151
    // Out@GRAD: dy
H
hong 已提交
1152
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
1153
    // X@GRAD@GRAD: ddx
H
hong 已提交
1154
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
1155

H
hong 已提交
1156
    op->SetAttrMap(this->Attrs());
1157 1158

    // X@GRAD: dx
H
hong 已提交
1159
    op->SetOutput("DX", this->InputGrad("X"));
1160
    // Out@GRAD@GRAD: ddy
H
hong 已提交
1161
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
1162 1163 1164
  }
};

1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
// log Grad: dx = dout / x
// log Grad Grad: ddout = ddx / x; dx = -(dout / x) * (ddx / x)
template <typename T>
class LogDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("log_grad_grad");
    op->SetInput("X", this->Input("X"));
    // X@GRAD@GRAD: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    op->SetAttrMap(this->Attrs());
    // X@GRAD: dx
    op->SetOutput("DX", this->InputGrad("X"));
    // Out@GRAD@GRAD: ddy
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

1187
DECLARE_INPLACE_OP_INFERER(ActivationGradOpInplaceInferer,
1188 1189
                           {framework::GradVarName("Out"),  // dout
                            framework::GradVarName("X")});  // dx
1190
DECLARE_INPLACE_OP_INFERER(ActivationDoubleGradOpInplaceInferer,
1191
                           {"DDX", "DDOut"});
1192 1193
DECLARE_INPLACE_OP_INFERER(ActivationTripleGradOpInplaceInferer,
                           {"DDX", "D_DOut"});
1194

H
hong 已提交
1195 1196
template <typename T>
class PowGradOpMaker : public framework::SingleGradOpMaker<T> {
1197
 public:
H
hong 已提交
1198
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
1199 1200

 protected:
1201
  void Apply(GradOpPtr<T> op) const override {
1202
    op->SetType("pow_grad");
H
hong 已提交
1203 1204 1205 1206 1207
    op->SetInput("X", this->Input("X"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetInput("FactorTensor", this->Input("FactorTensor"));
    op->SetAttrMap(this->Attrs());
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
  }
};
class PowOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    ctx->ShareDim("X", /*->*/ "Out");
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "X");
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "FactorTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
};

class PowOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    auto out_grad_name = framework::GradVarName("Out");
    ctx->ShareDim(out_grad_name, framework::GradVarName("X"));
    ctx->ShareLoD(out_grad_name, framework::GradVarName("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, framework::GradVarName("Out"));
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "FactorTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
};
1262
DECLARE_INPLACE_OP_INFERER(ActFwdInplaceInferer, {"X", "Out"});
Q
qijun 已提交
1263 1264 1265 1266
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
1267
namespace plat = paddle::platform;
1268

1269 1270 1271 1272
#define REGISTER_ACTIVATION_OP(KERNEL_TYPE, OP_NAME, functor, grad_functor) \
  REGISTER_OPERATOR(                                                        \
      KERNEL_TYPE, ops::ActivationOp, ops::OP_NAME##OpMaker,                \
      ops::ActivationOpInferVarType,                                        \
H
hong 已提交
1273 1274 1275 1276
      ops::ActivationGradOpMaker<ops::grad_functor<float>::FwdDeps(),       \
                                 paddle::framework::OpDesc>,                \
      ops::ActivationGradOpMaker<ops::grad_functor<float>::FwdDeps(),       \
                                 paddle::imperative::OpBase>,               \
1277
      std::conditional<ops::CanInplaceAct<ops::grad_functor<float>>(),      \
1278
                       ops::ActFwdInplaceInferer, void>::type);             \
1279
  REGISTER_OPERATOR(KERNEL_TYPE##_grad, ops::ActivationOpGrad,              \
1280
                    ops::ActivationGradOpInplaceInferer);
1281 1282 1283

#define REGISTER_ACTIVATION_CPU_KERNEL(act_type, op_name, functor,        \
                                       grad_functor)                      \
Q
QI JUN 已提交
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
  REGISTER_OP_CPU_KERNEL(                                                 \
      act_type, ops::ActivationKernel<paddle::platform::CPUDeviceContext, \
                                      ops::functor<float>>,               \
      ops::ActivationKernel<paddle::platform::CPUDeviceContext,           \
                            ops::functor<double>>);                       \
  REGISTER_OP_CPU_KERNEL(                                                 \
      act_type##_grad,                                                    \
      ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,       \
                                ops::grad_functor<float>>,                \
      ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,       \
Y
Yu Yang 已提交
1294
                                ops::grad_functor<double>>);
1295

1296 1297
FOR_EACH_ACTIVATION_OP(REGISTER_ACTIVATION_OP);
FOR_EACH_ACTIVATION_OP(REGISTER_ACTIVATION_CPU_KERNEL);
1298

1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
/* ==========================    sigmoid register  =============================
 */
// 1. Register Sigmoid Operator
REGISTER_OPERATOR(
    sigmoid, ops::ActivationOp, ops::SigmoidOpMaker,
    ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::SigmoidGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::SigmoidGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    std::conditional<ops::CanInplaceAct<ops::SigmoidGradFunctor<float>>(),
                     ops::ActFwdInplaceInferer, void>::type);

// 2. Register Sigmoid Grad Operator
REGISTER_OPERATOR(sigmoid_grad, ops::ActivationOpGrad,
                  ops::ActivationGradOpInplaceInferer,
                  ops::SigmoidDoubleGradMaker<paddle::framework::OpDesc>,
1316
                  ops::SigmoidDoubleGradMaker<paddle::imperative::OpBase>);
1317 1318 1319 1320

// 3. Register Sigmoid DoubleGrad Operator
REGISTER_OPERATOR(
    sigmoid_grad_grad,
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
    ops::ActivationOpDoubleGrad<ops::SigmoidGradGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInferer,
    ops::SigmoidTripleGradMaker<paddle::framework::OpDesc>,
    ops::SigmoidTripleGradMaker<paddle::imperative::OpBase>);

// 4. Register Sigmoid TripleGrad Operator
REGISTER_OPERATOR(sigmoid_triple_grad,
                  ops::ActivationOpTripleGrad<
                      ops::SigmoidTripleGradFunctor<float>::FwdDeps()>,
                  ops::ActivationTripleGradOpInplaceInferer);
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345

// Register Sigmoid/GradSigmoid Kernels
REGISTER_ACTIVATION_CPU_KERNEL(sigmoid, Sigmoid, SigmoidFunctor,
                               SigmoidGradFunctor);

// Register DoubleGrad Kernel
REGISTER_OP_CPU_KERNEL(
    sigmoid_grad_grad,
    ops::SigmoidDoubleGradKernel<plat::CPUDeviceContext,
                                 ops::SigmoidGradGradFunctor<float>>,
    ops::SigmoidDoubleGradKernel<plat::CPUDeviceContext,
                                 ops::SigmoidGradGradFunctor<double>>,
    ops::SigmoidDoubleGradKernel<plat::CPUDeviceContext,
                                 ops::SigmoidGradGradFunctor<plat::float16>>);

1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
// Register TripleGrad Kernel
REGISTER_OP_CPU_KERNEL(
    sigmoid_triple_grad,
    ops::SigmoidTripleGradKernel<plat::CPUDeviceContext,
                                 ops::SigmoidTripleGradFunctor<float>>,
    ops::SigmoidTripleGradKernel<plat::CPUDeviceContext,
                                 ops::SigmoidTripleGradFunctor<double>>,
    ops::SigmoidTripleGradKernel<plat::CPUDeviceContext,
                                 ops::SigmoidTripleGradFunctor<plat::float16>>);

1356 1357
/* ========================================================================== */

1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
/* ==========================    tanh register  ============================= */
REGISTER_OPERATOR(
    tanh, ops::ActivationOp, ops::TanhOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::TanhGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::TanhGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    std::conditional<ops::CanInplaceAct<ops::TanhGradFunctor<float>>(),
                     ops::ActFwdInplaceInferer, void>::type);
REGISTER_OPERATOR(tanh_grad, ops::ActivationOpGrad,
                  ops::ActivationGradOpInplaceInferer,
                  ops::TanhDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::TanhDoubleGradMaker<paddle::imperative::OpBase>)
REGISTER_OPERATOR(
    tanh_grad_grad,
    ops::ActivationOpDoubleGrad<ops::TanhGradFunctor<float>::FwdDeps()>,
1374 1375 1376 1377 1378 1379 1380 1381
    ops::ActivationDoubleGradOpInplaceInferer,
    ops::TanhTripleGradMaker<paddle::framework::OpDesc>,
    ops::TanhTripleGradMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(
    tanh_triple_grad,
    ops::ActivationOpTripleGrad<ops::TanhTripleGradFunctor<float>::FwdDeps()>,
    ops::ActivationTripleGradOpInplaceInferer);
1382 1383 1384 1385 1386 1387 1388 1389 1390

REGISTER_ACTIVATION_CPU_KERNEL(tanh, Tanh, TanhFunctor, TanhGradFunctor);
REGISTER_OP_CPU_KERNEL(
    tanh_grad_grad, ops::TanhDoubleGradKernel<plat::CPUDeviceContext,
                                              ops::TanhGradGradFunctor<float>>,
    ops::TanhDoubleGradKernel<plat::CPUDeviceContext,
                              ops::TanhGradGradFunctor<double>>,
    ops::TanhDoubleGradKernel<plat::CPUDeviceContext,
                              ops::TanhGradGradFunctor<plat::float16>>);
1391 1392 1393 1394 1395 1396 1397 1398 1399
// Register TripleGrad Kernel
REGISTER_OP_CPU_KERNEL(
    tanh_triple_grad,
    ops::TanhTripeGradKernel<plat::CPUDeviceContext,
                             ops::TanhTripleGradFunctor<float>>,
    ops::TanhTripeGradKernel<plat::CPUDeviceContext,
                             ops::TanhTripleGradFunctor<double>>,
    ops::TanhTripeGradKernel<plat::CPUDeviceContext,
                             ops::TanhTripleGradFunctor<plat::float16>>);
1400 1401
/* ========================================================================== */

1402
/* ==========================    relu register  ============================= */
1403 1404
REGISTER_OPERATOR(
    relu, ops::ActivationOp, ops::ReluOpMaker, ops::ActivationOpInferVarType,
H
hong 已提交
1405 1406 1407 1408
    ops::ActivationGradOpMaker<ops::ReluGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::ReluGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1409
    ops::ActFwdInplaceInferer);
1410
REGISTER_OPERATOR(relu_grad, ops::ActivationOpGrad,
1411
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
1412 1413
                  ops::ReluDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::ReluDoubleGradMaker<paddle::imperative::OpBase>);
1414 1415
REGISTER_OPERATOR(
    relu_grad_grad,
1416
    ops::ActivationOpDoubleGrad2<ops::ReluGradFunctor<float>::FwdDeps()>,
1417
    ops::ActivationDoubleGradOpInplaceInferer);
1418

1419
REGISTER_ACTIVATION_CPU_KERNEL(relu, Relu, ReluCPUFunctor, ReluGradFunctor);
1420 1421 1422 1423 1424 1425 1426 1427 1428

REGISTER_OP_CPU_KERNEL(
    relu_grad_grad,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::ReluGradGradFunctor<float>>,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::ReluGradGradFunctor<double>>,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::ReluGradGradFunctor<plat::float16>>);
1429
/* ========================================================================== */
1430

1431
/* ======================== leaky relu register  ============================ */
1432 1433 1434
REGISTER_OPERATOR(
    leaky_relu, ops::ActivationOp, ops::LeakyReluOpMaker,
    ops::ActivationOpInferVarType,
H
hong 已提交
1435 1436 1437 1438
    ops::ActivationGradOpMaker<ops::LeakyReluGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::LeakyReluGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1439
    ops::ActFwdInplaceInferer);
1440
REGISTER_OPERATOR(leaky_relu_grad, ops::ActivationOpGrad,
1441
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
1442 1443
                  ops::LeakyReluDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::LeakyReluDoubleGradMaker<paddle::imperative::OpBase>);
1444 1445
REGISTER_OPERATOR(
    leaky_relu_grad_grad,
1446
    ops::ActivationOpDoubleGrad2<ops::LeakyReluGradFunctor<float>::FwdDeps()>,
1447
    ops::ActivationDoubleGradOpInplaceInferer);
1448

1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
REGISTER_ACTIVATION_CPU_KERNEL(leaky_relu, LeakyRelu, LeakyReluFunctor,
                               LeakyReluGradFunctor);
REGISTER_OP_CPU_KERNEL(
    leaky_relu_grad_grad,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::LeakyReluGradGradFunctor<float>>,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::LeakyReluGradGradFunctor<double>>,
    ops::ActivationDoubleGradKernel<
        plat::CPUDeviceContext, ops::LeakyReluGradGradFunctor<plat::float16>>);
1459 1460
/* ========================================================================== */

D
Double_V 已提交
1461
/* ========================    elu  register     ============================ */
Z
zhupengyang 已提交
1462 1463 1464 1465 1466
REGISTER_OPERATOR(elu, ops::ActivationOp, ops::ELUOpMaker,
                  ops::ActivationOpInferVarType,
                  ops::ELUGradOpMaker<paddle::framework::OpDesc>,
                  ops::ELUGradOpMaker<paddle::imperative::OpBase>,
                  ops::ActFwdInplaceInferer);
D
Double_V 已提交
1467
REGISTER_OPERATOR(elu_grad, ops::ActivationOpGrad,
1468
                  ops::ActivationGradOpInplaceInferer,
D
Double_V 已提交
1469 1470 1471 1472 1473
                  ops::ELUDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::ELUDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(
    elu_grad_grad,
    ops::ActivationOpDoubleGrad<ops::ELUGradFunctor<float>::FwdDeps()>,
1474
    ops::ActivationDoubleGradOpInplaceInferer);
D
Double_V 已提交
1475

Z
zhupengyang 已提交
1476 1477 1478 1479 1480 1481 1482 1483
REGISTER_OP_CPU_KERNEL(elu,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ELUFunctor<float>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ELUFunctor<double>>);
REGISTER_OP_CPU_KERNEL(
    elu_grad, ops::ELUGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ELUGradKernel<paddle::platform::CPUDeviceContext, double>);
D
Double_V 已提交
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
REGISTER_OP_CPU_KERNEL(
    elu_grad_grad, ops::ELUDoubleGradKernel<plat::CPUDeviceContext,
                                            ops::ELUGradGradFunctor<float>>,
    ops::ELUDoubleGradKernel<plat::CPUDeviceContext,
                             ops::ELUGradGradFunctor<double>>,
    ops::ELUDoubleGradKernel<plat::CPUDeviceContext,
                             ops::ELUGradGradFunctor<plat::float16>>);

/* ========================================================================== */

1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
/* ========================    celu  register     ============================
 */
REGISTER_OPERATOR(
    celu, ops::ActivationOp, ops::CELUOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::CELUGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::CELUGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    ops::ActFwdInplaceInferer);
REGISTER_OPERATOR(celu_grad, ops::ActivationOpGrad,
                  ops::ActivationGradOpInplaceInferer,
                  ops::CELUDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::CELUDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(
    celu_grad_grad,
    ops::ActivationOpDoubleGrad<ops::CELUGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInferer);

REGISTER_ACTIVATION_CPU_KERNEL(celu, CELU, CELUFunctor, CELUGradFunctor);
REGISTER_OP_CPU_KERNEL(
    celu_grad_grad, ops::CELUDoubleGradKernel<plat::CPUDeviceContext,
                                              ops::CELUGradGradFunctor<float>>,
    ops::CELUDoubleGradKernel<plat::CPUDeviceContext,
                              ops::CELUGradGradFunctor<double>>,
    ops::CELUDoubleGradKernel<plat::CPUDeviceContext,
                              ops::CELUGradGradFunctor<plat::float16>>);

/* ========================================================================== */

L
lvmengsi 已提交
1523 1524 1525
/* ===========================   sqrt register  ============================= */
REGISTER_OPERATOR(
    sqrt, ops::ActivationOp, ops::SqrtOpMaker, ops::ActivationOpInferVarType,
H
hong 已提交
1526 1527 1528 1529
    ops::ActivationGradOpMaker<ops::SqrtGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::SqrtGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1530
    ops::ActFwdInplaceInferer);
L
lvmengsi 已提交
1531
REGISTER_OPERATOR(sqrt_grad, ops::ActivationOpGrad,
1532
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
1533 1534
                  ops::SqrtDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::SqrtDoubleGradMaker<paddle::imperative::OpBase>);
L
lvmengsi 已提交
1535 1536
REGISTER_OPERATOR(
    sqrt_grad_grad,
1537
    ops::ActivationOpDoubleGrad<ops::SqrtGradGradFunctor<float>::FwdDeps()>,
1538
    ops::ActivationDoubleGradOpInplaceInferer);
1539

L
lvmengsi 已提交
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
REGISTER_ACTIVATION_CPU_KERNEL(sqrt, Sqrt, SqrtFunctor, SqrtGradFunctor);
REGISTER_OP_CPU_KERNEL(
    sqrt_grad_grad, ops::SqrtDoubleGradKernel<plat::CPUDeviceContext,
                                              ops::SqrtGradGradFunctor<float>>,
    ops::SqrtDoubleGradKernel<plat::CPUDeviceContext,
                              ops::SqrtGradGradFunctor<double>>,
    ops::SqrtDoubleGradKernel<plat::CPUDeviceContext,
                              ops::SqrtGradGradFunctor<plat::float16>>);
/* ========================================================================== */

W
whs 已提交
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
/* ===========================   rsqrt register  =============================
 */
REGISTER_OPERATOR(
    rsqrt, ops::ActivationOp, ops::RsqrtOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::RsqrtGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::RsqrtGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    ops::ActFwdInplaceInferer);
REGISTER_OPERATOR(rsqrt_grad, ops::ActivationOpGrad,
                  ops::ActivationGradOpInplaceInferer,
                  ops::RsqrtDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::RsqrtDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(
    rsqrt_grad_grad,
    ops::ActivationOpDoubleGrad<ops::RsqrtGradGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInferer);

REGISTER_ACTIVATION_CPU_KERNEL(rsqrt, Rsqrt, RsqrtFunctor, RsqrtGradFunctor);
REGISTER_OP_CPU_KERNEL(
    rsqrt_grad_grad,
    ops::RsqrtDoubleGradKernel<plat::CPUDeviceContext,
                               ops::RsqrtGradGradFunctor<float>>,
    ops::RsqrtDoubleGradKernel<plat::CPUDeviceContext,
                               ops::RsqrtGradGradFunctor<double>>,
    ops::RsqrtDoubleGradKernel<plat::CPUDeviceContext,
                               ops::RsqrtGradGradFunctor<plat::float16>>);
/* ========================================================================== */

1579 1580 1581 1582
/* ==========================   square register  ============================ */
REGISTER_OPERATOR(
    square, ops::ActivationOp, ops::SquareOpMaker,
    ops::ActivationOpInferVarType,
H
hong 已提交
1583 1584 1585 1586
    ops::ActivationGradOpMaker<ops::SquareGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::SquareGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1587
    ops::ActFwdInplaceInferer);
1588
REGISTER_OPERATOR(square_grad, ops::ActivationOpGrad,
1589
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
1590 1591
                  ops::SquareDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::SquareDoubleGradMaker<paddle::imperative::OpBase>);
1592 1593
REGISTER_OPERATOR(
    square_grad_grad,
1594
    ops::ActivationOpDoubleGrad<ops::SquareGradGradFunctor<float>::FwdDeps()>,
1595
    ops::ActivationDoubleGradOpInplaceInferer);
1596

1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
REGISTER_OP_CPU_KERNEL(square,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<float>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<double>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<int>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<int64_t>>);
REGISTER_OP_CPU_KERNEL(
    square_grad, ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                                           ops::SquareGradFunctor<float>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::SquareGradFunctor<double>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::SquareGradFunctor<int>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::SquareGradFunctor<int64_t>>);
1615 1616 1617 1618 1619 1620 1621 1622

REGISTER_OP_CPU_KERNEL(
    square_grad_grad,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<float>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<double>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
1623 1624 1625 1626 1627
                                ops::SquareGradGradFunctor<plat::float16>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<int>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<int64_t>>);
1628
/* ========================================================================== */
1629 1630 1631 1632 1633

/* ==========================   pow register  ============================ */

REGISTER_OPERATOR(
    pow, ops::PowOp, ops::PowOpMaker, ops::ActivationOpInferVarType,
H
hong 已提交
1634 1635
    ops::PowGradOpMaker<paddle::framework::OpDesc>,
    ops::PowGradOpMaker<paddle::imperative::OpBase>,
1636
    std::conditional<ops::CanInplaceAct<ops::PowGradFunctor<float>>(),
1637
                     ops::ActFwdInplaceInferer, void>::type);
1638
REGISTER_OPERATOR(pow_grad, ops::PowOpGrad,
1639
                  ops::ActivationGradOpInplaceInferer);
1640 1641 1642

REGISTER_OP_CPU_KERNEL(
    pow, ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<float>>,
1643 1644 1645
    ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<double>>,
    ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<int>>,
    ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<int64_t>>);
1646 1647 1648
REGISTER_OP_CPU_KERNEL(
    pow_grad,
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<float>>,
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<double>>,
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<int>>,
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<int64_t>>);
/* ========================================================================== */

/* ==========================   exp register  ============================ */
REGISTER_OPERATOR(
    exp, ops::ActivationOp, ops::ExpOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::ExpGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::ExpGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    std::conditional<ops::CanInplaceAct<ops::ExpGradFunctor<float>>(),
                     ops::ActFwdInplaceInferer, void>::type);
REGISTER_OPERATOR(exp_grad, ops::ActivationOpGrad,
1664
                  ops::ActivationGradOpInplaceInferer);
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684

REGISTER_OP_CPU_KERNEL(exp,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<float>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<double>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<int>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<int64_t>>);
REGISTER_OP_CPU_KERNEL(
    exp_grad, ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                                        ops::ExpGradFunctor<float>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::ExpGradFunctor<double>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::ExpGradFunctor<int>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::ExpGradFunctor<int64_t>>);
/* ========================================================================== */
R
ronnywang 已提交
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712

/* ==========================   expm1 register  ============================ */
REGISTER_OPERATOR(
    expm1, ops::ActivationOp, ops::Expm1OpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::Expm1GradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::Expm1GradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    std::conditional<ops::CanInplaceAct<ops::Expm1GradFunctor<float>>(),
                     ops::ActFwdInplaceInferer, void>::type);
REGISTER_OPERATOR(expm1_grad, ops::ActivationOpGrad,
                  ops::ActivationGradOpInplaceInferer);

REGISTER_OP_CPU_KERNEL(expm1,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::Expm1Functor<float>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::Expm1Functor<double>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::Expm1Functor<plat::float16>>);
REGISTER_OP_CPU_KERNEL(
    expm1_grad, ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                                          ops::Expm1GradFunctor<float>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::Expm1GradFunctor<double>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::Expm1GradFunctor<plat::float16>>);
/* ========================================================================== */
1713

1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
/* ==========================  Log register ==================================*/
REGISTER_OPERATOR(
    log, ops::ActivationOp, ops::LogOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::LogGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::LogGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    ops::ActFwdInplaceInferer);
REGISTER_OPERATOR(log_grad, ops::ActivationOpGrad,
                  ops::ActivationGradOpInplaceInferer,
                  ops::LogDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::LogDoubleGradMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(
    log_grad_grad,
    ops::ActivationOpDoubleGrad<ops::LogGradGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInferer);

REGISTER_ACTIVATION_CPU_KERNEL(log, Log, LogFunctor, LogGradFunctor);

REGISTER_OP_CPU_KERNEL(
    log_grad_grad, ops::LogDoubleGradKernel<plat::CPUDeviceContext,
                                            ops::LogGradGradFunctor<float>>,
    ops::LogDoubleGradKernel<plat::CPUDeviceContext,
                             ops::LogGradGradFunctor<double>>,
    ops::LogDoubleGradKernel<plat::CPUDeviceContext,
                             ops::LogGradGradFunctor<plat::float16>>);
/* ========================================================================== */

1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
/* ==========================  register checkpoint ===========================*/
REGISTER_OP_VERSION(leaky_relu)
    .AddCheckpoint(
        R"ROC(fix leaky_relu, bahavior changed when alpha < 0 or alpha > 1)ROC",
        paddle::framework::compatible::OpVersionDesc()
            .BugfixWithBehaviorChanged(
                "leaky_relu calculate formula before checkponit: out = max(x, "
                "alpha * x); after checkpoint: out = x if x > 0 else alpha * "
                "x"));

REGISTER_OP_VERSION(hard_shrink)
    .AddCheckpoint(
        R"ROC(fix hard_shrink, bahavior changed when threshold<0)ROC",
        paddle::framework::compatible::OpVersionDesc()
            .BugfixWithBehaviorChanged(
                "hard_shrink calculate formula before checkponit: out = x * "
                "((x < -threshold) + (x > threshold)); after checkpoint: out = "
                "x * (((x < -threshold) + (x > threshold)) > 0)"));

1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
REGISTER_OP_VERSION(softplus)
    .AddCheckpoint(
        R"ROC(add new attributes [beta] and [threshold], and the formula is changed to "
         " softplus(x) = \\frac{1}{beta} * \\log(1 + e^{beta * x}) \\\\ \\text{For numerical"
         " stability, the implementation reverts to the linear function when: beta * x > threshold.})ROC",
        paddle::framework::compatible::OpVersionDesc()
            .NewAttr("beta", "The beta value of the new formula", 1.0f)
            .NewAttr("threshold", "The threshold value of the new formula",
                     20.0f));

1772
/* ========================================================================== */