initializer.py 41.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import math
18
from . import framework
19
from . import core
20
from .framework import in_dygraph_mode, default_main_program
21
import numpy as np
22
from .core import VarDesc
W
Wu Yi 已提交
23
from . import unique_name
24
from .data_feeder import check_variable_and_dtype, check_type, check_dtype
25
from paddle import _C_ops
26

27
__all__ = [
28
    'Constant', 'Uniform', 'Normal', 'TruncatedNormal', 'Xavier', 'Bilinear',
29 30
    'MSRA', 'ConstantInitializer', 'UniformInitializer', 'NormalInitializer',
    'TruncatedNormalInitializer', 'XavierInitializer', 'BilinearInitializer',
31
    'MSRAInitializer', 'NumpyArrayInitializer', 'set_global_initializer'
32
]
33

34 35 36
_global_weight_initializer_ = None
_global_bias_initializer_ = None

37 38 39 40 41 42 43 44 45 46

class Initializer(object):
    """Base class for variable initializers

    Defines the common interface of variable initializers.
    They add operations to the init program that are used
    to initialize variables. Users should not use this class
    directly, but need to use one of its implementations.
    """

W
whs 已提交
47
    def __init__(self):
48 49
        pass

50
    def __call__(self, param, block=None):
51 52 53 54
        """Add corresponding initialization operations to the network
        """
        raise NotImplementedError()

55 56
    def _check_block(self, block):
        if block is None:
57
            block = default_main_program().global_block()
58 59 60

        return block

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
    def _compute_fans(self, var):
        """Compute the fan_in and the fan_out for layers

        This method computes the fan_in and the fan_out
        for neural network layers, if not specified. It is
        not possible to perfectly estimate fan_in and fan_out.
        This method will estimate it correctly for matrix multiply and
        convolutions.

        Args:
            var: variable for which fan_in and fan_out have to be computed

        Returns:
            tuple of two integers (fan_in, fan_out)
        """
        shape = var.shape
        if not shape or len(shape) == 0:
            fan_in = fan_out = 1
        elif len(shape) == 1:
            fan_in = fan_out = shape[0]
        elif len(shape) == 2:
            # This is the case for simple matrix multiply
            fan_in = shape[0]
            fan_out = shape[1]
        else:
            # Assume this to be a convolutional kernel
            # In PaddlePaddle, the shape of the kernel is like:
            # [num_filters, num_filter_channels, ...] where the remaining
            # dimensions are the filter_size
            receptive_field_size = np.prod(shape[2:])
            fan_in = shape[1] * receptive_field_size
            fan_out = shape[0] * receptive_field_size

        return (fan_in, fan_out)

96 97 98

class ConstantInitializer(Initializer):
    """Implements the constant initializer
99 100

    Args:
D
Double_V 已提交
101
        value (float32): constant value to initialize the variable 
102 103 104 105

    Examples:
        .. code-block:: python

106 107 108
            import paddle
            import paddle.fluid as fluid
            paddle.enable_static()
D
Double_V 已提交
109
            x = fluid.data(name="data", shape=[8, 32, 32], dtype="float32")
110 111 112 113
            fc = fluid.layers.fc(
                input=x,
                size=10,
                param_attr=fluid.initializer.Constant(value=2.0))
114

115 116
    """

117
    def __init__(self, value=0.0, force_cpu=False):
118 119 120
        assert value is not None
        super(ConstantInitializer, self).__init__()
        self._value = value
121
        self._force_cpu = force_cpu
122

123 124
    def __call__(self, var, block=None):
        """Initialize the input tensor with constant.
125 126

        Args:
127 128 129
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
130 131

        Returns:
132
            The initialization op
133
        """
134 135
        block = self._check_block(block)

136 137
        assert (isinstance(var, framework.Variable) or
                isinstance(var, framework.EagerParamBase))
138
        assert isinstance(block, framework.Block)
139

140
        if framework.in_dygraph_mode():
141 142
            var = _C_ops.fill_constant(
                var, 'value',
143
                float(self._value), 'force_cpu', self._force_cpu, 'dtype',
144
                int(var.dtype), 'str_value',
145 146 147 148 149 150
                str(float(self._value)), 'shape', var.shape)
            return None
        else:
            # fill constant should set the "str_value" to preserve precision
            op = block.append_op(
                type="fill_constant",
151
                outputs={"Out": var},
152 153
                attrs={
                    "shape": var.shape,
154
                    "dtype": int(var.dtype),
155 156 157 158 159
                    "value": float(self._value),
                    'str_value': str(float(self._value)),
                    'force_cpu': self._force_cpu
                },
                stop_gradient=True)
160

161
            var.op = op
162
            return op
163 164 165


class UniformInitializer(Initializer):
166
    """Implements the random uniform distribution initializer
167 168 169 170 171

    Args:
        low (float): lower boundary of the uniform distribution
        high (float): upper boundary of the uniform distribution
        seed (int): random seed
172 173 174 175 176 177
        diag_num (int): the number of diagonal elements to initialize.
            If set to 0, diagonal initialization will be not performed.
        diag_step (int): Step size between two diagonal elements,
            which is generally the width of the square matrix.
        diag_val (float): the value of the diagonal element to be initialized,
            default 1.0. It takes effect only if the diag_num is greater than 0.
178 179 180 181

    Examples:
        .. code-block:: python

X
xiaoting 已提交
182
            import paddle.fluid as fluid
183
            x = fluid.data(name='x', shape=[None, 1], dtype='float32')
184
            fc = fluid.layers.fc(input=x, size=10,
185
    		param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5))
186 187
    """

188 189 190 191 192 193 194
    def __init__(self,
                 low=-1.0,
                 high=1.0,
                 seed=0,
                 diag_num=0,
                 diag_step=0,
                 diag_val=1.0):
195 196
        assert low is not None
        assert high is not None
197
        assert high >= low
198
        assert seed is not None
199 200 201 202 203
        assert diag_num is not None
        assert diag_step is not None
        assert diag_val is not None
        if diag_num > 0 or diag_step > 0:
            assert (diag_num > 0 and diag_step > 0)
204 205 206 207
        super(UniformInitializer, self).__init__()
        self._low = low
        self._high = high
        self._seed = seed
208 209 210
        self._diag_num = diag_num
        self._diag_step = diag_step
        self._diag_val = diag_val
211

212 213
    def __call__(self, var, block=None):
        """Initialize the input tensor with Uniform distribution.
214 215

        Args:
216 217 218
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
219 220

        Returns:
221
            The initialization op
222
        """
223 224
        block = self._check_block(block)

225
        assert isinstance(block, framework.Block)
226 227
        check_variable_and_dtype(var, "Out",
                                 ["uint16", "float16", "float32", "float64"],
228 229
                                 "uniform_random")

D
dzhwinter 已提交
230 231
        if self._seed == 0:
            self._seed = block.program.random_seed
W
Wu Yi 已提交
232

X
polish  
Xin Pan 已提交
233
        # to be compatible of fp16 initializers
234
        if var.dtype == VarDesc.VarType.FP16:
W
Wu Yi 已提交
235 236
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
237 238
                name=unique_name.generate(".".join(
                    ['uniform_random', var.name, 'tmp'])),
W
Wu Yi 已提交
239 240 241 242 243 244 245 246
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

247 248 249 250 251 252 253 254
        if framework.in_dygraph_mode():
            out_var = _C_ops.uniform_random(
                'shape', var.shape, 'min', self._low, 'max', self._high, 'seed',
                self._seed, 'dtype', out_dtype, 'diag_num', self._diag_num,
                'diag_step', self._diag_step, 'diag_val', self._diag_val)
            if var.dtype == VarDesc.VarType.FP16:
                var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype,
                                      'out_dtype', var.dtype)
255
                var_tmp._share_underline_tensor_to(var)
256
            else:
257
                out_var._share_underline_tensor_to(var)
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
            return None
        else:
            op = block.append_op(
                type="uniform_random",
                inputs={},
                outputs={"Out": out_var},
                attrs={
                    "shape": var.shape,
                    "dtype": out_dtype,
                    "min": self._low,
                    "max": self._high,
                    "seed": self._seed,
                    "diag_num": self._diag_num,
                    "diag_step": self._diag_step,
                    "diag_val": self._diag_val
                },
                stop_gradient=True)

            if var.dtype == VarDesc.VarType.FP16:
                block.append_op(
                    type="cast",
                    inputs={"X": out_var},
                    outputs={"Out": var},
                    attrs={"in_dtype": out_var.dtype,
                           "out_dtype": var.dtype})
W
Wu Yi 已提交
283

284
            var.op = op
285
            return op
286 287 288


class NormalInitializer(Initializer):
289 290 291 292 293 294 295 296 297 298
    """Implements the Random Normal(Gaussian) distribution initializer

    Args:
        loc (float): mean of the normal distribution
        scale (float): standard deviation of the normal distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

X
xsrobin 已提交
299
            import paddle.fluid as fluid
300
            x = fluid.data(name="data", shape=[None, 32, 32], dtype="float32")
X
xsrobin 已提交
301 302
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.Normal(loc=0.0, scale=2.0))
303

304 305 306 307 308 309 310 311 312 313 314
    """

    def __init__(self, loc=0.0, scale=1.0, seed=0):
        assert loc is not None
        assert scale is not None
        assert seed is not None
        super(NormalInitializer, self).__init__()
        self._mean = loc
        self._std_dev = scale
        self._seed = seed

315 316
    def __call__(self, var, block=None):
        """Initialize the input tensor with Normal distribution.
317 318

        Args:
319 320 321
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
322 323

        Returns:
324
            The initialization op
325
        """
326 327
        block = self._check_block(block)

328
        assert isinstance(block, framework.Block)
329

330 331
        check_variable_and_dtype(var, "Out",
                                 ["uint16", "float16", "float32", "float64"],
332
                                 "guassian_random")
333

D
dzhwinter 已提交
334 335
        if self._seed == 0:
            self._seed = block.program.random_seed
W
Wu Yi 已提交
336

337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
        if framework.in_dygraph_mode():
            out_var = _C_ops.gaussian_random(
                'shape', var.shape, 'dtype', var.dtype, 'mean', self._mean,
                'std', self._std_dev, 'seed', self._seed, 'use_mkldnn', False)
            out_var._share_underline_tensor_to(var)
            return None
        else:
            op = block.append_op(
                type="gaussian_random",
                outputs={"Out": var},
                attrs={
                    "shape": var.shape,
                    "dtype": var.dtype,
                    "mean": self._mean,
                    "std": self._std_dev,
                    "seed": self._seed,
                    "use_mkldnn": False
                },
                stop_gradient=True)

357
            var.op = op
358
            return op
359 360


361 362 363 364 365 366 367 368 369 370 371
class TruncatedNormalInitializer(Initializer):
    """Implements the Random TruncatedNormal(Gaussian) distribution initializer

    Args:
        loc (float): mean of the normal distribution
        scale (float): standard deviation of the normal distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

X
xiaoting 已提交
372
            import paddle.fluid as fluid
373
            x = fluid.data(name='x', shape=[None, 1], dtype='float32')
374 375 376 377 378 379 380 381
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.TruncatedNormal(loc=0.0, scale=2.0))
    """

    def __init__(self, loc=0.0, scale=1.0, seed=0):
        assert loc is not None
        assert scale is not None
        assert seed is not None
W
whs 已提交
382
        super(TruncatedNormalInitializer, self).__init__()
383 384 385 386
        self._mean = loc
        self._std_dev = scale
        self._seed = seed

387 388
    def __call__(self, var, block=None):
        """Initialize the input tensor with TruncatedNormal distribution.
389 390

        Args:
391 392 393
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
394 395

        Returns:
396
            The initialization op
397
        """
398 399
        block = self._check_block(block)

400 401
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
402

403 404
        if self._seed == 0:
            self._seed = block.program.random_seed
405 406

        # to be compatible of fp16 initalizers
407
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
408 409 410
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
411
                    ['truncated_gaussian_random', var.name, 'tmp'])),
412 413 414 415 416 417 418 419
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

420 421 422 423 424 425 426
        if framework.in_dygraph_mode():
            out_var = _C_ops.truncated_gaussian_random(
                'shape', var.shape, 'dtype', out_dtype, 'mean', self._mean,
                'std', self._std_dev, 'seed', self._seed)
            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
                var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype,
                                      'out_dtype', var.dtype)
427
                var_tmp._share_underline_tensor_to(var)
428
            else:
429
                out_var._share_underline_tensor_to(var)
430 431 432 433 434 435 436 437 438 439 440 441 442
            return None
        else:
            op = block.append_op(
                type="truncated_gaussian_random",
                outputs={"Out": out_var},
                attrs={
                    "shape": var.shape,
                    "dtype": out_dtype,
                    "mean": self._mean,
                    "std": self._std_dev,
                    "seed": self._seed
                },
                stop_gradient=True)
443

444 445 446 447 448 449 450
            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
                block.append_op(
                    type="cast",
                    inputs={"X": out_var},
                    outputs={"Out": var},
                    attrs={"in_dtype": out_var.dtype,
                           "out_dtype": var.dtype})
451
            var.op = op
452
            return op
453 454


455
class XavierInitializer(Initializer):
456
    r"""
457
    This class implements the Xavier weight initializer from the paper
Q
qiaolongfei 已提交
458 459 460
    `Understanding the difficulty of training deep feedforward neural
    networks <http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf>`_
    by Xavier Glorot and Yoshua Bengio.
461 462 463

    This initializer is designed to keep the scale of the gradients
    approximately same in all the layers. In case of Uniform distribution,
Q
qiaolongfei 已提交
464 465 466 467 468 469
    the range is [-x, x], where

    .. math::

        x = \sqrt{\\frac{6.0}{fan\_in + fan\_out}}

470
    In case of Normal distribution, the mean is 0 and the standard deviation
Q
qiaolongfei 已提交
471
    is
472

Q
qiaolongfei 已提交
473
    .. math::
474

Q
qiaolongfei 已提交
475
        \sqrt{\\frac{2.0}{fan\_in + fan\_out}}
476 477


Q
qiaolongfei 已提交
478
    Args:
X
xiaoting 已提交
479 480
        uniform (bool,default True): whether to use uniform ,if False use normal distribution
        fan_in (float,default None): fan_in for Xavier initialization. If None, it is
Q
qiaolongfei 已提交
481
                inferred from the variable.
X
xiaoting 已提交
482
        fan_out (float,default None): fan_out for Xavier initialization. If None, it is
Q
qiaolongfei 已提交
483 484 485 486 487 488 489 490 491
                 inferred from the variable.
        seed (int): random seed

    Note:
        It is recommended to set fan_in and fan_out to None for most cases.

    Examples:
        .. code-block:: python

X
xiaoting 已提交
492
            import paddle.fluid as fluid
X
xiaoting 已提交
493
            queries = fluid.data(name='x', shape=[None,1], dtype='float32')
Q
qiaolongfei 已提交
494 495 496 497 498 499 500
            fc = fluid.layers.fc(
                input=queries, size=10,
                param_attr=fluid.initializer.Xavier(uniform=False))

    """

    def __init__(self, uniform=True, fan_in=None, fan_out=None, seed=0):
501 502 503 504 505 506 507 508
        assert uniform is not None
        assert seed is not None
        super(XavierInitializer, self).__init__()
        self._uniform = uniform
        self._fan_in = fan_in
        self._fan_out = fan_out
        self._seed = seed

509 510
    def __call__(self, var, block=None):
        """Initialize the input tensor with Xavier initialization.
511 512

        Args:
513 514 515
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
516 517

        Returns:
518
            The initialization op
519
        """
520 521
        block = self._check_block(block)

522
        assert isinstance(block, framework.Block)
523 524
        check_variable_and_dtype(var, "Out",
                                 ["uint16", "float16", "float32", "float64"],
525 526
                                 "xavier_init")

527 528 529 530 531 532
        f_in, f_out = self._compute_fans(var)

        # If fan_in and fan_out are passed, use them
        fan_in = f_in if self._fan_in is None else self._fan_in
        fan_out = f_out if self._fan_out is None else self._fan_out

D
dzhwinter 已提交
533 534 535
        if self._seed == 0:
            self._seed = block.program.random_seed

536
        # to be compatible of fp16 initalizers
537 538
        if var.dtype == VarDesc.VarType.FP16 or (
                var.dtype == VarDesc.VarType.BF16 and not self._uniform):
539 540 541 542 543 544 545 546 547 548 549 550
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['xavier_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

551 552 553
        if framework.in_dygraph_mode():
            if self._uniform:
                limit = np.sqrt(6.0 / float(fan_in + fan_out))
554
                out_var = _C_ops.uniform_random('shape', out_var.shape, 'min',
555 556 557 558 559 560 561 562 563 564 565 566
                                                -limit, 'max', limit, 'seed',
                                                self._seed, 'dtype', out_dtype)
            else:
                std = np.sqrt(2.0 / float(fan_in + fan_out))
                out_var = _C_ops.gaussian_random(
                    'shape', out_var.shape, 'dtype', out_dtype, 'mean', 0.0,
                    'std', std, 'seed', self._seed)

            if var.dtype == VarDesc.VarType.FP16 or (
                    var.dtype == VarDesc.VarType.BF16 and not self._uniform):
                var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype,
                                      'out_dtype', var.dtype)
567
                var_tmp._share_underline_tensor_to(var)
568
            else:
569
                out_var._share_underline_tensor_to(var)
570
            return None
571
        else:
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
            if self._uniform:
                limit = np.sqrt(6.0 / float(fan_in + fan_out))
                op = block.append_op(
                    type="uniform_random",
                    inputs={},
                    outputs={"Out": out_var},
                    attrs={
                        "shape": out_var.shape,
                        "dtype": out_dtype,
                        "min": -limit,
                        "max": limit,
                        "seed": self._seed
                    },
                    stop_gradient=True)
            else:
                std = np.sqrt(2.0 / float(fan_in + fan_out))
                op = block.append_op(
                    type="gaussian_random",
                    outputs={"Out": out_var},
                    attrs={
                        "shape": out_var.shape,
                        "dtype": out_dtype,
                        "mean": 0.0,
                        "std": std,
                        "seed": self._seed
                    },
                    stop_gradient=True)

            if var.dtype == VarDesc.VarType.FP16 or (
                    var.dtype == VarDesc.VarType.BF16 and not self._uniform):
                block.append_op(
                    type="cast",
                    inputs={"X": out_var},
                    outputs={"Out": var},
                    attrs={"in_dtype": out_var.dtype,
                           "out_dtype": var.dtype})
608

609
            var.op = op
610
            return op
611 612 613


class MSRAInitializer(Initializer):
614
    r"""Implements the MSRA initializer a.k.a. Kaiming Initializer
615 616

    This class implements the weight initialization from the paper
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
    `Delving Deep into Rectifiers: Surpassing Human-Level Performance on
    ImageNet Classification <https://arxiv.org/abs/1502.01852>`_
    by Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. This is a
    robust initialization method that particularly considers the rectifier
    nonlinearities. In case of Uniform distribution, the range is [-x, x], where

    .. math::

        x = \sqrt{\\frac{6.0}{fan\_in}}

    In case of Normal distribution, the mean is 0 and the standard deviation
    is

    .. math::

        \sqrt{\\frac{2.0}{fan\_in}}

    Args:
        uniform (bool): whether to use uniform or normal distribution
D
Double_V 已提交
636 637 638
        fan_in (float32|None): fan_in for MSRAInitializer. If None, it is\
        inferred from the variable. default is None.
        seed (int32): random seed
639 640 641 642 643 644

    Note:
        It is recommended to set fan_in to None for most cases.

    Examples:
        .. code-block:: python
X
xsrobin 已提交
645

646
            import paddle
X
xsrobin 已提交
647
            import paddle.fluid as fluid
648
            paddle.enable_static()
D
Double_V 已提交
649
            x = fluid.data(name="data", shape=[8, 32, 32], dtype="float32")
X
xsrobin 已提交
650 651
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.MSRA(uniform=False))
652

653 654 655 656 657 658 659 660 661 662 663 664
    """

    def __init__(self, uniform=True, fan_in=None, seed=0):
        """Constructor for MSRAInitializer
        """
        assert uniform is not None
        assert seed is not None
        super(MSRAInitializer, self).__init__()
        self._uniform = uniform
        self._fan_in = fan_in
        self._seed = seed

665 666
    def __call__(self, var, block=None):
        """Initialize the input tensor with MSRA initialization.
667 668

        Args:
669 670 671
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
672 673

        Returns:
674
            The initialization op
675
        """
676 677
        block = self._check_block(block)

678 679 680 681 682 683 684
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        f_in, f_out = self._compute_fans(var)

        # If fan_in is passed, use it
        fan_in = f_in if self._fan_in is None else self._fan_in

D
dzhwinter 已提交
685 686 687
        if self._seed == 0:
            self._seed = block.program.random_seed

688
        # to be compatible of fp16 initalizers
689 690
        if var.dtype == VarDesc.VarType.FP16 or (
                var.dtype == VarDesc.VarType.BF16 and not self._uniform):
691 692 693 694 695 696 697 698 699 700 701 702
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['masra_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
        if framework.in_dygraph_mode():
            if self._uniform:
                limit = np.sqrt(6.0 / float(fan_in))
                out_var = _C_ops.uniform_random('shape', out_var.shape, 'min',
                                                -limit, 'max', limit, 'seed',
                                                self._seed, 'dtype',
                                                int(out_dtype))
            else:
                std = np.sqrt(2.0 / float(fan_in))
                out_var = _C_ops.gaussian_random(
                    'shape', out_var.shape, 'dtype',
                    int(out_dtype), 'mean', 0.0, 'std', std, 'seed', self._seed)

            if var.dtype == VarDesc.VarType.FP16 or (
                    var.dtype == VarDesc.VarType.BF16 and not self._uniform):
                var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype,
                                      'out_dtype', var.dtype)
720
                var_tmp._share_underline_tensor_to(var)
721
            else:
722
                out_var._share_underline_tensor_to(var)
723
            return None
724
        else:
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
            if self._uniform:
                limit = np.sqrt(6.0 / float(fan_in))
                op = block.append_op(
                    type="uniform_random",
                    inputs={},
                    outputs={"Out": out_var},
                    attrs={
                        "shape": out_var.shape,
                        "dtype": int(out_dtype),
                        "min": -limit,
                        "max": limit,
                        "seed": self._seed
                    },
                    stop_gradient=True)

            else:
                std = np.sqrt(2.0 / float(fan_in))
                op = block.append_op(
                    type="gaussian_random",
                    outputs={"Out": out_var},
                    attrs={
                        "shape": out_var.shape,
                        "dtype": int(out_dtype),
                        "mean": 0.0,
                        "std": std,
                        "seed": self._seed
                    },
                    stop_gradient=True)

            if var.dtype == VarDesc.VarType.FP16 or (
                    var.dtype == VarDesc.VarType.BF16 and not self._uniform):
                block.append_op(
                    type="cast",
                    inputs={"X": out_var},
                    outputs={"Out": var},
                    attrs={"in_dtype": out_var.dtype,
                           "out_dtype": var.dtype})
762

763
            var.op = op
764
            return op
765 766


767
class BilinearInitializer(Initializer):
768
    """
769 770 771
    This initializer can be used in transposed convolution operator to
    act as upsampling. Users can upsample a feature map with shape of
    (B, C, H, W) by any integer factor. The usage is:
772 773 774 775 776

    Examples:

        .. code-block:: python

777
            import math
778 779 780 781 782

            import paddle
            import paddle.nn as nn
            from paddle.regularizer import L2Decay

X
xsrobin 已提交
783 784
            factor = 2
            C = 2
D
Double_V 已提交
785 786
            B = 8
            H = W = 32
787 788 789 790
            w_attr = paddle.ParamAttr(learning_rate=0.,
                                      regularizer=L2Decay(0.),
                                      initializer=nn.initializer.Bilinear())
            data = paddle.rand([B, 3, H, W], dtype='float32')
C
cnn 已提交
791
            conv_up = nn.Conv2DTranspose(3,
792 793 794 795 796 797 798 799 800 801 802
                                         out_channels=C,
                                         kernel_size=2 * factor - factor % 2,
                                         padding=int(
                                             math.ceil((factor - 1) / 2.)),
                                         stride=factor,
                                         weight_attr=w_attr,
                                         bias_attr=False)
            x = conv_up(data)

    Where, `out_channels=C` and `groups=C` means this is channel-wise transposed
    convolution. The filter shape will be (C, 1, K, K) where K is `kernel_size`,
803 804 805 806
    This initializer will set a (K, K) interpolation kernel for every channel
    of the filter identically. The resulting shape of the output feature map
    will be (B, C, factor * H, factor * W). Note that the learning rate and the
    weight decay are set to 0 in order to keep coefficient values of bilinear
807 808
    interpolation unchanged during training.

809 810 811 812 813 814 815
    """

    def __init__(self):
        """Constructor for BilinearInitializer.
        """
        super(BilinearInitializer, self).__init__()

816 817
    def __call__(self, var, block=None):
        """Initialize the input tensor with Bilinear initialization.
818 819

        Args:
820 821 822
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
823 824

        Returns:
825
            The initialization op
826
        """
827 828
        block = self._check_block(block)

829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
        if not isinstance(var, framework.Variable):
            raise ValueError("var must be framework.Variable.")

        if not isinstance(block, framework.Block):
            raise ValueError("block must be framework.Block.")

        shape = var.shape
        if len(shape) != 4:
            raise ValueError("the length of shape must be 4.")
        if shape[2] != shape[3]:
            raise ValueError("shape[2] must be equal to shape[3].")

        weight = np.zeros(np.prod(var.shape), dtype='float32')
        size = shape[3]
        # factor
        f = np.ceil(size / 2.)
        # center
        c = (2 * f - 1 - f % 2) / (2. * f)
        for i in range(np.prod(shape)):
            x = i % size
            y = (i / size) % size
            weight[i] = (1 - abs(x / f - c)) * (1 - abs(y / f - c))
        weight = np.reshape(weight, shape)

853
        # to be compatible of fp16 initalizers
854 855 856
        if var.dtype in [
                VarDesc.VarType.FP16, VarDesc.VarType.BF16, VarDesc.VarType.FP64
        ]:
857 858 859 860 861 862 863 864 865 866 867 868 869
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['bilinear_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

        if out_dtype == VarDesc.VarType.FP32:
870 871 872
            value_name = "fp32_values"
            values = [float(v) for v in weight.flat]
        else:
873 874
            raise TypeError("Unsupported dtype %s", var.dtype)

875 876
        if np.prod(shape) > 1024 * 1024:
            raise ValueError("The size of input is too big. ")
877

878 879 880 881 882 883 884 885 886 887
        if framework.in_dygraph_mode():
            out_var = _C_ops.assign_value('shape',
                                          list(shape), 'dtype', out_dtype,
                                          value_name, values)
            if var.dtype in [
                    VarDesc.VarType.FP16, VarDesc.VarType.BF16,
                    VarDesc.VarType.FP64
            ]:
                var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype,
                                      'out_dtype', var.dtype)
888
                var_tmp._share_underline_tensor_to(var)
889
            else:
890
                out_var._share_underline_tensor_to(var)
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
            return None
        else:
            op = block.append_op(
                type='assign_value',
                outputs={'Out': [out_var]},
                attrs={
                    'dtype': out_dtype,
                    'shape': list(shape),
                    value_name: values
                })

            if var.dtype in [
                    VarDesc.VarType.FP16, VarDesc.VarType.BF16,
                    VarDesc.VarType.FP64
            ]:
                block.append_op(
                    type="cast",
                    inputs={"X": out_var},
                    outputs={"Out": var},
                    attrs={"in_dtype": out_var.dtype,
                           "out_dtype": var.dtype})

913
            var.op = op
914
            return op
915 916


917 918
class NumpyArrayInitializer(Initializer):
    """Init an parameter with an numpy array
919
    This op initialize the variable by numpy array.
920 921 922 923

    Args:
        value (numpy): numpy array to initialize the variable

924 925 926
    Returns:
        A Tensor variable initialized by numpy.

927 928 929
    Examples:
        .. code-block:: python

930
            import paddle.fluid as fluid
931 932
            import numpy
            x = fluid.data(name="x", shape=[2, 1], dtype='float32')
933 934 935 936 937 938 939 940 941 942
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.NumpyArrayInitializer(numpy.array([1,2])))
    """

    def __init__(self, value):
        import numpy
        assert isinstance(value, numpy.ndarray)
        super(NumpyArrayInitializer, self).__init__()
        self._value = value

943 944
    def __call__(self, var, block=None):
        """Initialize the input tensor with Numpy array.
945 946

        Args:
947 948 949
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
950 951

        Returns:
952
            The initialization op
953
        """
954 955
        block = self._check_block(block)

956 957
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
958 959

        # to be compatible of fp16 initalizers
960
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
            out_dtype = VarDesc.VarType.FP32
            np_value = self._value.astype("float32")
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['numpy_array_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_var = var
            out_dtype = var.dtype
            np_value = self._value

        if out_dtype == VarDesc.VarType.FP32:
976
            value_name = "fp32_values"
977 978
            values = [float(v) for v in np_value.flat]
        elif out_dtype == VarDesc.VarType.INT32:
979
            value_name = "int32_values"
980
            values = [int(v) for v in np_value.flat]
981 982
        else:
            raise ValueError("Unsupported dtype %s", self._value.dtype)
X
Xin Pan 已提交
983
        if self._value.size > 1024 * 1024 * 1024:
984 985
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
986

987 988 989 990 991 992 993
        if framework.in_dygraph_mode():
            out_var = _C_ops.assign_value('shape',
                                          list(self._value.shape), 'dtype',
                                          out_dtype, value_name, values)
            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
                var_tmp = _C_ops.cast(out_var, 'in_dtype', out_var.dtype,
                                      'out_dtype', var.dtype)
994
                var_tmp._share_underline_tensor_to(var)
995
            else:
996
                out_var._share_underline_tensor_to(var)
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
            return None
        else:
            op = block.append_op(
                type='assign_value',
                outputs={'Out': out_var},
                attrs={
                    'dtype': out_dtype,
                    'shape': list(self._value.shape),
                    value_name: values
                },
                stop_gradient=True)

            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
                block.append_op(
                    type="cast",
                    inputs={"X": out_var},
                    outputs={"Out": var},
                    attrs={"in_dtype": out_var.dtype,
                           "out_dtype": var.dtype})

1017
            var.op = op
1018
            return op
1019 1020


1021 1022 1023 1024 1025 1026 1027
def set_global_initializer(weight_init, bias_init=None):
    """
    This API is used to set up global model parameter initializer in framework.

    After this API is invoked, the global initializer will takes effect in subsequent code.

    The model parameters include ``weight`` and ``bias`` . In the framework, they correspond 
1028
    to ``paddle.ParamAttr`` , which is inherited from ``paddle.Tensor`` , and is a persistable Variable.
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
    This API only takes effect for model parameters, not for variables created through apis such as 
    :ref:`api_fluid_layers_create_global_var` , :ref:`api_fluid_layers_create_tensor`.
    
    If the initializer is also set up by ``param_attr`` or ``bias_attr`` when creating a network layer,
    the global initializer setting here will not take effect because it has a lower priority.

    If you want to cancel the global initializer in framework, please set global initializer to ``None`` .

    Args:
        weight_init (Initializer): set the global initializer for ``weight`` of model parameters.
        bias_init (Initializer, optional): set the global initializer for ``bias`` of model parameters. 
            Default: None.

    Returns:
        None

    Examples:
        .. code-block:: python

1048 1049 1050 1051 1052
            import paddle
            import paddle.nn as nn

            nn.initializer.set_global_initializer(nn.initializer.Uniform(), nn.initializer.Constant())
            x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.)
1053 1054 1055

            # The weight of conv1 is initialized by Uniform
            # The bias of conv1 is initialized by Constant
1056 1057
            conv1 = nn.Conv2D(4, 6, (3, 3))
            y_var1 = conv1(x_var)
1058 1059 1060 1061

            # If set param_attr/bias_attr too, global initializer will not take effect
            # The weight of conv2 is initialized by Xavier
            # The bias of conv2 is initialized by Normal
1062 1063 1064 1065
            conv2 = nn.Conv2D(4, 6, (3, 3), 
                weight_attr=nn.initializer.XavierUniform(),
                bias_attr=nn.initializer.Normal())
            y_var2 = conv2(x_var)
1066 1067

            # Cancel the global initializer in framework, it will takes effect in subsequent code
1068
            nn.initializer.set_global_initializer(None)
1069
    """
1070

1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
    check_type(weight_init, 'weight_init', (Initializer, type(None)),
               'set_global_initializer')
    global _global_weight_initializer_
    _global_weight_initializer_ = weight_init

    check_type(bias_init, 'bias_init', (Initializer, type(None)),
               'set_global_initializer')
    global _global_bias_initializer_
    _global_bias_initializer_ = bias_init


def _global_weight_initializer():
    """
    Return the global weight initializer, The user doesn't need to use it.
    """
    return _global_weight_initializer_


def _global_bias_initializer():
    """
    Return the global weight initializer, The user doesn't need to use it.
    """
    return _global_bias_initializer_


1096 1097
def calculate_gain(nonlinearity, param=None):
    """
1098 1099
    Get the recommended ``gain`` value of some nonlinearity function. ``gain`` value can be used in some 
    ``paddle.nn.initializer`` api to adjust the initialization value.
1100 1101

    Args:
1102 1103
        nonlinearity(str): name of nonlinearity activation function. If it is a linear function, such as: 
            `linear/conv1d/conv2d/conv3d/conv1d_transpose/conv2d_transpose/conv3d_transpose` , 1.0 will be returned.
1104
        param(bool|int|float, optional): optional parameter for somme nonlinearity function. Now, it only applies to 
1105
            'leaky_relu'. Default: None, it will be calculated as 0.01 in the formula.
1106 1107

    Returns:
1108
        A float value, which is the recommended gain for this nonlinearity function.
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128

    Examples:
        .. code-block:: python

            import paddle
            gain = paddle.nn.initializer.calculate_gain('tanh') # 5.0 / 3
            gain = paddle.nn.initializer.calculate_gain('leaky_relu', param=1.0) # 1.0 = math.sqrt(2.0 / (1+param^2))

    """
    if param is None:
        param = 0.01
    else:
        assert isinstance(param, (bool, int, float))
        param = float(param)
    recommended_gain = {
        'sigmoid': 1,
        'linear': 1,
        'conv1d': 1,
        'conv2d': 1,
        'conv3d': 1,
1129 1130 1131
        'conv1d_transpose': 1,
        'conv2d_transpose': 1,
        'conv3d_transpose': 1,
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
        'tanh': 5.0 / 3,
        'relu': math.sqrt(2.0),
        'leaky_relu': math.sqrt(2.0 / (1 + param**2)),
        'selu': 3.0 / 4
    }
    if nonlinearity in recommended_gain.keys():
        return recommended_gain[nonlinearity]
    else:
        raise ValueError("nonlinearity function {} is not suppported now.".
                         format(nonlinearity))


1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
# We short the class name, since users will use the initializer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# hidden = fluid.layers.fc(...,
#                          param_attr=ParamAttr(fluid.initializer.Xavier()))
#
# It is no need to add an `Initializer` as the class suffix
Constant = ConstantInitializer
Uniform = UniformInitializer
Normal = NormalInitializer
1156
TruncatedNormal = TruncatedNormalInitializer
1157 1158
Xavier = XavierInitializer
MSRA = MSRAInitializer
1159
Bilinear = BilinearInitializer