activation_op.cc 42.7 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Q
qijun 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Q
qijun 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Q
qijun 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/activation_op.h"
16

T
tink2123 已提交
17
#include <memory>
D
dzhwinter 已提交
18
#include <string>
19
#include <type_traits>
T
tink2123 已提交
20
#include <unordered_map>
21
#include <vector>
22 23

#include "paddle/fluid/operators/common_infer_shape_functions.h"
24
#include "paddle/fluid/operators/mkldnn/mkldnn_activation_op.h"
D
dzhwinter 已提交
25
#include "paddle/fluid/platform/port.h"
26 27 28
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
Q
qijun 已提交
29

A
Adam 已提交
30 31
DECLARE_bool(use_mkldnn);

Q
qijun 已提交
32 33 34
namespace paddle {
namespace operators {

35 36
using paddle::framework::Tensor;

37 38 39 40 41
template <typename GradFunctor>
static constexpr bool CanInplaceAct() {
  return GradFunctor::FwdDeps() == kDepOut || GradFunctor::FwdDeps() == kNoDeps;
}

42 43 44 45 46
#define REGISTER_ACTIVATION_OP_MAKER(OP_NAME, OP_COMMENT)                    \
  class OP_NAME##OpMaker                                                     \
      : public ::paddle::framework::OpProtoAndCheckerMaker {                 \
   public:                                                                   \
    void Make() override {                                                   \
47 48 49 50 51
      AddInput("X", "Input of " #OP_NAME                                     \
                    " operator, an N-D Tensor, with data type float32, "     \
                    "float64 or float16.");                                  \
      AddOutput("Out", "Output of " #OP_NAME                                 \
                       " operator, a Tensor with shape same as input.");     \
52 53 54 55 56 57 58 59 60
      AddAttr<bool>("use_mkldnn",                                            \
                    "(bool, default false) Only used in mkldnn kernel")      \
          .SetDefault(false);                                                \
      AddAttr<bool>("use_cudnn",                                             \
                    "(bool, default false) Only used in cudnn kernel, need " \
                    "install cudnn")                                         \
          .SetDefault(false);                                                \
      AddComment(OP_COMMENT);                                                \
    }                                                                        \
D
dzhwinter 已提交
61
  }
D
dzhwinter 已提交
62

H
hong 已提交
63 64
template <ActBwdOpFwdDeps kDepValue, typename T>
class ActivationGradOpMaker : public framework::SingleGradOpMaker<T> {
65
 public:
H
hong 已提交
66
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
67 68

 protected:
69
  void Apply(GradOpPtr<T> op) const override {
H
hong 已提交
70 71 72 73
    op->SetType(this->ForwardOpType() + "_grad");
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
74

A
Adam 已提交
75 76
    if ((static_cast<int>(kDepValue) &
         static_cast<int>(ActBwdOpFwdDeps::kDepX)) ||
77 78 79
        FLAGS_use_mkldnn ||
        (op->HasAttr("use_mkldnn") &&
         BOOST_GET_CONST(bool, op->GetAttr("use_mkldnn")))) {
H
hong 已提交
80
      op->SetInput("X", this->Input("X"));
81 82 83 84
    }

    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepOut)) {
H
hong 已提交
85
      op->SetInput("Out", this->Output("Out"));
86
    }
D
dzhwinter 已提交
87
  }
88
};
D
dzhwinter 已提交
89

90 91 92 93
framework::OpKernelType GetKernelType(const framework::ExecutionContext& ctx,
                                      const framework::OperatorWithKernel& oper,
                                      const std::string& name) {
  framework::LibraryType library{framework::LibraryType::kPlain};
M
mozga-intel 已提交
94
  framework::DataLayout layout = framework::DataLayout::kAnyLayout;
95 96 97 98 99 100 101 102 103 104
// FIXME(liuwei1031) temporarily disable the code to unblock users
// TODO(liuwei1031) figure out the reason behind
// https://github.com/PaddlePaddle/Paddle/issues/16096
// and re-enable this in the future
// #ifdef PADDLE_WITH_CUDA
//   auto it1 = oper.Attrs().find("use_cudnn");
//   if (it1 != oper.Attrs().end() && platform::CanCUDNNBeUsed(ctx)) {
//     library = framework::LibraryType::kCUDNN;
//   }
// #endif
105 106 107 108 109
#ifdef PADDLE_WITH_MKLDNN
  auto it = oper.Attrs().find("use_mkldnn");
  if (library == framework::LibraryType::kPlain && it != oper.Attrs().end() &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
110
    layout = framework::DataLayout::kMKLDNN;
111 112
  }
#endif
113 114
  return framework::OpKernelType(oper.IndicateVarDataType(ctx, name),
                                 ctx.GetPlace(), layout, library);
115 116
}

Q
qijun 已提交
117 118 119 120
class ActivationOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

121
  void InferShape(framework::InferShapeContext* ctx) const override {
122
    ctx->ShareDim("X", /*->*/ "Out");
F
fengjiayi 已提交
123
    ctx->ShareLoD("X", /*->*/ "Out");
Q
qijun 已提交
124
  }
125

126
 protected:
127 128 129 130
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "X");
  }
Q
qijun 已提交
131 132
};

C
chengduo 已提交
133 134 135
class ActivationOpInferVarType
    : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
136
  std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
C
chengduo 已提交
137
      const override {
138 139
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
140 141 142
  }
};

Q
qijun 已提交
143 144 145 146
class ActivationOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

147
  void InferShape(framework::InferShapeContext* ctx) const override {
148 149 150
    auto out_grad_name = framework::GradVarName("Out");
    ctx->ShareDim(out_grad_name, framework::GradVarName("X"));
    ctx->ShareLoD(out_grad_name, framework::GradVarName("X"));
Q
qijun 已提交
151
  }
152

153
 protected:
154 155
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
156
    return GetKernelType(ctx, *this, framework::GradVarName("Out"));
157
  }
Q
qijun 已提交
158 159
};

D
dzhwinter 已提交
160
UNUSED constexpr char SigmoidDoc[] = R"DOC(
161
Sigmoid Activation Operator
K
Kexin Zhao 已提交
162

163
$$out = \\frac{1}{1 + e^{-x}}$$
K
Kexin Zhao 已提交
164

D
dzhwinter 已提交
165
)DOC";
Q
qijun 已提交
166

D
dzhwinter 已提交
167
UNUSED constexpr char LogSigmoidDoc[] = R"DOC(
168
Logsigmoid Activation Operator
K
Kexin Zhao 已提交
169

170
$$out = \\log \\frac{1}{1 + e^{-x}}$$
K
Kexin Zhao 已提交
171

D
dzhwinter 已提交
172
)DOC";
173

D
dzhwinter 已提交
174
UNUSED constexpr char ExpDoc[] = R"DOC(
175
Exp Operator. Computes exp of x element-wise with a natural number :math:`e` as the base.
K
Kexin Zhao 已提交
176

177
$$out = e^x$$
K
Kexin Zhao 已提交
178

D
dzhwinter 已提交
179
)DOC";
Q
qijun 已提交
180

D
dzhwinter 已提交
181
UNUSED constexpr char ReluDoc[] = R"DOC(
K
kexinzhao 已提交
182
Relu Activation Operator.
K
Kexin Zhao 已提交
183

184
$$out = \max(x, 0)$$
K
Kexin Zhao 已提交
185

D
dzhwinter 已提交
186
)DOC";
K
Kexin Zhao 已提交
187

D
dzhwinter 已提交
188
UNUSED constexpr char TanhDoc[] = R"DOC(
K
kexinzhao 已提交
189
Tanh Activation Operator.
K
Kexin Zhao 已提交
190

Q
update  
qiaolongfei 已提交
191
$$out = \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
K
Kexin Zhao 已提交
192

D
dzhwinter 已提交
193
)DOC";
194

D
dzhwinter 已提交
195
UNUSED constexpr char TanhShrinkDoc[] = R"DOC(
K
kexinzhao 已提交
196
TanhShrink Activation Operator.
K
Kexin Zhao 已提交
197

Y
Yan Chunwei 已提交
198
$$out = x - \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
K
Kexin Zhao 已提交
199

D
dzhwinter 已提交
200
)DOC";
K
Kexin Zhao 已提交
201

D
dzhwinter 已提交
202
UNUSED constexpr char SqrtDoc[] = R"DOC(
K
kexinzhao 已提交
203
Sqrt Activation Operator.
K
Kexin Zhao 已提交
204

205
.. math:: out=\\sqrt{x}=x^{1/2}
206

207 208
**Note**:
  input value must be greater than or equal to zero.
K
Kexin Zhao 已提交
209

D
dzhwinter 已提交
210
)DOC";
211

Z
zhoukunsheng 已提交
212 213 214 215 216
UNUSED constexpr char RsqrtDoc[] = R"DOC(
Rsqrt Activation Operator.

Please make sure input is legal in case of numeric errors.

217
$$out = \\frac{1}{\\sqrt{x}}$$
Z
zhoukunsheng 已提交
218 219 220

)DOC";

D
dzhwinter 已提交
221
UNUSED constexpr char AbsDoc[] = R"DOC(
K
kexinzhao 已提交
222
Abs Activation Operator.
K
Kexin Zhao 已提交
223

224
$$out = |x|$$
K
Kexin Zhao 已提交
225

D
dzhwinter 已提交
226
)DOC";
227

D
dzhwinter 已提交
228
UNUSED constexpr char CeilDoc[] = R"DOC(
229
Ceil Operator. Computes ceil of x element-wise.
D
dzhwinter 已提交
230

231
$$out = \\left \\lceil x \\right \\rceil$$
D
dzhwinter 已提交
232

D
dzhwinter 已提交
233
)DOC";
D
dzhwinter 已提交
234

D
dzhwinter 已提交
235
UNUSED constexpr char FloorDoc[] = R"DOC(
236
Floor Activation Operator. Computes floor of x element-wise.
D
dzhwinter 已提交
237

238
$$out = \\left \\lfloor x \\right \\rfloor$$
D
dzhwinter 已提交
239

D
dzhwinter 已提交
240
)DOC";
D
dzhwinter 已提交
241

D
dzhwinter 已提交
242
UNUSED constexpr char CosDoc[] = R"DOC(
243
Cosine Operator. Computes cosine of x element-wise.
C
add cos  
chengduoZH 已提交
244

245
$$out = cos(x)$$
C
add cos  
chengduoZH 已提交
246

D
dzhwinter 已提交
247
)DOC";
C
add cos  
chengduoZH 已提交
248

D
dzhwinter 已提交
249
UNUSED constexpr char SinDoc[] = R"DOC(
C
add sin  
chengduoZH 已提交
250 251
Sine Activation Operator.

252
$$out = sin(x)$$
C
add sin  
chengduoZH 已提交
253

D
dzhwinter 已提交
254
)DOC";
C
add sin  
chengduoZH 已提交
255

256 257 258 259 260 261 262 263 264 265 266 267 268 269
UNUSED constexpr char SinhDoc[] = R"DOC(
Sinh Activation Operator.

$$out = sinh(x)$$

)DOC";

UNUSED constexpr char CoshDoc[] = R"DOC(
Cosh Activation Operator.

$$out = cosh(x)$$

)DOC";

D
dzhwinter 已提交
270
UNUSED constexpr char RoundDoc[] = R"DOC(
271
The OP rounds the values in the input to the nearest integer value.
D
dzhwinter 已提交
272

273 274 275 276 277 278 279 280 281
.. code-block:: python

  input:
    x.shape = [4]
    x.data = [1.2, -0.9, 3.4, 0.9]

  output:
    out.shape = [4]
    out.data = [1., -1., 3., 1.]
D
dzhwinter 已提交
282

D
dzhwinter 已提交
283
)DOC";
D
dzhwinter 已提交
284

D
dzhwinter 已提交
285
UNUSED constexpr char ReciprocalDoc[] = R"DOC(
K
kexinzhao 已提交
286
Reciprocal Activation Operator.
K
Kexin Zhao 已提交
287

288
$$out = \\frac{1}{x}$$
K
Kexin Zhao 已提交
289

D
dzhwinter 已提交
290
)DOC";
291

D
dzhwinter 已提交
292
UNUSED constexpr char LogDoc[] = R"DOC(
K
kexinzhao 已提交
293
Log Activation Operator.
K
Kexin Zhao 已提交
294

295
$$out = \ln(x)$$
K
Kexin Zhao 已提交
296 297 298

Natural logarithm of x.

D
dzhwinter 已提交
299 300
)DOC";

301 302 303 304 305 306 307 308 309
UNUSED constexpr char Log1pDoc[] = R"DOC(
Log Activation Operator.

$out = \ln(x+1)$

Natural logarithm of x.

)DOC";

D
dzhwinter 已提交
310
UNUSED constexpr char SquareDoc[] = R"DOC(
311
The OP square each elements of the inputs.
D
dzhwinter 已提交
312

313
$$out = x^2$$
314

D
dzhwinter 已提交
315 316
)DOC";

D
dzhwinter 已提交
317
UNUSED constexpr char SoftplusDoc[] = R"DOC(
D
dzhwinter 已提交
318 319
Softplus Activation Operator.

320
$$out = \ln(1 + e^{x})$$
D
dzhwinter 已提交
321 322 323

)DOC";

D
dzhwinter 已提交
324
UNUSED constexpr char SoftsignDoc[] = R"DOC(
D
dzhwinter 已提交
325 326
Softsign Activation Operator.

327
$$out = \\frac{x}{1 + \|x\|}$$
D
dzhwinter 已提交
328 329 330

)DOC";

T
tink2123 已提交
331 332 333 334 335 336
class AcosOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of acos operator");
    AddOutput("Out", "Output of acos operator");
    AddComment(R"DOC(
337 338
Arccosine Activation Operator.

T
tink2123 已提交
339
$$out = \cos^{-1}(x)$$
340

T
tink2123 已提交
341 342 343
)DOC");
  }
};
344

T
tink2123 已提交
345 346 347 348 349 350
class AsinOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of asin operator");
    AddOutput("Out", "Output of asin operator");
    AddComment(R"DOC(
351 352
Arcsine Activation Operator.

T
tink2123 已提交
353
$$out = \sin^{-1}(x)$$
354

T
tink2123 已提交
355 356 357
)DOC");
  }
};
358

T
tink2123 已提交
359 360 361 362 363 364
class AtanOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of atan operator");
    AddOutput("Out", "Output of atan operator");
    AddComment(R"DOC(
365 366
Arctanh Activation Operator.

T
tink2123 已提交
367
$$out = \tanh^{-1}(x)$$
368

T
tink2123 已提交
369 370 371
)DOC");
  }
};
372

D
dzhwinter 已提交
373
class LeakyReluOpMaker : public framework::OpProtoAndCheckerMaker {
374
 public:
Y
Yu Yang 已提交
375
  void Make() override {
W
Wilber 已提交
376 377 378 379 380 381 382 383
    AddInput("X",
             "A LoDTensor or Tensor representing preactivation values. Must be "
             "one of the following types: float32, float64.");
    AddOutput(
        "Out",
        "A LoDTensor or Tensor with the same type and size as that of x.");
    AddAttr<float>("alpha", "Slope of the activation function at x < 0.")
        .SetDefault(0.02f);
A
Adam 已提交
384 385 386
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
K
Kexin Zhao 已提交
387
    AddComment(R"DOC(
D
dzhwinter 已提交
388
LeakyRelu Activation Operator.
K
Kexin Zhao 已提交
389

W
Wilber 已提交
390
$$out = \max(x, \alpha * x)$$
K
Kexin Zhao 已提交
391 392

)DOC");
393 394 395
  }
};

D
dzhwinter 已提交
396
class SoftShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
K
kexinzhao 已提交
397
 public:
Y
Yu Yang 已提交
398
  void Make() override {
D
dzhwinter 已提交
399 400 401
    AddInput("X", "Input of Softshrink operator");
    AddOutput("Out", "Output of Softshrink operator");
    AddAttr<float>("lambda", "non-negative offset").SetDefault(0.5f);
K
Kexin Zhao 已提交
402
    AddComment(R"DOC(
403 404 405
:strong:`Softshrink Activation Operator`

..  math::
406
    out = \begin{cases}
407 408 409 410
         x - \lambda, \text{if } x > \lambda \\
         x + \lambda, \text{if } x < -\lambda \\
         0,  \text{otherwise}
         \end{cases}
K
Kexin Zhao 已提交
411 412

)DOC");
K
kexinzhao 已提交
413 414 415
  }
};

D
dzhwinter 已提交
416
class HardShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
417
 public:
Y
Yu Yang 已提交
418
  void Make() override {
D
dzhwinter 已提交
419 420
    AddInput("X", "Input of HardShrink operator");
    AddOutput("Out", "Output of HardShrink operator");
Y
yuyang18 已提交
421 422
    AddAttr<float>("threshold",
                   "The value of threshold for HardShrink. [default: 0.5]")
D
dzhwinter 已提交
423
        .SetDefault(0.5f);
K
Kexin Zhao 已提交
424
    AddComment(R"DOC(
Y
yuyang18 已提交
425
:strong:`HardShrink activation operator`
K
Kexin Zhao 已提交
426

Y
yuyang18 已提交
427 428 429 430 431 432
..  math::
    out = \begin{cases}
            x, \text{if } x > \lambda \\
            x, \text{if } x < -\lambda \\
            0,  \text{otherwise}
          \end{cases}
K
Kexin Zhao 已提交
433 434

)DOC");
435 436 437
  }
};

438 439
class BReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
440
  void Make() override {
441 442 443 444 445 446
    AddInput("X",
             "The input is a multi-dimensional Tensor. The data type is "
             "float32, float64.");
    AddOutput("Out",
              "The output is a multi-dimensional Tensor which has same "
              "dimension and data type as the ``X``.");
447 448 449 450
    AddAttr<float>("t_min", "The min marginal value of BRelu")
        .SetDefault(static_cast<float>(0));
    AddAttr<float>("t_max", "The max marginal value of BRelu")
        .SetDefault(static_cast<float>(24));
K
Kexin Zhao 已提交
451
    AddComment(R"DOC(
K
kexinzhao 已提交
452
BRelu Activation Operator.
K
Kexin Zhao 已提交
453

454
$$out = \min(\max(x, t_{min}), t_{max})$$
K
Kexin Zhao 已提交
455 456

)DOC");
457 458 459 460 461
  }
};

class SoftReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
462
  void Make() override {
463
    AddInput("X", "Input of SoftRelu operator");
F
fengjiayi 已提交
464
    AddOutput("Out", "Output of SoftRelu operator");
465 466
    AddAttr<float>("threshold", "The threshold value of SoftRelu")
        .SetDefault(40.0f);
K
Kexin Zhao 已提交
467
    AddComment(R"DOC(
K
kexinzhao 已提交
468
SoftRelu Activation Operator.
K
Kexin Zhao 已提交
469

470
$$out = \ln(1 + \exp(\max(\min(x, threshold), -threshold)))$$
K
Kexin Zhao 已提交
471 472

)DOC");
473 474 475
  }
};

476 477
class ELUOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
478
  void Make() override {
479 480 481 482 483 484
    AddInput("X",
             "The input is a multi-dimensional Tensor. The data type is "
             "float32 or float64.");
    AddOutput("Out",
              "The output is a multi-dimensional Tensor which has same "
              "dimension and data type as the ``x``.");
485
    AddAttr<float>("alpha", "The alpha value of ELU").SetDefault(1.0f);
486
    AddComment(R"DOC(
K
kexinzhao 已提交
487
ELU Activation Operator.
K
Kexin Zhao 已提交
488 489 490 491

Applies the following element-wise computation on the input according to
https://arxiv.org/abs/1511.07289.

492
$$out = \max(0, x) + \min(0, \alpha * (e^x - 1))$$
K
Kexin Zhao 已提交
493 494

)DOC");
495 496 497
  }
};

498 499
class Relu6OpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
500
  void Make() override {
Z
zhupengyang 已提交
501 502 503 504 505 506 507 508
    AddInput("X",
             "Input of relu6 operator, an N-D Tensor, "
             "with data type float32, float64.");
    AddOutput(
        "Out",
        "Output of relu6 operator, a Tensor with the same shape as input.");
    AddAttr<float>("threshold",
                   "The threshold value of Relu6. Default is 6.0. ")
509
        .SetDefault(6.0f);
A
Adam 已提交
510 511 512
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
K
Kexin Zhao 已提交
513
    AddComment(R"DOC(
K
kexinzhao 已提交
514
Relu6 Activation Operator.
K
Kexin Zhao 已提交
515

516
$$out = \min(\max(0, x), threshold)$$
K
Kexin Zhao 已提交
517 518

)DOC");
519 520 521
  }
};

522 523
class PowOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
524
  void Make() override {
525
    AddInput("X", "Input of Pow operator");
526 527 528 529 530
    AddInput("FactorTensor",
             "(Tensor<float>, optional). If provided, pow will use this"
             "The shape of FactorTensor MUST BE [1]."
             "it has higher priority than attr(factor).")
        .AsDispensable();
F
fengjiayi 已提交
531
    AddOutput("Out", "Output of Pow operator");
532
    AddAttr<float>("factor", "The exponential factor of Pow").SetDefault(1.0f);
K
Kexin Zhao 已提交
533
    AddComment(R"DOC(
K
kexinzhao 已提交
534
Pow Activation Operator.
K
Kexin Zhao 已提交
535

536
$$out = x^{factor}$$
K
Kexin Zhao 已提交
537 538

)DOC");
539 540 541 542 543
  }
};

class STanhOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
544
  void Make() override {
545 546 547 548 549 550
    AddInput("X",
             "Input of STanh operator."
             " A LoDTensor or Tensor with type float32, float64.");
    AddOutput("Out", "Output of STanh operator. A Tensor with type float32.");
    AddAttr<float>("scale_a", "The scale parameter of a for the input. ")
        .SetDefault(0.67f);
551 552
    AddAttr<float>("scale_b", "The scale parameter of b for the input")
        .SetDefault(1.7159f);
K
Kexin Zhao 已提交
553
    AddComment(R"DOC(
K
kexinzhao 已提交
554
STanh Activation Operator.
K
Kexin Zhao 已提交
555

Y
Yan Chunwei 已提交
556
$$out = b * \\frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}$$
K
Kexin Zhao 已提交
557 558

)DOC");
Q
qijun 已提交
559 560 561
  }
};

562 563
class ThresholdedReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
564
  void Make() override {
565
    AddInput("X", "Input of ThresholdedRelu operator");
F
fengjiayi 已提交
566
    AddOutput("Out", "Output of ThresholdedRelu operator");
Y
yuyang18 已提交
567 568
    AddAttr<float>("threshold",
                   "The threshold location of activation. [default 1.0].")
569
        .SetDefault(1.0f);
K
Kexin Zhao 已提交
570
    AddComment(R"DOC(
Y
yuyang18 已提交
571
:strong:`ThresholdedRelu activation operator`
K
Kexin Zhao 已提交
572

Y
yuyang18 已提交
573
..  math::
K
Kexin Zhao 已提交
574

Y
yuyang18 已提交
575
    out = \begin{cases}
Y
yuyang18 已提交
576
             x,  \text{if } x > threshold \\
Y
yuyang18 已提交
577 578
             0,  \text{otherwise}
          \end{cases}
K
Kexin Zhao 已提交
579
)DOC");
580 581 582
  }
};

583 584
class HardSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
585
  void Make() override {
586 587 588 589 590
    AddInput("X", "An N-D Tensor with data type float32, float64. ");
    AddOutput("Out", "A Tensor with the same shape as input. ");
    AddAttr<float>("slope",
                   "The slope of the linear approximation of sigmoid. Its "
                   "value MUST BE positive. Default is 0.2. ")
591
        .SetDefault(0.2f);
592 593 594
    AddAttr<float>(
        "offset",
        "The offset of the linear approximation of sigmoid. Default is 0.5. ")
595
        .SetDefault(0.5f);
596
    AddComment(R"DOC(
K
kexinzhao 已提交
597
HardSigmoid Activation Operator.
598

599
A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
K
Kexin Zhao 已提交
600
which is much faster than sigmoid.
601

602
$$out = \max(0, \min(1, slope * x + offset))$$
603

K
Kexin Zhao 已提交
604
)DOC");
605 606 607
  }
};

A
Abhinav Arora 已提交
608 609
class SwishOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
610
  void Make() override {
A
Abhinav Arora 已提交
611
    AddInput("X", "Input of Swish operator");
F
fengjiayi 已提交
612
    AddOutput("Out", "Output of Swish operator");
A
Abhinav Arora 已提交
613
    AddAttr<float>("beta", "Constant beta of swish operator").SetDefault(1.0f);
614 615 616
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
A
Abhinav Arora 已提交
617 618 619
    AddComment(R"DOC(
Swish Activation Operator.

620
$$out = \\frac{x}{1 + e^{- \beta \ x}}$$
A
Abhinav Arora 已提交
621 622 623 624 625

)DOC");
  }
};

H
huangjun12 已提交
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
class HardSwishOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of HardSwish operator");
    AddOutput("Out", "Output of HardSwish operator");
    AddAttr<float>("threshold", "The threshold parameter of HardSwish operator")
        .SetDefault(6.0f);
    AddAttr<float>("scale", "The scale parameter of HardSwish operator")
        .SetDefault(6.0f);
    AddAttr<float>("offset", "The offset parameter of HardSwish operator")
        .SetDefault(3.0f);
    AddComment(R"DOC(
HardSwish Activation Operator.

The hard version of swish(https://arxiv.org/pdf/1905.02244.pdf).

642
$$out = \frac{x * (min(max(0, x+offset), threshold))}{scale}$$
H
huangjun12 已提交
643 644 645 646 647 648 649 650 651

The threshold and scale should be positive. The offset can be either positive or negative.
The default parameters are set according to the above reference.
It is recommended to use the defaults for this activation.

)DOC");
  }
};

D
dzhwinter 已提交
652 653 654 655 656 657 658
REGISTER_ACTIVATION_OP_MAKER(Sigmoid, SigmoidDoc);
REGISTER_ACTIVATION_OP_MAKER(LogSigmoid, LogSigmoidDoc);
REGISTER_ACTIVATION_OP_MAKER(Exp, ExpDoc);
REGISTER_ACTIVATION_OP_MAKER(Relu, ReluDoc);
REGISTER_ACTIVATION_OP_MAKER(Tanh, TanhDoc);
REGISTER_ACTIVATION_OP_MAKER(TanhShrink, TanhShrinkDoc);
REGISTER_ACTIVATION_OP_MAKER(Sqrt, SqrtDoc);
Z
zhoukunsheng 已提交
659
REGISTER_ACTIVATION_OP_MAKER(Rsqrt, RsqrtDoc);
D
dzhwinter 已提交
660 661 662 663 664
REGISTER_ACTIVATION_OP_MAKER(Abs, AbsDoc);
REGISTER_ACTIVATION_OP_MAKER(Ceil, CeilDoc);
REGISTER_ACTIVATION_OP_MAKER(Floor, FloorDoc);
REGISTER_ACTIVATION_OP_MAKER(Cos, CosDoc);
REGISTER_ACTIVATION_OP_MAKER(Sin, SinDoc);
665 666
REGISTER_ACTIVATION_OP_MAKER(Sinh, SinhDoc);
REGISTER_ACTIVATION_OP_MAKER(Cosh, CoshDoc);
D
dzhwinter 已提交
667 668 669
REGISTER_ACTIVATION_OP_MAKER(Round, RoundDoc);
REGISTER_ACTIVATION_OP_MAKER(Reciprocal, ReciprocalDoc);
REGISTER_ACTIVATION_OP_MAKER(Log, LogDoc);
670
REGISTER_ACTIVATION_OP_MAKER(Log1p, Log1pDoc);
D
dzhwinter 已提交
671 672 673 674
REGISTER_ACTIVATION_OP_MAKER(Square, SquareDoc);
REGISTER_ACTIVATION_OP_MAKER(Softplus, SoftplusDoc);
REGISTER_ACTIVATION_OP_MAKER(Softsign, SoftsignDoc);

675
template <ActBwdOpFwdDeps kDepValue>
676 677 678 679 680
class ActivationOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
681
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepX)) {
682
      if (ctx->HasOutput("DX")) {
683 684 685
        ctx->ShareDim("X", "DX");
        ctx->ShareLoD("X", "DX");
      }
686
      if (ctx->HasOutput("DDOut")) {
687 688 689
        ctx->ShareDim("X", "DDOut");
        ctx->ShareLoD("X", "DDOut");
      }
690
    }
691
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepOut)) {
692
      if (ctx->HasOutput("DOut")) {
693 694 695
        ctx->ShareDim("Out", "DOut");
        ctx->ShareLoD("Out", "DOut");
      }
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
      if (ctx->HasOutput("DDOut")) {
        ctx->ShareDim("Out", "DDOut");
        ctx->ShareLoD("Out", "DDOut");
      }
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "DDX");
  }
};

template <ActBwdOpFwdDeps kDepValue>
class ActivationOpDoubleGrad2 : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepX)) {
      if (ctx->HasOutput("DDOut")) {
        ctx->ShareDim("X", "DDOut");
        ctx->ShareLoD("X", "DDOut");
      }
    }
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepOut)) {
      if (ctx->HasOutput("DDOut")) {
724 725 726
        ctx->ShareDim("Out", "DDOut");
        ctx->ShareLoD("Out", "DDOut");
      }
727 728 729 730 731 732 733 734 735 736
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "DDX");
  }
};

737 738 739 740
//
// ReluGrad: dx = dy if y >= 0 else 0
// ReluGradGrad: ddy = ddx if y >= 0 else 0
//
H
hong 已提交
741 742
template <typename T>
class ReluDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
743
 public:
H
hong 已提交
744
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
745 746

 protected:
747
  void Apply(GradOpPtr<T> op) const override {
748 749
    op->SetType("relu_grad_grad");
    // input1: Out
H
hong 已提交
750
    op->SetInput("Out", this->Input("Out"));
Q
qingqing01 已提交
751
    // input2: ddx
H
hong 已提交
752 753
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
754
    // output: ddy
H
hong 已提交
755
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
756 757 758
  }
};

759 760
// leaky_relu Grad: dx=dy if y>=0 else alpha * dy
// leaky_relu GradGrad: ddy=ddx if y>=0 else alpha * ddx
H
hong 已提交
761
template <typename T>
762
class LeakyReluDoubleGradMaker
H
hong 已提交
763
    : public ::paddle::framework::SingleGradOpMaker<T> {
764
 public:
H
hong 已提交
765
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
766 767

 protected:
768
  void Apply(GradOpPtr<T> op) const override {
769
    op->SetType("leaky_relu_grad_grad");
Z
Zeng Jinle 已提交
770
    // input1: Out
H
hong 已提交
771
    op->SetInput("Out", this->Input("Out"));
772
    // X@GRAD@GRAD: ddx
H
hong 已提交
773 774
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
775
    // Out@GRAD@GRAD: ddy
H
hong 已提交
776
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
777 778 779
  }
};

D
Double_V 已提交
780 781 782 783 784 785 786 787
// elu grad: dx=dy if y>0 else alpha*dy*x.exp()
// elu gradgrad: ddx=ddy if y>0 else alpha*ddy*x.exp()
template <typename T>
class ELUDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
788
  void Apply(GradOpPtr<T> op) const override {
D
Double_V 已提交
789 790 791 792 793 794 795 796 797 798 799 800 801 802
    op->SetType("elu_grad_grad");

    op->SetInput("X", this->Input("X"));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    // X@GRAD@GRAD: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());

    // Out@GRAD@GRAD: ddy
    op->SetOutput("DX", this->InputGrad("X"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

L
lvmengsi 已提交
803 804
// sqrt Grad: dx = 0.5 * dy / y
// sqrt GradGrad: ddy = 0.5 * ddx / y, dy = -1 * dx * ddx
H
hong 已提交
805 806
template <typename T>
class SqrtDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
L
lvmengsi 已提交
807
 public:
H
hong 已提交
808
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
L
lvmengsi 已提交
809 810

 protected:
811
  void Apply(GradOpPtr<T> op) const override {
L
lvmengsi 已提交
812
    op->SetType("sqrt_grad_grad");
H
hong 已提交
813 814 815 816 817 818
    op->SetInput("Out", this->Input("Out"));
    op->SetInput("DX", this->Output(framework::GradVarName("X")));
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
    op->SetOutput("DOut", this->InputGrad("Out"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
L
lvmengsi 已提交
819 820 821
  }
};

822 823
// square Grad: dx=2x*dy
// square GradGrad: ddy=2x*ddx, dx=2dy*ddx
H
hong 已提交
824 825
template <typename T>
class SquareDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
826
 public:
H
hong 已提交
827
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
828 829

 protected:
830
  void Apply(GradOpPtr<T> op) const override {
831
    op->SetType("square_grad_grad");
H
hong 已提交
832
    op->SetInput("X", this->Input("X"));
833
    // Out@GRAD: dy
H
hong 已提交
834
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
835
    // X@GRAD@GRAD: ddx
H
hong 已提交
836
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
837

H
hong 已提交
838
    op->SetAttrMap(this->Attrs());
839 840

    // X@GRAD: dx
H
hong 已提交
841
    op->SetOutput("DX", this->InputGrad("X"));
842
    // Out@GRAD@GRAD: ddy
H
hong 已提交
843
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
844 845 846
  }
};

847
DECLARE_INPLACE_OP_INFERER(ActivationGradOpInplaceInferer,
848 849
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
850
DECLARE_INPLACE_OP_INFERER(ActivationDoubleGradOpInplaceInferer,
851
                           {"DDX", "DDOut"});
852

H
hong 已提交
853 854
template <typename T>
class PowGradOpMaker : public framework::SingleGradOpMaker<T> {
855
 public:
H
hong 已提交
856
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
857 858

 protected:
859
  void Apply(GradOpPtr<T> op) const override {
860
    op->SetType("pow_grad");
H
hong 已提交
861 862 863 864 865
    op->SetInput("X", this->Input("X"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetInput("FactorTensor", this->Input("FactorTensor"));
    op->SetAttrMap(this->Attrs());
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
  }
};
class PowOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    ctx->ShareDim("X", /*->*/ "Out");
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "X");
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "FactorTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
};

class PowOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    auto out_grad_name = framework::GradVarName("Out");
    ctx->ShareDim(out_grad_name, framework::GradVarName("X"));
    ctx->ShareLoD(out_grad_name, framework::GradVarName("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, framework::GradVarName("Out"));
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "FactorTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
};
920
DECLARE_INPLACE_OP_INFERER(ActFwdInplaceInferer, {"X", "Out"});
Q
qijun 已提交
921 922 923 924
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
925
namespace plat = paddle::platform;
926

927 928 929 930
#define REGISTER_ACTIVATION_OP(KERNEL_TYPE, OP_NAME, functor, grad_functor) \
  REGISTER_OPERATOR(                                                        \
      KERNEL_TYPE, ops::ActivationOp, ops::OP_NAME##OpMaker,                \
      ops::ActivationOpInferVarType,                                        \
H
hong 已提交
931 932 933 934
      ops::ActivationGradOpMaker<ops::grad_functor<float>::FwdDeps(),       \
                                 paddle::framework::OpDesc>,                \
      ops::ActivationGradOpMaker<ops::grad_functor<float>::FwdDeps(),       \
                                 paddle::imperative::OpBase>,               \
935
      std::conditional<ops::CanInplaceAct<ops::grad_functor<float>>(),      \
936
                       ops::ActFwdInplaceInferer, void>::type);             \
937
  REGISTER_OPERATOR(KERNEL_TYPE##_grad, ops::ActivationOpGrad,              \
938
                    ops::ActivationGradOpInplaceInferer);
939 940 941

#define REGISTER_ACTIVATION_CPU_KERNEL(act_type, op_name, functor,        \
                                       grad_functor)                      \
Q
QI JUN 已提交
942 943 944 945 946 947 948 949 950 951
  REGISTER_OP_CPU_KERNEL(                                                 \
      act_type, ops::ActivationKernel<paddle::platform::CPUDeviceContext, \
                                      ops::functor<float>>,               \
      ops::ActivationKernel<paddle::platform::CPUDeviceContext,           \
                            ops::functor<double>>);                       \
  REGISTER_OP_CPU_KERNEL(                                                 \
      act_type##_grad,                                                    \
      ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,       \
                                ops::grad_functor<float>>,                \
      ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,       \
Y
Yu Yang 已提交
952
                                ops::grad_functor<double>>);
953

954 955
FOR_EACH_ACTIVATION_OP(REGISTER_ACTIVATION_OP);
FOR_EACH_ACTIVATION_OP(REGISTER_ACTIVATION_CPU_KERNEL);
956

957
/* ==========================    relu register  ============================= */
958 959
REGISTER_OPERATOR(
    relu, ops::ActivationOp, ops::ReluOpMaker, ops::ActivationOpInferVarType,
H
hong 已提交
960 961 962 963
    ops::ActivationGradOpMaker<ops::ReluGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::ReluGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
964
    ops::ActFwdInplaceInferer);
965
REGISTER_OPERATOR(relu_grad, ops::ActivationOpGrad,
966
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
967 968
                  ops::ReluDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::ReluDoubleGradMaker<paddle::imperative::OpBase>);
969 970
REGISTER_OPERATOR(
    relu_grad_grad,
971
    ops::ActivationOpDoubleGrad2<ops::ReluGradFunctor<float>::FwdDeps()>,
972
    ops::ActivationDoubleGradOpInplaceInferer);
973 974 975 976 977 978 979 980 981 982 983

REGISTER_ACTIVATION_CPU_KERNEL(relu, Relu, ReluFunctor, ReluGradFunctor);

REGISTER_OP_CPU_KERNEL(
    relu_grad_grad,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::ReluGradGradFunctor<float>>,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::ReluGradGradFunctor<double>>,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::ReluGradGradFunctor<plat::float16>>);
984
/* ========================================================================== */
985

986
/* ======================== leaky relu register  ============================ */
987 988 989
REGISTER_OPERATOR(
    leaky_relu, ops::ActivationOp, ops::LeakyReluOpMaker,
    ops::ActivationOpInferVarType,
H
hong 已提交
990 991 992 993
    ops::ActivationGradOpMaker<ops::LeakyReluGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::LeakyReluGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
994
    ops::ActFwdInplaceInferer);
995
REGISTER_OPERATOR(leaky_relu_grad, ops::ActivationOpGrad,
996
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
997 998
                  ops::LeakyReluDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::LeakyReluDoubleGradMaker<paddle::imperative::OpBase>);
999 1000
REGISTER_OPERATOR(
    leaky_relu_grad_grad,
1001
    ops::ActivationOpDoubleGrad2<ops::LeakyReluGradFunctor<float>::FwdDeps()>,
1002
    ops::ActivationDoubleGradOpInplaceInferer);
1003

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
REGISTER_ACTIVATION_CPU_KERNEL(leaky_relu, LeakyRelu, LeakyReluFunctor,
                               LeakyReluGradFunctor);
REGISTER_OP_CPU_KERNEL(
    leaky_relu_grad_grad,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::LeakyReluGradGradFunctor<float>>,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::LeakyReluGradGradFunctor<double>>,
    ops::ActivationDoubleGradKernel<
        plat::CPUDeviceContext, ops::LeakyReluGradGradFunctor<plat::float16>>);
1014 1015
/* ========================================================================== */

D
Double_V 已提交
1016 1017 1018 1019 1020 1021 1022 1023 1024
/* ========================    elu  register     ============================ */
REGISTER_OPERATOR(
    elu, ops::ActivationOp, ops::ELUOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::ELUGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::ELUGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    ops::ActFwdInplaceInferer);
REGISTER_OPERATOR(elu_grad, ops::ActivationOpGrad,
1025
                  ops::ActivationGradOpInplaceInferer,
D
Double_V 已提交
1026 1027 1028 1029 1030
                  ops::ELUDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::ELUDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(
    elu_grad_grad,
    ops::ActivationOpDoubleGrad<ops::ELUGradFunctor<float>::FwdDeps()>,
1031
    ops::ActivationDoubleGradOpInplaceInferer);
D
Double_V 已提交
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043

REGISTER_ACTIVATION_CPU_KERNEL(elu, ELU, ELUFunctor, ELUGradFunctor);
REGISTER_OP_CPU_KERNEL(
    elu_grad_grad, ops::ELUDoubleGradKernel<plat::CPUDeviceContext,
                                            ops::ELUGradGradFunctor<float>>,
    ops::ELUDoubleGradKernel<plat::CPUDeviceContext,
                             ops::ELUGradGradFunctor<double>>,
    ops::ELUDoubleGradKernel<plat::CPUDeviceContext,
                             ops::ELUGradGradFunctor<plat::float16>>);

/* ========================================================================== */

L
lvmengsi 已提交
1044 1045 1046
/* ===========================   sqrt register  ============================= */
REGISTER_OPERATOR(
    sqrt, ops::ActivationOp, ops::SqrtOpMaker, ops::ActivationOpInferVarType,
H
hong 已提交
1047 1048 1049 1050
    ops::ActivationGradOpMaker<ops::SqrtGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::SqrtGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1051
    ops::ActFwdInplaceInferer);
L
lvmengsi 已提交
1052
REGISTER_OPERATOR(sqrt_grad, ops::ActivationOpGrad,
1053
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
1054 1055
                  ops::SqrtDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::SqrtDoubleGradMaker<paddle::imperative::OpBase>);
L
lvmengsi 已提交
1056 1057
REGISTER_OPERATOR(
    sqrt_grad_grad,
1058
    ops::ActivationOpDoubleGrad<ops::SqrtGradGradFunctor<float>::FwdDeps()>,
1059
    ops::ActivationDoubleGradOpInplaceInferer);
1060

L
lvmengsi 已提交
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
REGISTER_ACTIVATION_CPU_KERNEL(sqrt, Sqrt, SqrtFunctor, SqrtGradFunctor);
REGISTER_OP_CPU_KERNEL(
    sqrt_grad_grad, ops::SqrtDoubleGradKernel<plat::CPUDeviceContext,
                                              ops::SqrtGradGradFunctor<float>>,
    ops::SqrtDoubleGradKernel<plat::CPUDeviceContext,
                              ops::SqrtGradGradFunctor<double>>,
    ops::SqrtDoubleGradKernel<plat::CPUDeviceContext,
                              ops::SqrtGradGradFunctor<plat::float16>>);
/* ========================================================================== */

1071 1072 1073 1074
/* ==========================   square register  ============================ */
REGISTER_OPERATOR(
    square, ops::ActivationOp, ops::SquareOpMaker,
    ops::ActivationOpInferVarType,
H
hong 已提交
1075 1076 1077 1078
    ops::ActivationGradOpMaker<ops::SquareGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::SquareGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1079
    ops::ActFwdInplaceInferer);
1080
REGISTER_OPERATOR(square_grad, ops::ActivationOpGrad,
1081
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
1082 1083
                  ops::SquareDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::SquareDoubleGradMaker<paddle::imperative::OpBase>);
1084 1085
REGISTER_OPERATOR(
    square_grad_grad,
1086
    ops::ActivationOpDoubleGrad<ops::SquareGradGradFunctor<float>::FwdDeps()>,
1087
    ops::ActivationDoubleGradOpInplaceInferer);
1088

1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
REGISTER_OP_CPU_KERNEL(square,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<float>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<double>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<int>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<int64_t>>);
REGISTER_OP_CPU_KERNEL(
    square_grad, ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                                           ops::SquareGradFunctor<float>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::SquareGradFunctor<double>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::SquareGradFunctor<int>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::SquareGradFunctor<int64_t>>);
1107 1108 1109 1110 1111 1112 1113 1114

REGISTER_OP_CPU_KERNEL(
    square_grad_grad,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<float>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<double>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
1115 1116 1117 1118 1119
                                ops::SquareGradGradFunctor<plat::float16>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<int>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<int64_t>>);
1120
/* ========================================================================== */
1121 1122 1123 1124 1125

/* ==========================   pow register  ============================ */

REGISTER_OPERATOR(
    pow, ops::PowOp, ops::PowOpMaker, ops::ActivationOpInferVarType,
H
hong 已提交
1126 1127
    ops::PowGradOpMaker<paddle::framework::OpDesc>,
    ops::PowGradOpMaker<paddle::imperative::OpBase>,
1128
    std::conditional<ops::CanInplaceAct<ops::PowGradFunctor<float>>(),
1129
                     ops::ActFwdInplaceInferer, void>::type);
1130
REGISTER_OPERATOR(pow_grad, ops::PowOpGrad,
1131
                  ops::ActivationGradOpInplaceInferer);
1132 1133 1134

REGISTER_OP_CPU_KERNEL(
    pow, ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<float>>,
1135 1136 1137
    ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<double>>,
    ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<int>>,
    ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<int64_t>>);
1138 1139 1140
REGISTER_OP_CPU_KERNEL(
    pow_grad,
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<float>>,
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<double>>,
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<int>>,
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<int64_t>>);
/* ========================================================================== */

/* ==========================   exp register  ============================ */
REGISTER_OPERATOR(
    exp, ops::ActivationOp, ops::ExpOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::ExpGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::ExpGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    std::conditional<ops::CanInplaceAct<ops::ExpGradFunctor<float>>(),
                     ops::ActFwdInplaceInferer, void>::type);
REGISTER_OPERATOR(exp_grad, ops::ActivationOpGrad,
1156
                  ops::ActivationGradOpInplaceInferer);
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187

REGISTER_OP_CPU_KERNEL(exp,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<float>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<double>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<int>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<int64_t>>);
REGISTER_OP_CPU_KERNEL(
    exp_grad, ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                                        ops::ExpGradFunctor<float>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::ExpGradFunctor<double>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::ExpGradFunctor<int>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::ExpGradFunctor<int64_t>>);
/* ========================================================================== */

/* ==========================   abs register  ============================ */
REGISTER_OPERATOR(
    abs, ops::ActivationOp, ops::AbsOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::AbsGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::AbsGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    std::conditional<ops::CanInplaceAct<ops::AbsGradFunctor<float>>(),
                     ops::ActFwdInplaceInferer, void>::type);
REGISTER_OPERATOR(abs_grad, ops::ActivationOpGrad,
1188
                  ops::ActivationGradOpInplaceInferer);
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207

REGISTER_OP_CPU_KERNEL(abs,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::AbsFunctor<float>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::AbsFunctor<double>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::AbsFunctor<int>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::AbsFunctor<int64_t>>);
REGISTER_OP_CPU_KERNEL(
    abs_grad, ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                                        ops::AbsGradFunctor<float>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::AbsGradFunctor<double>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::AbsGradFunctor<int>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::AbsGradFunctor<int64_t>>);
1208
/* ========================================================================== */