activation_op.cc 58.3 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Q
qijun 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Q
qijun 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Q
qijun 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/activation_op.h"
16

T
tink2123 已提交
17
#include <memory>
D
dzhwinter 已提交
18
#include <string>
19
#include <type_traits>
T
tink2123 已提交
20
#include <unordered_map>
21
#include <vector>
22

23
#include "paddle/fluid/framework/op_version_registry.h"
24
#include "paddle/fluid/operators/common_infer_shape_functions.h"
25
#include "paddle/fluid/operators/mkldnn/mkldnn_activation_op.h"
D
dzhwinter 已提交
26
#include "paddle/fluid/platform/port.h"
Q
qijun 已提交
27

A
Adam 已提交
28 29
DECLARE_bool(use_mkldnn);

Q
qijun 已提交
30 31 32
namespace paddle {
namespace operators {

33 34
using paddle::framework::Tensor;

35 36 37 38 39
template <typename GradFunctor>
static constexpr bool CanInplaceAct() {
  return GradFunctor::FwdDeps() == kDepOut || GradFunctor::FwdDeps() == kNoDeps;
}

40 41 42 43 44
#define REGISTER_ACTIVATION_OP_MAKER(OP_NAME, OP_COMMENT)                    \
  class OP_NAME##OpMaker                                                     \
      : public ::paddle::framework::OpProtoAndCheckerMaker {                 \
   public:                                                                   \
    void Make() override {                                                   \
45 46 47 48 49
      AddInput("X", "Input of " #OP_NAME                                     \
                    " operator, an N-D Tensor, with data type float32, "     \
                    "float64 or float16.");                                  \
      AddOutput("Out", "Output of " #OP_NAME                                 \
                       " operator, a Tensor with shape same as input.");     \
50 51
      AddAttr<bool>("use_mkldnn",                                            \
                    "(bool, default false) Only used in mkldnn kernel")      \
52 53
          .SetDefault(false)                                                 \
          .AsExtra();                                                        \
54 55 56
      AddAttr<bool>("use_cudnn",                                             \
                    "(bool, default false) Only used in cudnn kernel, need " \
                    "install cudnn")                                         \
57 58
          .SetDefault(false)                                                 \
          .AsExtra();                                                        \
59 60
      AddComment(OP_COMMENT);                                                \
    }                                                                        \
D
dzhwinter 已提交
61
  }
D
dzhwinter 已提交
62

H
hong 已提交
63 64
template <ActBwdOpFwdDeps kDepValue, typename T>
class ActivationGradOpMaker : public framework::SingleGradOpMaker<T> {
65
 public:
H
hong 已提交
66
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
67 68

 protected:
69
  void Apply(GradOpPtr<T> op) const override {
H
hong 已提交
70 71 72 73
    op->SetType(this->ForwardOpType() + "_grad");
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
74

A
Adam 已提交
75 76
    if ((static_cast<int>(kDepValue) &
         static_cast<int>(ActBwdOpFwdDeps::kDepX)) ||
77 78 79
        FLAGS_use_mkldnn ||
        (op->HasAttr("use_mkldnn") &&
         BOOST_GET_CONST(bool, op->GetAttr("use_mkldnn")))) {
80
      op->SetInput("X", this->Input("X"));  // x
81 82 83 84
    }

    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepOut)) {
85
      op->SetInput("Out", this->Output("Out"));  // out
86
    }
D
dzhwinter 已提交
87
  }
88
};
D
dzhwinter 已提交
89

90 91 92 93
framework::OpKernelType GetKernelType(const framework::ExecutionContext& ctx,
                                      const framework::OperatorWithKernel& oper,
                                      const std::string& name) {
  framework::LibraryType library{framework::LibraryType::kPlain};
M
mozga-intel 已提交
94
  framework::DataLayout layout = framework::DataLayout::kAnyLayout;
95
  auto data_type = oper.IndicateVarDataType(ctx, name);
96 97 98 99 100 101 102 103 104 105
// FIXME(liuwei1031) temporarily disable the code to unblock users
// TODO(liuwei1031) figure out the reason behind
// https://github.com/PaddlePaddle/Paddle/issues/16096
// and re-enable this in the future
// #ifdef PADDLE_WITH_CUDA
//   auto it1 = oper.Attrs().find("use_cudnn");
//   if (it1 != oper.Attrs().end() && platform::CanCUDNNBeUsed(ctx)) {
//     library = framework::LibraryType::kCUDNN;
//   }
// #endif
106 107 108
#ifdef PADDLE_WITH_MKLDNN
  auto it = oper.Attrs().find("use_mkldnn");
  if (library == framework::LibraryType::kPlain && it != oper.Attrs().end() &&
109
      oper.CanMKLDNNBeUsed(ctx, data_type)) {
110
    library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
111
    layout = framework::DataLayout::kMKLDNN;
112 113
  }
#endif
114
  return framework::OpKernelType(data_type, ctx.GetPlace(), layout, library);
115 116
}

Q
qijun 已提交
117 118 119 120
class ActivationOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

121
  void InferShape(framework::InferShapeContext* ctx) const override {
122
    ctx->ShareDim("X", /*->*/ "Out");
F
fengjiayi 已提交
123
    ctx->ShareLoD("X", /*->*/ "Out");
Q
qijun 已提交
124
  }
125

126
 protected:
127 128 129 130
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "X");
  }
Q
qijun 已提交
131 132
};

C
chengduo 已提交
133 134 135
class ActivationOpInferVarType
    : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
136
  std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
C
chengduo 已提交
137
      const override {
138 139
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
140 141 142
  }
};

Q
qijun 已提交
143 144 145 146
class ActivationOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

147
  void InferShape(framework::InferShapeContext* ctx) const override {
148 149 150
    auto out_grad_name = framework::GradVarName("Out");
    ctx->ShareDim(out_grad_name, framework::GradVarName("X"));
    ctx->ShareLoD(out_grad_name, framework::GradVarName("X"));
Q
qijun 已提交
151
  }
152

153
 protected:
154 155
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
156
    return GetKernelType(ctx, *this, framework::GradVarName("Out"));
157
  }
Q
qijun 已提交
158 159
};

D
dzhwinter 已提交
160
UNUSED constexpr char SigmoidDoc[] = R"DOC(
161
Sigmoid Activation Operator
K
Kexin Zhao 已提交
162

163
$$out = \\frac{1}{1 + e^{-x}}$$
K
Kexin Zhao 已提交
164

D
dzhwinter 已提交
165
)DOC";
Q
qijun 已提交
166

M
minghaoBD 已提交
167 168 169 170 171 172
UNUSED constexpr char SiluDoc[] = R"DOC(
Silu Activation Operator

$$out = x * \\frac{1}{1 + e^{-x}}$$
)DOC";

D
dzhwinter 已提交
173
UNUSED constexpr char LogSigmoidDoc[] = R"DOC(
174
Logsigmoid Activation Operator
K
Kexin Zhao 已提交
175

176
$$out = \\log \\frac{1}{1 + e^{-x}}$$
K
Kexin Zhao 已提交
177

D
dzhwinter 已提交
178
)DOC";
179

D
dzhwinter 已提交
180
UNUSED constexpr char ExpDoc[] = R"DOC(
181
Exp Operator. Computes exp of x element-wise with a natural number :math:`e` as the base.
K
Kexin Zhao 已提交
182

183
$$out = e^x$$
K
Kexin Zhao 已提交
184

D
dzhwinter 已提交
185
)DOC";
Q
qijun 已提交
186

R
ronnywang 已提交
187 188 189 190 191 192 193
UNUSED constexpr char Expm1Doc[] = R"DOC(
Expm1 Operator. Computes expm1 of x element-wise with a natural number :math:`e` as the base.

$$out = e^x - 1$$

)DOC";

D
dzhwinter 已提交
194
UNUSED constexpr char ReluDoc[] = R"DOC(
K
kexinzhao 已提交
195
Relu Activation Operator.
K
Kexin Zhao 已提交
196

197
$$out = \max(x, 0)$$
K
Kexin Zhao 已提交
198

D
dzhwinter 已提交
199
)DOC";
K
Kexin Zhao 已提交
200

D
dzhwinter 已提交
201
UNUSED constexpr char TanhDoc[] = R"DOC(
K
kexinzhao 已提交
202
Tanh Activation Operator.
K
Kexin Zhao 已提交
203

Q
update  
qiaolongfei 已提交
204
$$out = \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
K
Kexin Zhao 已提交
205

D
dzhwinter 已提交
206
)DOC";
207

D
dzhwinter 已提交
208
UNUSED constexpr char TanhShrinkDoc[] = R"DOC(
K
kexinzhao 已提交
209
TanhShrink Activation Operator.
K
Kexin Zhao 已提交
210

Y
Yan Chunwei 已提交
211
$$out = x - \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
K
Kexin Zhao 已提交
212

D
dzhwinter 已提交
213
)DOC";
K
Kexin Zhao 已提交
214

D
dzhwinter 已提交
215
UNUSED constexpr char SqrtDoc[] = R"DOC(
K
kexinzhao 已提交
216
Sqrt Activation Operator.
K
Kexin Zhao 已提交
217

N
Noel 已提交
218
$$out=\\sqrt{x}=x^{1/2}$$
219

220 221
**Note**:
  input value must be greater than or equal to zero.
K
Kexin Zhao 已提交
222

D
dzhwinter 已提交
223
)DOC";
224

Z
zhoukunsheng 已提交
225 226 227 228 229
UNUSED constexpr char RsqrtDoc[] = R"DOC(
Rsqrt Activation Operator.

Please make sure input is legal in case of numeric errors.

230
$$out = \\frac{1}{\\sqrt{x}}$$
Z
zhoukunsheng 已提交
231 232 233

)DOC";

D
dzhwinter 已提交
234
UNUSED constexpr char CeilDoc[] = R"DOC(
235
Ceil Operator. Computes ceil of x element-wise.
D
dzhwinter 已提交
236

N
Noel 已提交
237
$$out = \\lceil x \\rceil$$
D
dzhwinter 已提交
238

D
dzhwinter 已提交
239
)DOC";
D
dzhwinter 已提交
240

D
dzhwinter 已提交
241
UNUSED constexpr char FloorDoc[] = R"DOC(
242
Floor Activation Operator. Computes floor of x element-wise.
D
dzhwinter 已提交
243

N
Noel 已提交
244
$$out = \\lfloor x \\rfloor$$
D
dzhwinter 已提交
245

D
dzhwinter 已提交
246
)DOC";
D
dzhwinter 已提交
247

D
dzhwinter 已提交
248
UNUSED constexpr char CosDoc[] = R"DOC(
249
Cosine Operator. Computes cosine of x element-wise.
C
add cos  
chengduoZH 已提交
250

Y
Yang Zhang 已提交
251 252
Input range is `(-inf, inf)` and output range is `[-1,1]`.

253
$$out = cos(x)$$
C
add cos  
chengduoZH 已提交
254

D
dzhwinter 已提交
255
)DOC";
C
add cos  
chengduoZH 已提交
256

J
joejiong 已提交
257 258 259 260 261 262 263 264 265
UNUSED constexpr char TanDoc[] = R"DOC(
Tangent Operator. Computes tangent of x element-wise.

Input range is `(k*pi-pi/2, k*pi+pi/2)` and output range is `(-inf, inf)`.

$$out = tan(x)$$

)DOC";

D
dzhwinter 已提交
266
UNUSED constexpr char SinDoc[] = R"DOC(
C
add sin  
chengduoZH 已提交
267 268
Sine Activation Operator.

269
$$out = sin(x)$$
C
add sin  
chengduoZH 已提交
270

D
dzhwinter 已提交
271
)DOC";
C
add sin  
chengduoZH 已提交
272

273 274 275 276 277 278 279 280 281 282 283 284 285 286
UNUSED constexpr char SinhDoc[] = R"DOC(
Sinh Activation Operator.

$$out = sinh(x)$$

)DOC";

UNUSED constexpr char CoshDoc[] = R"DOC(
Cosh Activation Operator.

$$out = cosh(x)$$

)DOC";

D
dzhwinter 已提交
287
UNUSED constexpr char RoundDoc[] = R"DOC(
288
The OP rounds the values in the input to the nearest integer value.
D
dzhwinter 已提交
289

N
Noel 已提交
290
.. code-block:: text
291 292 293 294 295 296 297 298

  input:
    x.shape = [4]
    x.data = [1.2, -0.9, 3.4, 0.9]

  output:
    out.shape = [4]
    out.data = [1., -1., 3., 1.]
D
dzhwinter 已提交
299

D
dzhwinter 已提交
300
)DOC";
D
dzhwinter 已提交
301

D
dzhwinter 已提交
302
UNUSED constexpr char ReciprocalDoc[] = R"DOC(
K
kexinzhao 已提交
303
Reciprocal Activation Operator.
K
Kexin Zhao 已提交
304

305
$$out = \\frac{1}{x}$$
K
Kexin Zhao 已提交
306

D
dzhwinter 已提交
307
)DOC";
308

D
dzhwinter 已提交
309
UNUSED constexpr char LogDoc[] = R"DOC(
K
kexinzhao 已提交
310
Log Activation Operator.
K
Kexin Zhao 已提交
311

312
$$out = \ln(x)$$
K
Kexin Zhao 已提交
313 314 315

Natural logarithm of x.

D
dzhwinter 已提交
316 317
)DOC";

J
joejiong 已提交
318 319 320 321 322 323 324 325 326
UNUSED constexpr char Log2Doc[] = R"DOC(
Log2 Activation Operator.

$$out = \log_2x$$

logarithm of x base to 2.

)DOC";

J
joejiong 已提交
327 328 329 330 331 332 333 334 335
UNUSED constexpr char Log10Doc[] = R"DOC(
Log10 Activation Operator.

$$out = \log_10_x$$

logarithm of x base to 10.

)DOC";

336 337 338 339 340 341 342 343 344
UNUSED constexpr char Log1pDoc[] = R"DOC(
Log Activation Operator.

$out = \ln(x+1)$

Natural logarithm of x.

)DOC";

D
dzhwinter 已提交
345
UNUSED constexpr char SquareDoc[] = R"DOC(
346
The OP square each elements of the inputs.
D
dzhwinter 已提交
347

348
$$out = x^2$$
349

D
dzhwinter 已提交
350 351
)DOC";

D
dzhwinter 已提交
352
UNUSED constexpr char SoftsignDoc[] = R"DOC(
D
dzhwinter 已提交
353 354
Softsign Activation Operator.

355
$$out = \\frac{x}{1 + \|x\|}$$
D
dzhwinter 已提交
356 357 358

)DOC";

T
tink2123 已提交
359 360 361 362 363 364
class AcosOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of acos operator");
    AddOutput("Out", "Output of acos operator");
    AddComment(R"DOC(
365
Arccosine Operator.
366

T
tink2123 已提交
367
$$out = \cos^{-1}(x)$$
368

T
tink2123 已提交
369 370 371
)DOC");
  }
};
372

T
tink2123 已提交
373 374 375
class AsinOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
W
wawltor 已提交
376 377 378
    AddInput("X",
             "Input of asin operator, an N-D Tensor, with data type float32, "
             "float64 or float16.");
T
tink2123 已提交
379 380
    AddOutput("Out", "Output of asin operator");
    AddComment(R"DOC(
381
Arcsine Operator.
382

T
tink2123 已提交
383
$$out = \sin^{-1}(x)$$
384

T
tink2123 已提交
385 386 387
)DOC");
  }
};
388

T
tink2123 已提交
389 390 391
class AtanOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
W
wawltor 已提交
392 393 394
    AddInput("X",
             "Input of atan operator, an N-D Tensor, with data type float32, "
             "float64 or float16.");
T
tink2123 已提交
395 396
    AddOutput("Out", "Output of atan operator");
    AddComment(R"DOC(
397
Arctangent Operator.
398

399
$$out = \tan^{-1}(x)$$
400

T
tink2123 已提交
401 402 403
)DOC");
  }
};
404

D
dzhwinter 已提交
405
class LeakyReluOpMaker : public framework::OpProtoAndCheckerMaker {
406
 public:
Y
Yu Yang 已提交
407
  void Make() override {
W
Wilber 已提交
408 409 410 411 412 413 414 415
    AddInput("X",
             "A LoDTensor or Tensor representing preactivation values. Must be "
             "one of the following types: float32, float64.");
    AddOutput(
        "Out",
        "A LoDTensor or Tensor with the same type and size as that of x.");
    AddAttr<float>("alpha", "Slope of the activation function at x < 0.")
        .SetDefault(0.02f);
A
Adam 已提交
416 417
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
418 419
        .SetDefault(false)
        .AsExtra();
K
Kexin Zhao 已提交
420
    AddComment(R"DOC(
D
dzhwinter 已提交
421
LeakyRelu Activation Operator.
K
Kexin Zhao 已提交
422

W
Wilber 已提交
423
$$out = \max(x, \alpha * x)$$
K
Kexin Zhao 已提交
424 425

)DOC");
426 427 428
  }
};

429 430 431 432 433 434 435 436 437 438 439 440 441 442
class SoftplusOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "Input of Softplus operator, an N-D Tensor, with data type "
             "float32, float64 or float16.");
    AddOutput(
        "Out",
        "Output of Softplus operator, a Tensor with shape same as input.");
    AddAttr<float>("beta", "The value of beta for Softplus.").SetDefault(1.0f);
    AddAttr<float>("threshold", "The value of threshold for Softplus.")
        .SetDefault(20.0f);
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel.")
443 444
        .SetDefault(false)
        .AsExtra();
445 446 447
    AddAttr<bool>(
        "use_cudnn",
        "(bool, default false) Only used in cudnn kernel, need install cudnn.")
448 449
        .SetDefault(false)
        .AsExtra();
450 451 452 453 454 455 456 457 458 459 460
    AddComment(R"DOC(
:strong:`Softplus Activation Operator`

..  math::
    out = \frac{1}{\beta} * \log(1 + \exp(\beta * x)) \\
    \text{For numerical stability, the implementation reverts to the linear function when :}\,x \times \beta > threshold.

)DOC");
  }
};

D
dzhwinter 已提交
461
class SoftShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
K
kexinzhao 已提交
462
 public:
Y
Yu Yang 已提交
463
  void Make() override {
D
dzhwinter 已提交
464 465 466
    AddInput("X", "Input of Softshrink operator");
    AddOutput("Out", "Output of Softshrink operator");
    AddAttr<float>("lambda", "non-negative offset").SetDefault(0.5f);
K
Kexin Zhao 已提交
467
    AddComment(R"DOC(
468 469 470
:strong:`Softshrink Activation Operator`

..  math::
471
    out = \begin{cases}
472 473 474 475
         x - \lambda, \text{if } x > \lambda \\
         x + \lambda, \text{if } x < -\lambda \\
         0,  \text{otherwise}
         \end{cases}
K
Kexin Zhao 已提交
476 477

)DOC");
K
kexinzhao 已提交
478 479 480
  }
};

D
dzhwinter 已提交
481
class HardShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
482
 public:
Y
Yu Yang 已提交
483
  void Make() override {
D
dzhwinter 已提交
484 485
    AddInput("X", "Input of HardShrink operator");
    AddOutput("Out", "Output of HardShrink operator");
Y
yuyang18 已提交
486 487
    AddAttr<float>("threshold",
                   "The value of threshold for HardShrink. [default: 0.5]")
D
dzhwinter 已提交
488
        .SetDefault(0.5f);
K
Kexin Zhao 已提交
489
    AddComment(R"DOC(
Y
yuyang18 已提交
490
:strong:`HardShrink activation operator`
K
Kexin Zhao 已提交
491

Y
yuyang18 已提交
492 493 494 495 496 497
..  math::
    out = \begin{cases}
            x, \text{if } x > \lambda \\
            x, \text{if } x < -\lambda \\
            0,  \text{otherwise}
          \end{cases}
K
Kexin Zhao 已提交
498 499

)DOC");
500 501 502
  }
};

503 504
class BReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
505
  void Make() override {
506 507 508 509 510 511
    AddInput("X",
             "The input is a multi-dimensional Tensor. The data type is "
             "float32, float64.");
    AddOutput("Out",
              "The output is a multi-dimensional Tensor which has same "
              "dimension and data type as the ``X``.");
512 513 514 515
    AddAttr<float>("t_min", "The min marginal value of BRelu")
        .SetDefault(static_cast<float>(0));
    AddAttr<float>("t_max", "The max marginal value of BRelu")
        .SetDefault(static_cast<float>(24));
K
Kexin Zhao 已提交
516
    AddComment(R"DOC(
K
kexinzhao 已提交
517
BRelu Activation Operator.
K
Kexin Zhao 已提交
518

519
$$out = \min(\max(x, t_{min}), t_{max})$$
K
Kexin Zhao 已提交
520 521

)DOC");
522 523 524 525 526
  }
};

class SoftReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
527
  void Make() override {
528
    AddInput("X", "Input of SoftRelu operator");
F
fengjiayi 已提交
529
    AddOutput("Out", "Output of SoftRelu operator");
530 531
    AddAttr<float>("threshold", "The threshold value of SoftRelu")
        .SetDefault(40.0f);
K
Kexin Zhao 已提交
532
    AddComment(R"DOC(
K
kexinzhao 已提交
533
SoftRelu Activation Operator.
K
Kexin Zhao 已提交
534

535
$$out = \ln(1 + \exp(\max(\min(x, threshold), -threshold)))$$
K
Kexin Zhao 已提交
536 537

)DOC");
538 539 540
  }
};

541 542
class ELUOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
543
  void Make() override {
544 545 546 547 548 549
    AddInput("X",
             "The input is a multi-dimensional Tensor. The data type is "
             "float32 or float64.");
    AddOutput("Out",
              "The output is a multi-dimensional Tensor which has same "
              "dimension and data type as the ``x``.");
550
    AddAttr<float>("alpha", "The alpha value of ELU").SetDefault(1.0f);
551
    AddComment(R"DOC(
K
kexinzhao 已提交
552
ELU Activation Operator.
K
Kexin Zhao 已提交
553 554 555 556

Applies the following element-wise computation on the input according to
https://arxiv.org/abs/1511.07289.

557
$$out = \max(0, x) + \min(0, \alpha * (e^x - 1))$$
K
Kexin Zhao 已提交
558 559

)DOC");
560 561 562
  }
};

563 564
class Relu6OpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
565
  void Make() override {
Z
zhupengyang 已提交
566 567 568 569 570 571 572 573
    AddInput("X",
             "Input of relu6 operator, an N-D Tensor, "
             "with data type float32, float64.");
    AddOutput(
        "Out",
        "Output of relu6 operator, a Tensor with the same shape as input.");
    AddAttr<float>("threshold",
                   "The threshold value of Relu6. Default is 6.0. ")
574
        .SetDefault(6.0f);
A
Adam 已提交
575 576
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
577 578
        .SetDefault(false)
        .AsExtra();
K
Kexin Zhao 已提交
579
    AddComment(R"DOC(
K
kexinzhao 已提交
580
Relu6 Activation Operator.
K
Kexin Zhao 已提交
581

582
$$out = \min(\max(0, x), threshold)$$
K
Kexin Zhao 已提交
583 584

)DOC");
585 586 587
  }
};

588 589
class PowOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
590
  void Make() override {
591
    AddInput("X", "Input of Pow operator");
592 593 594 595 596
    AddInput("FactorTensor",
             "(Tensor<float>, optional). If provided, pow will use this"
             "The shape of FactorTensor MUST BE [1]."
             "it has higher priority than attr(factor).")
        .AsDispensable();
F
fengjiayi 已提交
597
    AddOutput("Out", "Output of Pow operator");
598
    AddAttr<float>("factor", "The exponential factor of Pow").SetDefault(1.0f);
K
Kexin Zhao 已提交
599
    AddComment(R"DOC(
K
kexinzhao 已提交
600
Pow Activation Operator.
K
Kexin Zhao 已提交
601

602
$$out = x^{factor}$$
K
Kexin Zhao 已提交
603 604

)DOC");
605 606 607 608 609
  }
};

class STanhOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
610
  void Make() override {
611 612
    AddInput("X",
             "Input of STanh operator."
N
Noel 已提交
613
             " A Tensor with type float32, float64.");
614 615 616
    AddOutput("Out", "Output of STanh operator. A Tensor with type float32.");
    AddAttr<float>("scale_a", "The scale parameter of a for the input. ")
        .SetDefault(0.67f);
617 618
    AddAttr<float>("scale_b", "The scale parameter of b for the input")
        .SetDefault(1.7159f);
K
Kexin Zhao 已提交
619
    AddComment(R"DOC(
K
kexinzhao 已提交
620
STanh Activation Operator.
K
Kexin Zhao 已提交
621

Y
Yan Chunwei 已提交
622
$$out = b * \\frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}$$
K
Kexin Zhao 已提交
623 624

)DOC");
Q
qijun 已提交
625 626 627
  }
};

628 629
class ThresholdedReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
630
  void Make() override {
631
    AddInput("X", "Input of ThresholdedRelu operator");
F
fengjiayi 已提交
632
    AddOutput("Out", "Output of ThresholdedRelu operator");
Y
yuyang18 已提交
633 634
    AddAttr<float>("threshold",
                   "The threshold location of activation. [default 1.0].")
635
        .SetDefault(1.0f);
K
Kexin Zhao 已提交
636
    AddComment(R"DOC(
Y
yuyang18 已提交
637
:strong:`ThresholdedRelu activation operator`
K
Kexin Zhao 已提交
638

Y
yuyang18 已提交
639
..  math::
K
Kexin Zhao 已提交
640

Y
yuyang18 已提交
641
    out = \begin{cases}
Y
yuyang18 已提交
642
             x,  \text{if } x > threshold \\
Y
yuyang18 已提交
643 644
             0,  \text{otherwise}
          \end{cases}
K
Kexin Zhao 已提交
645
)DOC");
646 647 648
  }
};

649 650
class HardSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
651
  void Make() override {
652 653 654 655 656
    AddInput("X", "An N-D Tensor with data type float32, float64. ");
    AddOutput("Out", "A Tensor with the same shape as input. ");
    AddAttr<float>("slope",
                   "The slope of the linear approximation of sigmoid. Its "
                   "value MUST BE positive. Default is 0.2. ")
657
        .SetDefault(0.2f);
658 659 660
    AddAttr<float>(
        "offset",
        "The offset of the linear approximation of sigmoid. Default is 0.5. ")
661
        .SetDefault(0.5f);
662
    AddComment(R"DOC(
K
kexinzhao 已提交
663
HardSigmoid Activation Operator.
664

665
A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
K
Kexin Zhao 已提交
666
which is much faster than sigmoid.
667

668
$$out = \max(0, \min(1, slope * x + offset))$$
669

K
Kexin Zhao 已提交
670
)DOC");
671 672 673
  }
};

A
Abhinav Arora 已提交
674 675
class SwishOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
676
  void Make() override {
A
Abhinav Arora 已提交
677
    AddInput("X", "Input of Swish operator");
F
fengjiayi 已提交
678
    AddOutput("Out", "Output of Swish operator");
A
Abhinav Arora 已提交
679
    AddAttr<float>("beta", "Constant beta of swish operator").SetDefault(1.0f);
680 681
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
S
Shang Zhizhou 已提交
682 683
        .SetDefault(false)
        .AsExtra();
A
Abhinav Arora 已提交
684 685 686
    AddComment(R"DOC(
Swish Activation Operator.

687
$$out = \\frac{x}{1 + e^{- \beta \ x}}$$
A
Abhinav Arora 已提交
688 689 690 691 692

)DOC");
  }
};

H
huangjun12 已提交
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
class HardSwishOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of HardSwish operator");
    AddOutput("Out", "Output of HardSwish operator");
    AddAttr<float>("threshold", "The threshold parameter of HardSwish operator")
        .SetDefault(6.0f);
    AddAttr<float>("scale", "The scale parameter of HardSwish operator")
        .SetDefault(6.0f);
    AddAttr<float>("offset", "The offset parameter of HardSwish operator")
        .SetDefault(3.0f);
    AddComment(R"DOC(
HardSwish Activation Operator.

The hard version of swish(https://arxiv.org/pdf/1905.02244.pdf).

709
$$out = \frac{x * (min(max(0, x+offset), threshold))}{scale}$$
H
huangjun12 已提交
710 711 712 713 714 715 716 717 718

The threshold and scale should be positive. The offset can be either positive or negative.
The default parameters are set according to the above reference.
It is recommended to use the defaults for this activation.

)DOC");
  }
};

D
dzhwinter 已提交
719
REGISTER_ACTIVATION_OP_MAKER(Sigmoid, SigmoidDoc);
M
minghaoBD 已提交
720
REGISTER_ACTIVATION_OP_MAKER(Silu, SiluDoc);
D
dzhwinter 已提交
721 722
REGISTER_ACTIVATION_OP_MAKER(LogSigmoid, LogSigmoidDoc);
REGISTER_ACTIVATION_OP_MAKER(Exp, ExpDoc);
R
ronnywang 已提交
723
REGISTER_ACTIVATION_OP_MAKER(Expm1, Expm1Doc);
D
dzhwinter 已提交
724 725 726 727
REGISTER_ACTIVATION_OP_MAKER(Relu, ReluDoc);
REGISTER_ACTIVATION_OP_MAKER(Tanh, TanhDoc);
REGISTER_ACTIVATION_OP_MAKER(TanhShrink, TanhShrinkDoc);
REGISTER_ACTIVATION_OP_MAKER(Sqrt, SqrtDoc);
Z
zhoukunsheng 已提交
728
REGISTER_ACTIVATION_OP_MAKER(Rsqrt, RsqrtDoc);
D
dzhwinter 已提交
729 730 731
REGISTER_ACTIVATION_OP_MAKER(Ceil, CeilDoc);
REGISTER_ACTIVATION_OP_MAKER(Floor, FloorDoc);
REGISTER_ACTIVATION_OP_MAKER(Cos, CosDoc);
J
joejiong 已提交
732
REGISTER_ACTIVATION_OP_MAKER(Tan, TanDoc);
D
dzhwinter 已提交
733
REGISTER_ACTIVATION_OP_MAKER(Sin, SinDoc);
734 735
REGISTER_ACTIVATION_OP_MAKER(Sinh, SinhDoc);
REGISTER_ACTIVATION_OP_MAKER(Cosh, CoshDoc);
D
dzhwinter 已提交
736 737 738
REGISTER_ACTIVATION_OP_MAKER(Round, RoundDoc);
REGISTER_ACTIVATION_OP_MAKER(Reciprocal, ReciprocalDoc);
REGISTER_ACTIVATION_OP_MAKER(Log, LogDoc);
J
joejiong 已提交
739
REGISTER_ACTIVATION_OP_MAKER(Log2, Log2Doc);
J
joejiong 已提交
740
REGISTER_ACTIVATION_OP_MAKER(Log10, Log10Doc);
741
REGISTER_ACTIVATION_OP_MAKER(Log1p, Log1pDoc);
D
dzhwinter 已提交
742 743 744
REGISTER_ACTIVATION_OP_MAKER(Square, SquareDoc);
REGISTER_ACTIVATION_OP_MAKER(Softsign, SoftsignDoc);

745
template <ActBwdOpFwdDeps kDepValue>
746 747 748 749 750
class ActivationOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
751
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepX)) {
752
      if (ctx->HasOutput("DX")) {
753 754 755
        ctx->ShareDim("X", "DX");
        ctx->ShareLoD("X", "DX");
      }
756
      if (ctx->HasOutput("DDOut")) {
757 758 759
        ctx->ShareDim("X", "DDOut");
        ctx->ShareLoD("X", "DDOut");
      }
760
    }
761
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepOut)) {
762
      if (ctx->HasOutput("DOut")) {
763 764 765
        ctx->ShareDim("Out", "DOut");
        ctx->ShareLoD("Out", "DOut");
      }
766 767 768 769
      if (ctx->HasOutput("DDOut")) {
        ctx->ShareDim("Out", "DDOut");
        ctx->ShareLoD("Out", "DDOut");
      }
770 771 772 773
      if (ctx->HasOutput("DOutNew")) {
        ctx->ShareDim("Out", "DOutNew");
        ctx->ShareLoD("Out", "DOutNew");
      }
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "DDX");
  }
};

template <ActBwdOpFwdDeps kDepValue>
class ActivationOpDoubleGrad2 : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepX)) {
      if (ctx->HasOutput("DDOut")) {
        ctx->ShareDim("X", "DDOut");
        ctx->ShareLoD("X", "DDOut");
      }
    }
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepOut)) {
      if (ctx->HasOutput("DDOut")) {
798 799 800
        ctx->ShareDim("Out", "DDOut");
        ctx->ShareLoD("Out", "DDOut");
      }
801 802 803 804 805 806 807 808 809 810
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "DDX");
  }
};

811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
template <ActBwdOpFwdDeps kDepValue>
class ActivationOpTripleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepX)) {
      if (ctx->HasOutput("DX")) {
        ctx->ShareDim("X", "DX");
        ctx->ShareLoD("X", "DX");
      }
      if (ctx->HasOutput("DDOut")) {
        ctx->ShareDim("X", "DDOut");
        ctx->ShareLoD("X", "DDOut");
      }
    }
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepOut)) {
      if (ctx->HasOutput("D_DOut")) {
        ctx->ShareDim("Out", "D_DOut");
        ctx->ShareLoD("Out", "D_DOut");
      }
      if (ctx->HasOutput("D_OutNew")) {
        ctx->ShareDim("Out", "D_OutNew");
        ctx->ShareLoD("Out", "D_OutNew");
      }
      if (ctx->HasOutput("D_DDx")) {
        ctx->ShareDim("DDX", "D_DDx");
        ctx->ShareLoD("DDX", "D_DDx");
      }
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "DDX");
  }
};

850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
template <typename T>
class SigmoidDoubleGradMaker
    : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("sigmoid_grad_grad");
    // input1: Out
    op->SetInput("Out", this->Input("Out"));
    // input2: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    op->SetAttrMap(this->Attrs());
    // output: ddy
    op->SetOutput("DOutNew", this->InputGrad("Out"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
template <typename T>
class SigmoidTripleGradMaker
    : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("sigmoid_triple_grad");
    // Out, DDX, DOut, D_DDOut, D_DOut_New   // input
    // D_OutNew, D_DOut, D_DDx               // output
    // input1: Out
    op->SetInput("Out", this->Input("Out"));
    // input2: ddx
    op->SetInput("DDX", this->Input("DDX"));
    // input3: dout
    op->SetInput("DOut", this->Input("DOut"));
    // input4: d_ddout
    op->SetInput("D_DDOut", this->OutputGrad("DDOut"));
    // input5: d_dout_new
    op->SetInput("D_DOut_New", this->OutputGrad("DOutNew"));
    op->SetAttrMap(this->Attrs());

    // output: d_dOut, d_OutNew, d_ddx
    op->SetOutput("D_OutNew", this->InputGrad("Out"));
    op->SetOutput("D_DOut", this->InputGrad("DOut"));
    op->SetOutput("D_DDx", this->InputGrad("DDX"));
  }
};

901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
template <typename T>
class TanhDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("tanh_grad_grad");
    // input1: Out
    op->SetInput("Out", this->Input("Out"));
    // input2: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    op->SetAttrMap(this->Attrs());
    // output: ddy
    op->SetOutput("DOutNew", this->InputGrad("Out"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

921 922
// ReluGrad: dx = dy if y >= 0 else 0
// ReluGradGrad: ddy = ddx if y >= 0 else 0
H
hong 已提交
923 924
template <typename T>
class ReluDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
925
 public:
H
hong 已提交
926
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
927 928

 protected:
929
  void Apply(GradOpPtr<T> op) const override {
930 931
    op->SetType("relu_grad_grad");
    // input1: Out
H
hong 已提交
932
    op->SetInput("Out", this->Input("Out"));
Q
qingqing01 已提交
933
    // input2: ddx
H
hong 已提交
934 935
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
936
    // output: ddy
H
hong 已提交
937
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
938 939 940
  }
};

941 942
// leaky_relu Grad: dx=dy if x>=0 else alpha * dy
// leaky_relu GradGrad: ddy=ddx if x>=0 else alpha * ddx
H
hong 已提交
943
template <typename T>
944
class LeakyReluDoubleGradMaker
H
hong 已提交
945
    : public ::paddle::framework::SingleGradOpMaker<T> {
946
 public:
H
hong 已提交
947
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
948 949

 protected:
950
  void Apply(GradOpPtr<T> op) const override {
951
    op->SetType("leaky_relu_grad_grad");
952 953
    // input1: X
    op->SetInput("X", this->Input("X"));
954
    // X@GRAD@GRAD: ddx
H
hong 已提交
955 956
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
957
    // Out@GRAD@GRAD: ddy
H
hong 已提交
958
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
959 960 961
  }
};

D
Double_V 已提交
962 963 964 965 966 967 968 969
// elu grad: dx=dy if y>0 else alpha*dy*x.exp()
// elu gradgrad: ddx=ddy if y>0 else alpha*ddy*x.exp()
template <typename T>
class ELUDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
970
  void Apply(GradOpPtr<T> op) const override {
D
Double_V 已提交
971 972 973 974 975 976 977 978 979 980 981 982 983 984
    op->SetType("elu_grad_grad");

    op->SetInput("X", this->Input("X"));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    // X@GRAD@GRAD: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());

    // Out@GRAD@GRAD: ddy
    op->SetOutput("DX", this->InputGrad("X"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

L
lvmengsi 已提交
985 986
// sqrt Grad: dx = 0.5 * dy / y
// sqrt GradGrad: ddy = 0.5 * ddx / y, dy = -1 * dx * ddx
H
hong 已提交
987 988
template <typename T>
class SqrtDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
L
lvmengsi 已提交
989
 public:
H
hong 已提交
990
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
L
lvmengsi 已提交
991 992

 protected:
993
  void Apply(GradOpPtr<T> op) const override {
L
lvmengsi 已提交
994
    op->SetType("sqrt_grad_grad");
H
hong 已提交
995 996 997 998 999 1000
    op->SetInput("Out", this->Input("Out"));
    op->SetInput("DX", this->Output(framework::GradVarName("X")));
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
    op->SetOutput("DOut", this->InputGrad("Out"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
L
lvmengsi 已提交
1001 1002 1003
  }
};

W
whs 已提交
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
// rsqrt Grad: dx = -0.5 * dy * y * y * y
// rsqrt GradGrad: ddy = -0.5 * ddx * y * y * y, dy = (3/y) * ddx
template <typename T>
class RsqrtDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("rsqrt_grad_grad");
    op->SetInput("Out", this->Input("Out"));
    op->SetInput("DX", this->Output(framework::GradVarName("X")));
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
    op->SetOutput("DOut", this->InputGrad("Out"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

1023 1024
// square Grad: dx=2x*dy
// square GradGrad: ddy=2x*ddx, dx=2dy*ddx
H
hong 已提交
1025 1026
template <typename T>
class SquareDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
1027
 public:
H
hong 已提交
1028
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
1029 1030

 protected:
1031
  void Apply(GradOpPtr<T> op) const override {
1032
    op->SetType("square_grad_grad");
H
hong 已提交
1033
    op->SetInput("X", this->Input("X"));
1034
    // Out@GRAD: dy
H
hong 已提交
1035
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
1036
    // X@GRAD@GRAD: ddx
H
hong 已提交
1037
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
1038

H
hong 已提交
1039
    op->SetAttrMap(this->Attrs());
1040 1041

    // X@GRAD: dx
H
hong 已提交
1042
    op->SetOutput("DX", this->InputGrad("X"));
1043
    // Out@GRAD@GRAD: ddy
H
hong 已提交
1044
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
1045 1046 1047
  }
};

1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
// log Grad: dx = dout / x
// log Grad Grad: ddout = ddx / x; dx = -(dout / x) * (ddx / x)
template <typename T>
class LogDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("log_grad_grad");
    op->SetInput("X", this->Input("X"));
    // X@GRAD@GRAD: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    op->SetAttrMap(this->Attrs());
    // X@GRAD: dx
    op->SetOutput("DX", this->InputGrad("X"));
    // Out@GRAD@GRAD: ddy
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

1070
DECLARE_INPLACE_OP_INFERER(ActivationGradOpInplaceInferer,
1071 1072
                           {framework::GradVarName("Out"),  // dout
                            framework::GradVarName("X")});  // dx
1073
DECLARE_INPLACE_OP_INFERER(ActivationDoubleGradOpInplaceInferer,
1074
                           {"DDX", "DDOut"});
1075 1076
DECLARE_INPLACE_OP_INFERER(ActivationTripleGradOpInplaceInferer,
                           {"DDX", "D_DOut"});
1077

H
hong 已提交
1078 1079
template <typename T>
class PowGradOpMaker : public framework::SingleGradOpMaker<T> {
1080
 public:
H
hong 已提交
1081
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
1082 1083

 protected:
1084
  void Apply(GradOpPtr<T> op) const override {
1085
    op->SetType("pow_grad");
H
hong 已提交
1086 1087 1088 1089 1090
    op->SetInput("X", this->Input("X"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetInput("FactorTensor", this->Input("FactorTensor"));
    op->SetAttrMap(this->Attrs());
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
  }
};
class PowOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    ctx->ShareDim("X", /*->*/ "Out");
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "X");
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "FactorTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
};

class PowOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    auto out_grad_name = framework::GradVarName("Out");
    ctx->ShareDim(out_grad_name, framework::GradVarName("X"));
    ctx->ShareLoD(out_grad_name, framework::GradVarName("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, framework::GradVarName("Out"));
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "FactorTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
};
1145
DECLARE_INPLACE_OP_INFERER(ActFwdInplaceInferer, {"X", "Out"});
Q
qijun 已提交
1146 1147 1148 1149
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
1150
namespace plat = paddle::platform;
1151

1152 1153 1154 1155
#define REGISTER_ACTIVATION_OP(KERNEL_TYPE, OP_NAME, functor, grad_functor) \
  REGISTER_OPERATOR(                                                        \
      KERNEL_TYPE, ops::ActivationOp, ops::OP_NAME##OpMaker,                \
      ops::ActivationOpInferVarType,                                        \
H
hong 已提交
1156 1157 1158 1159
      ops::ActivationGradOpMaker<ops::grad_functor<float>::FwdDeps(),       \
                                 paddle::framework::OpDesc>,                \
      ops::ActivationGradOpMaker<ops::grad_functor<float>::FwdDeps(),       \
                                 paddle::imperative::OpBase>,               \
1160
      std::conditional<ops::CanInplaceAct<ops::grad_functor<float>>(),      \
1161
                       ops::ActFwdInplaceInferer, void>::type);             \
1162
  REGISTER_OPERATOR(KERNEL_TYPE##_grad, ops::ActivationOpGrad,              \
1163
                    ops::ActivationGradOpInplaceInferer);
1164 1165 1166

#define REGISTER_ACTIVATION_CPU_KERNEL(act_type, op_name, functor,        \
                                       grad_functor)                      \
Q
QI JUN 已提交
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
  REGISTER_OP_CPU_KERNEL(                                                 \
      act_type, ops::ActivationKernel<paddle::platform::CPUDeviceContext, \
                                      ops::functor<float>>,               \
      ops::ActivationKernel<paddle::platform::CPUDeviceContext,           \
                            ops::functor<double>>);                       \
  REGISTER_OP_CPU_KERNEL(                                                 \
      act_type##_grad,                                                    \
      ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,       \
                                ops::grad_functor<float>>,                \
      ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,       \
Y
Yu Yang 已提交
1177
                                ops::grad_functor<double>>);
1178

1179 1180
FOR_EACH_ACTIVATION_OP(REGISTER_ACTIVATION_OP);
FOR_EACH_ACTIVATION_OP(REGISTER_ACTIVATION_CPU_KERNEL);
1181

1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
/* ==========================    sigmoid register  =============================
 */
// 1. Register Sigmoid Operator
REGISTER_OPERATOR(
    sigmoid, ops::ActivationOp, ops::SigmoidOpMaker,
    ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::SigmoidGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::SigmoidGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    std::conditional<ops::CanInplaceAct<ops::SigmoidGradFunctor<float>>(),
                     ops::ActFwdInplaceInferer, void>::type);

// 2. Register Sigmoid Grad Operator
REGISTER_OPERATOR(sigmoid_grad, ops::ActivationOpGrad,
                  ops::ActivationGradOpInplaceInferer,
                  ops::SigmoidDoubleGradMaker<paddle::framework::OpDesc>,
1199
                  ops::SigmoidDoubleGradMaker<paddle::imperative::OpBase>);
1200 1201 1202 1203

// 3. Register Sigmoid DoubleGrad Operator
REGISTER_OPERATOR(
    sigmoid_grad_grad,
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
    ops::ActivationOpDoubleGrad<ops::SigmoidGradGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInferer,
    ops::SigmoidTripleGradMaker<paddle::framework::OpDesc>,
    ops::SigmoidTripleGradMaker<paddle::imperative::OpBase>);

// 4. Register Sigmoid TripleGrad Operator
REGISTER_OPERATOR(sigmoid_triple_grad,
                  ops::ActivationOpTripleGrad<
                      ops::SigmoidTripleGradFunctor<float>::FwdDeps()>,
                  ops::ActivationTripleGradOpInplaceInferer);
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228

// Register Sigmoid/GradSigmoid Kernels
REGISTER_ACTIVATION_CPU_KERNEL(sigmoid, Sigmoid, SigmoidFunctor,
                               SigmoidGradFunctor);

// Register DoubleGrad Kernel
REGISTER_OP_CPU_KERNEL(
    sigmoid_grad_grad,
    ops::SigmoidDoubleGradKernel<plat::CPUDeviceContext,
                                 ops::SigmoidGradGradFunctor<float>>,
    ops::SigmoidDoubleGradKernel<plat::CPUDeviceContext,
                                 ops::SigmoidGradGradFunctor<double>>,
    ops::SigmoidDoubleGradKernel<plat::CPUDeviceContext,
                                 ops::SigmoidGradGradFunctor<plat::float16>>);

1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
// Register TripleGrad Kernel
REGISTER_OP_CPU_KERNEL(
    sigmoid_triple_grad,
    ops::SigmoidTripleGradKernel<plat::CPUDeviceContext,
                                 ops::SigmoidTripleGradFunctor<float>>,
    ops::SigmoidTripleGradKernel<plat::CPUDeviceContext,
                                 ops::SigmoidTripleGradFunctor<double>>,
    ops::SigmoidTripleGradKernel<plat::CPUDeviceContext,
                                 ops::SigmoidTripleGradFunctor<plat::float16>>);

1239 1240
/* ========================================================================== */

1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
/* ==========================    tanh register  ============================= */
REGISTER_OPERATOR(
    tanh, ops::ActivationOp, ops::TanhOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::TanhGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::TanhGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    std::conditional<ops::CanInplaceAct<ops::TanhGradFunctor<float>>(),
                     ops::ActFwdInplaceInferer, void>::type);
REGISTER_OPERATOR(tanh_grad, ops::ActivationOpGrad,
                  ops::ActivationGradOpInplaceInferer,
                  ops::TanhDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::TanhDoubleGradMaker<paddle::imperative::OpBase>)
REGISTER_OPERATOR(
    tanh_grad_grad,
    ops::ActivationOpDoubleGrad<ops::TanhGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInferer);

REGISTER_ACTIVATION_CPU_KERNEL(tanh, Tanh, TanhFunctor, TanhGradFunctor);
REGISTER_OP_CPU_KERNEL(
    tanh_grad_grad, ops::TanhDoubleGradKernel<plat::CPUDeviceContext,
                                              ops::TanhGradGradFunctor<float>>,
    ops::TanhDoubleGradKernel<plat::CPUDeviceContext,
                              ops::TanhGradGradFunctor<double>>,
    ops::TanhDoubleGradKernel<plat::CPUDeviceContext,
                              ops::TanhGradGradFunctor<plat::float16>>);
/* ========================================================================== */

1269
/* ==========================    relu register  ============================= */
1270 1271
REGISTER_OPERATOR(
    relu, ops::ActivationOp, ops::ReluOpMaker, ops::ActivationOpInferVarType,
H
hong 已提交
1272 1273 1274 1275
    ops::ActivationGradOpMaker<ops::ReluGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::ReluGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1276
    ops::ActFwdInplaceInferer);
1277
REGISTER_OPERATOR(relu_grad, ops::ActivationOpGrad,
1278
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
1279 1280
                  ops::ReluDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::ReluDoubleGradMaker<paddle::imperative::OpBase>);
1281 1282
REGISTER_OPERATOR(
    relu_grad_grad,
1283
    ops::ActivationOpDoubleGrad2<ops::ReluGradFunctor<float>::FwdDeps()>,
1284
    ops::ActivationDoubleGradOpInplaceInferer);
1285

1286
REGISTER_ACTIVATION_CPU_KERNEL(relu, Relu, ReluCPUFunctor, ReluGradFunctor);
1287 1288 1289 1290 1291 1292 1293 1294 1295

REGISTER_OP_CPU_KERNEL(
    relu_grad_grad,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::ReluGradGradFunctor<float>>,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::ReluGradGradFunctor<double>>,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::ReluGradGradFunctor<plat::float16>>);
1296
/* ========================================================================== */
1297

1298
/* ======================== leaky relu register  ============================ */
1299 1300 1301
REGISTER_OPERATOR(
    leaky_relu, ops::ActivationOp, ops::LeakyReluOpMaker,
    ops::ActivationOpInferVarType,
H
hong 已提交
1302 1303 1304 1305
    ops::ActivationGradOpMaker<ops::LeakyReluGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::LeakyReluGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1306
    ops::ActFwdInplaceInferer);
1307
REGISTER_OPERATOR(leaky_relu_grad, ops::ActivationOpGrad,
1308
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
1309 1310
                  ops::LeakyReluDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::LeakyReluDoubleGradMaker<paddle::imperative::OpBase>);
1311 1312
REGISTER_OPERATOR(
    leaky_relu_grad_grad,
1313
    ops::ActivationOpDoubleGrad2<ops::LeakyReluGradFunctor<float>::FwdDeps()>,
1314
    ops::ActivationDoubleGradOpInplaceInferer);
1315

1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
REGISTER_ACTIVATION_CPU_KERNEL(leaky_relu, LeakyRelu, LeakyReluFunctor,
                               LeakyReluGradFunctor);
REGISTER_OP_CPU_KERNEL(
    leaky_relu_grad_grad,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::LeakyReluGradGradFunctor<float>>,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::LeakyReluGradGradFunctor<double>>,
    ops::ActivationDoubleGradKernel<
        plat::CPUDeviceContext, ops::LeakyReluGradGradFunctor<plat::float16>>);
1326 1327
/* ========================================================================== */

D
Double_V 已提交
1328 1329 1330 1331 1332 1333 1334 1335 1336
/* ========================    elu  register     ============================ */
REGISTER_OPERATOR(
    elu, ops::ActivationOp, ops::ELUOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::ELUGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::ELUGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    ops::ActFwdInplaceInferer);
REGISTER_OPERATOR(elu_grad, ops::ActivationOpGrad,
1337
                  ops::ActivationGradOpInplaceInferer,
D
Double_V 已提交
1338 1339 1340 1341 1342
                  ops::ELUDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::ELUDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(
    elu_grad_grad,
    ops::ActivationOpDoubleGrad<ops::ELUGradFunctor<float>::FwdDeps()>,
1343
    ops::ActivationDoubleGradOpInplaceInferer);
D
Double_V 已提交
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355

REGISTER_ACTIVATION_CPU_KERNEL(elu, ELU, ELUFunctor, ELUGradFunctor);
REGISTER_OP_CPU_KERNEL(
    elu_grad_grad, ops::ELUDoubleGradKernel<plat::CPUDeviceContext,
                                            ops::ELUGradGradFunctor<float>>,
    ops::ELUDoubleGradKernel<plat::CPUDeviceContext,
                             ops::ELUGradGradFunctor<double>>,
    ops::ELUDoubleGradKernel<plat::CPUDeviceContext,
                             ops::ELUGradGradFunctor<plat::float16>>);

/* ========================================================================== */

L
lvmengsi 已提交
1356 1357 1358
/* ===========================   sqrt register  ============================= */
REGISTER_OPERATOR(
    sqrt, ops::ActivationOp, ops::SqrtOpMaker, ops::ActivationOpInferVarType,
H
hong 已提交
1359 1360 1361 1362
    ops::ActivationGradOpMaker<ops::SqrtGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::SqrtGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1363
    ops::ActFwdInplaceInferer);
L
lvmengsi 已提交
1364
REGISTER_OPERATOR(sqrt_grad, ops::ActivationOpGrad,
1365
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
1366 1367
                  ops::SqrtDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::SqrtDoubleGradMaker<paddle::imperative::OpBase>);
L
lvmengsi 已提交
1368 1369
REGISTER_OPERATOR(
    sqrt_grad_grad,
1370
    ops::ActivationOpDoubleGrad<ops::SqrtGradGradFunctor<float>::FwdDeps()>,
1371
    ops::ActivationDoubleGradOpInplaceInferer);
1372

L
lvmengsi 已提交
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
REGISTER_ACTIVATION_CPU_KERNEL(sqrt, Sqrt, SqrtFunctor, SqrtGradFunctor);
REGISTER_OP_CPU_KERNEL(
    sqrt_grad_grad, ops::SqrtDoubleGradKernel<plat::CPUDeviceContext,
                                              ops::SqrtGradGradFunctor<float>>,
    ops::SqrtDoubleGradKernel<plat::CPUDeviceContext,
                              ops::SqrtGradGradFunctor<double>>,
    ops::SqrtDoubleGradKernel<plat::CPUDeviceContext,
                              ops::SqrtGradGradFunctor<plat::float16>>);
/* ========================================================================== */

W
whs 已提交
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
/* ===========================   rsqrt register  =============================
 */
REGISTER_OPERATOR(
    rsqrt, ops::ActivationOp, ops::RsqrtOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::RsqrtGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::RsqrtGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    ops::ActFwdInplaceInferer);
REGISTER_OPERATOR(rsqrt_grad, ops::ActivationOpGrad,
                  ops::ActivationGradOpInplaceInferer,
                  ops::RsqrtDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::RsqrtDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(
    rsqrt_grad_grad,
    ops::ActivationOpDoubleGrad<ops::RsqrtGradGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInferer);

REGISTER_ACTIVATION_CPU_KERNEL(rsqrt, Rsqrt, RsqrtFunctor, RsqrtGradFunctor);
REGISTER_OP_CPU_KERNEL(
    rsqrt_grad_grad,
    ops::RsqrtDoubleGradKernel<plat::CPUDeviceContext,
                               ops::RsqrtGradGradFunctor<float>>,
    ops::RsqrtDoubleGradKernel<plat::CPUDeviceContext,
                               ops::RsqrtGradGradFunctor<double>>,
    ops::RsqrtDoubleGradKernel<plat::CPUDeviceContext,
                               ops::RsqrtGradGradFunctor<plat::float16>>);
/* ========================================================================== */

1412 1413 1414 1415
/* ==========================   square register  ============================ */
REGISTER_OPERATOR(
    square, ops::ActivationOp, ops::SquareOpMaker,
    ops::ActivationOpInferVarType,
H
hong 已提交
1416 1417 1418 1419
    ops::ActivationGradOpMaker<ops::SquareGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::SquareGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1420
    ops::ActFwdInplaceInferer);
1421
REGISTER_OPERATOR(square_grad, ops::ActivationOpGrad,
1422
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
1423 1424
                  ops::SquareDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::SquareDoubleGradMaker<paddle::imperative::OpBase>);
1425 1426
REGISTER_OPERATOR(
    square_grad_grad,
1427
    ops::ActivationOpDoubleGrad<ops::SquareGradGradFunctor<float>::FwdDeps()>,
1428
    ops::ActivationDoubleGradOpInplaceInferer);
1429

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
REGISTER_OP_CPU_KERNEL(square,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<float>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<double>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<int>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<int64_t>>);
REGISTER_OP_CPU_KERNEL(
    square_grad, ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                                           ops::SquareGradFunctor<float>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::SquareGradFunctor<double>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::SquareGradFunctor<int>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::SquareGradFunctor<int64_t>>);
1448 1449 1450 1451 1452 1453 1454 1455

REGISTER_OP_CPU_KERNEL(
    square_grad_grad,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<float>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<double>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
1456 1457 1458 1459 1460
                                ops::SquareGradGradFunctor<plat::float16>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<int>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<int64_t>>);
1461
/* ========================================================================== */
1462 1463 1464 1465 1466

/* ==========================   pow register  ============================ */

REGISTER_OPERATOR(
    pow, ops::PowOp, ops::PowOpMaker, ops::ActivationOpInferVarType,
H
hong 已提交
1467 1468
    ops::PowGradOpMaker<paddle::framework::OpDesc>,
    ops::PowGradOpMaker<paddle::imperative::OpBase>,
1469
    std::conditional<ops::CanInplaceAct<ops::PowGradFunctor<float>>(),
1470
                     ops::ActFwdInplaceInferer, void>::type);
1471
REGISTER_OPERATOR(pow_grad, ops::PowOpGrad,
1472
                  ops::ActivationGradOpInplaceInferer);
1473 1474 1475

REGISTER_OP_CPU_KERNEL(
    pow, ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<float>>,
1476 1477 1478
    ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<double>>,
    ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<int>>,
    ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<int64_t>>);
1479 1480 1481
REGISTER_OP_CPU_KERNEL(
    pow_grad,
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<float>>,
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<double>>,
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<int>>,
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<int64_t>>);
/* ========================================================================== */

/* ==========================   exp register  ============================ */
REGISTER_OPERATOR(
    exp, ops::ActivationOp, ops::ExpOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::ExpGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::ExpGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    std::conditional<ops::CanInplaceAct<ops::ExpGradFunctor<float>>(),
                     ops::ActFwdInplaceInferer, void>::type);
REGISTER_OPERATOR(exp_grad, ops::ActivationOpGrad,
1497
                  ops::ActivationGradOpInplaceInferer);
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517

REGISTER_OP_CPU_KERNEL(exp,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<float>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<double>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<int>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<int64_t>>);
REGISTER_OP_CPU_KERNEL(
    exp_grad, ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                                        ops::ExpGradFunctor<float>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::ExpGradFunctor<double>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::ExpGradFunctor<int>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::ExpGradFunctor<int64_t>>);
/* ========================================================================== */
R
ronnywang 已提交
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545

/* ==========================   expm1 register  ============================ */
REGISTER_OPERATOR(
    expm1, ops::ActivationOp, ops::Expm1OpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::Expm1GradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::Expm1GradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    std::conditional<ops::CanInplaceAct<ops::Expm1GradFunctor<float>>(),
                     ops::ActFwdInplaceInferer, void>::type);
REGISTER_OPERATOR(expm1_grad, ops::ActivationOpGrad,
                  ops::ActivationGradOpInplaceInferer);

REGISTER_OP_CPU_KERNEL(expm1,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::Expm1Functor<float>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::Expm1Functor<double>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::Expm1Functor<plat::float16>>);
REGISTER_OP_CPU_KERNEL(
    expm1_grad, ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                                          ops::Expm1GradFunctor<float>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::Expm1GradFunctor<double>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::Expm1GradFunctor<plat::float16>>);
/* ========================================================================== */
1546

1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
/* ==========================  Log register ==================================*/
REGISTER_OPERATOR(
    log, ops::ActivationOp, ops::LogOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::LogGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::LogGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    ops::ActFwdInplaceInferer);
REGISTER_OPERATOR(log_grad, ops::ActivationOpGrad,
                  ops::ActivationGradOpInplaceInferer,
                  ops::LogDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::LogDoubleGradMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(
    log_grad_grad,
    ops::ActivationOpDoubleGrad<ops::LogGradGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInferer);

REGISTER_ACTIVATION_CPU_KERNEL(log, Log, LogFunctor, LogGradFunctor);

REGISTER_OP_CPU_KERNEL(
    log_grad_grad, ops::LogDoubleGradKernel<plat::CPUDeviceContext,
                                            ops::LogGradGradFunctor<float>>,
    ops::LogDoubleGradKernel<plat::CPUDeviceContext,
                             ops::LogGradGradFunctor<double>>,
    ops::LogDoubleGradKernel<plat::CPUDeviceContext,
                             ops::LogGradGradFunctor<plat::float16>>);
/* ========================================================================== */

1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
/* ==========================  register checkpoint ===========================*/
REGISTER_OP_VERSION(leaky_relu)
    .AddCheckpoint(
        R"ROC(fix leaky_relu, bahavior changed when alpha < 0 or alpha > 1)ROC",
        paddle::framework::compatible::OpVersionDesc()
            .BugfixWithBehaviorChanged(
                "leaky_relu calculate formula before checkponit: out = max(x, "
                "alpha * x); after checkpoint: out = x if x > 0 else alpha * "
                "x"));

REGISTER_OP_VERSION(hard_shrink)
    .AddCheckpoint(
        R"ROC(fix hard_shrink, bahavior changed when threshold<0)ROC",
        paddle::framework::compatible::OpVersionDesc()
            .BugfixWithBehaviorChanged(
                "hard_shrink calculate formula before checkponit: out = x * "
                "((x < -threshold) + (x > threshold)); after checkpoint: out = "
                "x * (((x < -threshold) + (x > threshold)) > 0)"));

1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
REGISTER_OP_VERSION(softplus)
    .AddCheckpoint(
        R"ROC(add new attributes [beta] and [threshold], and the formula is changed to "
         " softplus(x) = \\frac{1}{beta} * \\log(1 + e^{beta * x}) \\\\ \\text{For numerical"
         " stability, the implementation reverts to the linear function when: beta * x > threshold.})ROC",
        paddle::framework::compatible::OpVersionDesc()
            .NewAttr("beta", "The beta value of the new formula", 1.0f)
            .NewAttr("threshold", "The threshold value of the new formula",
                     20.0f));

1605
/* ========================================================================== */