initializer.py 37.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import math
18
from . import framework
19
from . import core
20
from .framework import in_dygraph_mode, default_main_program
21
import numpy as np
22
from .core import VarDesc
W
Wu Yi 已提交
23
from . import unique_name
24
from .data_feeder import check_variable_and_dtype, check_type, check_dtype
25

26
__all__ = [
27
    'Constant', 'Uniform', 'Normal', 'TruncatedNormal', 'Xavier', 'Bilinear',
28 29
    'MSRA', 'ConstantInitializer', 'UniformInitializer', 'NormalInitializer',
    'TruncatedNormalInitializer', 'XavierInitializer', 'BilinearInitializer',
30
    'MSRAInitializer', 'NumpyArrayInitializer', 'set_global_initializer'
31
]
32

33 34 35
_global_weight_initializer_ = None
_global_bias_initializer_ = None

36 37 38 39 40 41 42 43 44 45

class Initializer(object):
    """Base class for variable initializers

    Defines the common interface of variable initializers.
    They add operations to the init program that are used
    to initialize variables. Users should not use this class
    directly, but need to use one of its implementations.
    """

W
whs 已提交
46
    def __init__(self):
47 48
        pass

49
    def __call__(self, param, block=None):
50 51 52 53
        """Add corresponding initialization operations to the network
        """
        raise NotImplementedError()

54 55
    def _check_block(self, block):
        if block is None:
56
            block = default_main_program().global_block()
57 58 59

        return block

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
    def _compute_fans(self, var):
        """Compute the fan_in and the fan_out for layers

        This method computes the fan_in and the fan_out
        for neural network layers, if not specified. It is
        not possible to perfectly estimate fan_in and fan_out.
        This method will estimate it correctly for matrix multiply and
        convolutions.

        Args:
            var: variable for which fan_in and fan_out have to be computed

        Returns:
            tuple of two integers (fan_in, fan_out)
        """
        shape = var.shape
        if not shape or len(shape) == 0:
            fan_in = fan_out = 1
        elif len(shape) == 1:
            fan_in = fan_out = shape[0]
        elif len(shape) == 2:
            # This is the case for simple matrix multiply
            fan_in = shape[0]
            fan_out = shape[1]
        else:
            # Assume this to be a convolutional kernel
            # In PaddlePaddle, the shape of the kernel is like:
            # [num_filters, num_filter_channels, ...] where the remaining
            # dimensions are the filter_size
            receptive_field_size = np.prod(shape[2:])
            fan_in = shape[1] * receptive_field_size
            fan_out = shape[0] * receptive_field_size

        return (fan_in, fan_out)

95 96 97

class ConstantInitializer(Initializer):
    """Implements the constant initializer
98 99

    Args:
D
Double_V 已提交
100
        value (float32): constant value to initialize the variable 
101 102 103 104

    Examples:
        .. code-block:: python

105 106 107
            import paddle
            import paddle.fluid as fluid
            paddle.enable_static()
D
Double_V 已提交
108
            x = fluid.data(name="data", shape=[8, 32, 32], dtype="float32")
109 110 111 112
            fc = fluid.layers.fc(
                input=x,
                size=10,
                param_attr=fluid.initializer.Constant(value=2.0))
113

114 115
    """

116
    def __init__(self, value=0.0, force_cpu=False):
117 118 119
        assert value is not None
        super(ConstantInitializer, self).__init__()
        self._value = value
120
        self._force_cpu = force_cpu
121

122 123
    def __call__(self, var, block=None):
        """Initialize the input tensor with constant.
124 125

        Args:
126 127 128
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
129 130

        Returns:
131
            The initialization op
132
        """
133 134
        block = self._check_block(block)

135 136
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151

        # to be compatible of fp16 initializers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['constant_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

152
        # fill constant should set the "str_value" to preserve precision
153
        op = block.append_op(
154
            type="fill_constant",
155
            outputs={"Out": out_var},
156 157
            attrs={
                "shape": var.shape,
158
                "dtype": int(out_dtype),
159
                "value": float(self._value),
160
                'str_value': str(float(self._value)),
161
                'force_cpu': self._force_cpu
M
minqiyang 已提交
162 163
            },
            stop_gradient=True)
164 165 166 167 168 169 170 171 172

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
173
        if not framework.in_dygraph_mode():
174
            var.op = op
175 176 177 178
        return op


class UniformInitializer(Initializer):
179
    """Implements the random uniform distribution initializer
180 181 182 183 184

    Args:
        low (float): lower boundary of the uniform distribution
        high (float): upper boundary of the uniform distribution
        seed (int): random seed
185 186 187 188 189 190
        diag_num (int): the number of diagonal elements to initialize.
            If set to 0, diagonal initialization will be not performed.
        diag_step (int): Step size between two diagonal elements,
            which is generally the width of the square matrix.
        diag_val (float): the value of the diagonal element to be initialized,
            default 1.0. It takes effect only if the diag_num is greater than 0.
191 192 193 194

    Examples:
        .. code-block:: python

X
xiaoting 已提交
195
            import paddle.fluid as fluid
196
            x = fluid.data(name='x', shape=[None, 1], dtype='float32')
197
            fc = fluid.layers.fc(input=x, size=10,
198
    		param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5))
199 200
    """

201 202 203 204 205 206 207
    def __init__(self,
                 low=-1.0,
                 high=1.0,
                 seed=0,
                 diag_num=0,
                 diag_step=0,
                 diag_val=1.0):
208 209
        assert low is not None
        assert high is not None
210
        assert high >= low
211
        assert seed is not None
212 213 214 215 216
        assert diag_num is not None
        assert diag_step is not None
        assert diag_val is not None
        if diag_num > 0 or diag_step > 0:
            assert (diag_num > 0 and diag_step > 0)
217 218 219 220
        super(UniformInitializer, self).__init__()
        self._low = low
        self._high = high
        self._seed = seed
221 222 223
        self._diag_num = diag_num
        self._diag_step = diag_step
        self._diag_val = diag_val
224

225 226
    def __call__(self, var, block=None):
        """Initialize the input tensor with Uniform distribution.
227 228

        Args:
229 230 231
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
232 233

        Returns:
234
            The initialization op
235
        """
236 237
        block = self._check_block(block)

238
        assert isinstance(block, framework.Block)
239 240
        check_variable_and_dtype(var, "Out",
                                 ["uint16", "float16", "float32", "float64"],
241 242
                                 "uniform_random")

D
dzhwinter 已提交
243 244
        if self._seed == 0:
            self._seed = block.program.random_seed
W
Wu Yi 已提交
245

X
polish  
Xin Pan 已提交
246
        # to be compatible of fp16 initializers
247
        if var.dtype == VarDesc.VarType.FP16:
W
Wu Yi 已提交
248 249
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
250 251
                name=unique_name.generate(".".join(
                    ['uniform_random', var.name, 'tmp'])),
W
Wu Yi 已提交
252 253 254 255 256 257 258 259
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

260
        op = block.append_op(
261
            type="uniform_random",
262
            inputs={},
W
Wu Yi 已提交
263
            outputs={"Out": out_var},
264 265
            attrs={
                "shape": var.shape,
W
Wu Yi 已提交
266
                "dtype": out_dtype,
267 268
                "min": self._low,
                "max": self._high,
269 270 271 272
                "seed": self._seed,
                "diag_num": self._diag_num,
                "diag_step": self._diag_step,
                "diag_val": self._diag_val
M
minqiyang 已提交
273 274
            },
            stop_gradient=True)
W
Wu Yi 已提交
275

276
        if var.dtype == VarDesc.VarType.FP16:
W
Wu Yi 已提交
277 278 279 280 281 282 283
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
284
        if not framework.in_dygraph_mode():
285
            var.op = op
286
        return op
287 288 289


class NormalInitializer(Initializer):
290 291 292 293 294 295 296 297 298 299
    """Implements the Random Normal(Gaussian) distribution initializer

    Args:
        loc (float): mean of the normal distribution
        scale (float): standard deviation of the normal distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

X
xsrobin 已提交
300
            import paddle.fluid as fluid
301
            x = fluid.data(name="data", shape=[None, 32, 32], dtype="float32")
X
xsrobin 已提交
302 303
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.Normal(loc=0.0, scale=2.0))
304

305 306 307 308 309 310 311 312 313 314 315
    """

    def __init__(self, loc=0.0, scale=1.0, seed=0):
        assert loc is not None
        assert scale is not None
        assert seed is not None
        super(NormalInitializer, self).__init__()
        self._mean = loc
        self._std_dev = scale
        self._seed = seed

316 317
    def __call__(self, var, block=None):
        """Initialize the input tensor with Normal distribution.
318 319

        Args:
320 321 322
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
323 324

        Returns:
325
            The initialization op
326
        """
327 328
        block = self._check_block(block)

329
        assert isinstance(block, framework.Block)
330

331 332
        check_variable_and_dtype(var, "Out",
                                 ["uint16", "float16", "float32", "float64"],
333
                                 "guassian_random")
334

D
dzhwinter 已提交
335 336
        if self._seed == 0:
            self._seed = block.program.random_seed
W
Wu Yi 已提交
337 338

        # to be compatible of fp16 initalizers
339
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
W
Wu Yi 已提交
340 341
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
342 343
                name=unique_name.generate(".".join(
                    ['gaussian_random', var.name, 'tmp'])),
W
Wu Yi 已提交
344 345 346 347 348 349 350 351
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

352
        op = block.append_op(
353
            type="gaussian_random",
W
Wu Yi 已提交
354
            outputs={"Out": out_var},
355 356
            attrs={
                "shape": var.shape,
W
Wu Yi 已提交
357
                "dtype": out_dtype,
358 359
                "mean": self._mean,
                "std": self._std_dev,
G
gongweibao 已提交
360 361
                "seed": self._seed,
                "use_mkldnn": False
M
minqiyang 已提交
362 363
            },
            stop_gradient=True)
W
Wu Yi 已提交
364

365
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
W
Wu Yi 已提交
366 367 368 369 370 371
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})
L
lujun 已提交
372
        if not framework.in_dygraph_mode():
373
            var.op = op
374
        return op
375 376


377 378 379 380 381 382 383 384 385 386 387
class TruncatedNormalInitializer(Initializer):
    """Implements the Random TruncatedNormal(Gaussian) distribution initializer

    Args:
        loc (float): mean of the normal distribution
        scale (float): standard deviation of the normal distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

X
xiaoting 已提交
388
            import paddle.fluid as fluid
389
            x = fluid.data(name='x', shape=[None, 1], dtype='float32')
390 391 392 393 394 395 396 397
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.TruncatedNormal(loc=0.0, scale=2.0))
    """

    def __init__(self, loc=0.0, scale=1.0, seed=0):
        assert loc is not None
        assert scale is not None
        assert seed is not None
W
whs 已提交
398
        super(TruncatedNormalInitializer, self).__init__()
399 400 401 402
        self._mean = loc
        self._std_dev = scale
        self._seed = seed

403 404
    def __call__(self, var, block=None):
        """Initialize the input tensor with TruncatedNormal distribution.
405 406

        Args:
407 408 409
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
410 411

        Returns:
412
            The initialization op
413
        """
414 415
        block = self._check_block(block)

416 417
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
418

419 420
        if self._seed == 0:
            self._seed = block.program.random_seed
421 422

        # to be compatible of fp16 initalizers
423
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
424 425 426
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
427
                    ['truncated_gaussian_random', var.name, 'tmp'])),
428 429 430 431 432 433 434 435
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

436
        op = block.append_op(
437
            type="truncated_gaussian_random",
438
            outputs={"Out": out_var},
439 440
            attrs={
                "shape": var.shape,
441
                "dtype": out_dtype,
442 443 444
                "mean": self._mean,
                "std": self._std_dev,
                "seed": self._seed
M
minqiyang 已提交
445 446
            },
            stop_gradient=True)
447

448
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
449 450 451 452 453 454
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})
L
lujun 已提交
455
        if not framework.in_dygraph_mode():
456
            var.op = op
457 458 459
        return op


460
class XavierInitializer(Initializer):
461
    r"""
462
    This class implements the Xavier weight initializer from the paper
Q
qiaolongfei 已提交
463 464 465
    `Understanding the difficulty of training deep feedforward neural
    networks <http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf>`_
    by Xavier Glorot and Yoshua Bengio.
466 467 468

    This initializer is designed to keep the scale of the gradients
    approximately same in all the layers. In case of Uniform distribution,
Q
qiaolongfei 已提交
469 470 471 472 473 474
    the range is [-x, x], where

    .. math::

        x = \sqrt{\\frac{6.0}{fan\_in + fan\_out}}

475
    In case of Normal distribution, the mean is 0 and the standard deviation
Q
qiaolongfei 已提交
476
    is
477

Q
qiaolongfei 已提交
478
    .. math::
479

Q
qiaolongfei 已提交
480
        \sqrt{\\frac{2.0}{fan\_in + fan\_out}}
481 482


Q
qiaolongfei 已提交
483
    Args:
X
xiaoting 已提交
484 485
        uniform (bool,default True): whether to use uniform ,if False use normal distribution
        fan_in (float,default None): fan_in for Xavier initialization. If None, it is
Q
qiaolongfei 已提交
486
                inferred from the variable.
X
xiaoting 已提交
487
        fan_out (float,default None): fan_out for Xavier initialization. If None, it is
Q
qiaolongfei 已提交
488 489 490 491 492 493 494 495 496
                 inferred from the variable.
        seed (int): random seed

    Note:
        It is recommended to set fan_in and fan_out to None for most cases.

    Examples:
        .. code-block:: python

X
xiaoting 已提交
497
            import paddle.fluid as fluid
X
xiaoting 已提交
498
            queries = fluid.data(name='x', shape=[None,1], dtype='float32')
Q
qiaolongfei 已提交
499 500 501 502 503 504 505
            fc = fluid.layers.fc(
                input=queries, size=10,
                param_attr=fluid.initializer.Xavier(uniform=False))

    """

    def __init__(self, uniform=True, fan_in=None, fan_out=None, seed=0):
506 507 508 509 510 511 512 513
        assert uniform is not None
        assert seed is not None
        super(XavierInitializer, self).__init__()
        self._uniform = uniform
        self._fan_in = fan_in
        self._fan_out = fan_out
        self._seed = seed

514 515
    def __call__(self, var, block=None):
        """Initialize the input tensor with Xavier initialization.
516 517

        Args:
518 519 520
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
521 522

        Returns:
523
            The initialization op
524
        """
525 526
        block = self._check_block(block)

527
        assert isinstance(block, framework.Block)
528 529
        check_variable_and_dtype(var, "Out",
                                 ["uint16", "float16", "float32", "float64"],
530 531
                                 "xavier_init")

532 533 534 535 536 537
        f_in, f_out = self._compute_fans(var)

        # If fan_in and fan_out are passed, use them
        fan_in = f_in if self._fan_in is None else self._fan_in
        fan_out = f_out if self._fan_out is None else self._fan_out

D
dzhwinter 已提交
538 539 540
        if self._seed == 0:
            self._seed = block.program.random_seed

541
        # to be compatible of fp16 initalizers
542 543
        if var.dtype == VarDesc.VarType.FP16 or (
                var.dtype == VarDesc.VarType.BF16 and not self._uniform):
544 545 546 547 548 549 550 551 552 553 554 555
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['xavier_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

556 557
        if self._uniform:
            limit = np.sqrt(6.0 / float(fan_in + fan_out))
558
            op = block.append_op(
559
                type="uniform_random",
560
                inputs={},
561
                outputs={"Out": out_var},
562
                attrs={
563 564
                    "shape": out_var.shape,
                    "dtype": out_dtype,
565 566 567
                    "min": -limit,
                    "max": limit,
                    "seed": self._seed
M
minqiyang 已提交
568 569
                },
                stop_gradient=True)
570 571 572

        else:
            std = np.sqrt(2.0 / float(fan_in + fan_out))
573
            op = block.append_op(
574
                type="gaussian_random",
575
                outputs={"Out": out_var},
576
                attrs={
577 578
                    "shape": out_var.shape,
                    "dtype": out_dtype,
579 580 581
                    "mean": 0.0,
                    "std": std,
                    "seed": self._seed
M
minqiyang 已提交
582 583
                },
                stop_gradient=True)
584

585 586
        if var.dtype == VarDesc.VarType.FP16 or (
                var.dtype == VarDesc.VarType.BF16 and not self._uniform):
587 588 589 590 591 592 593
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
594
        if not framework.in_dygraph_mode():
595
            var.op = op
596
        return op
597 598 599


class MSRAInitializer(Initializer):
600
    r"""Implements the MSRA initializer a.k.a. Kaiming Initializer
601 602

    This class implements the weight initialization from the paper
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
    `Delving Deep into Rectifiers: Surpassing Human-Level Performance on
    ImageNet Classification <https://arxiv.org/abs/1502.01852>`_
    by Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. This is a
    robust initialization method that particularly considers the rectifier
    nonlinearities. In case of Uniform distribution, the range is [-x, x], where

    .. math::

        x = \sqrt{\\frac{6.0}{fan\_in}}

    In case of Normal distribution, the mean is 0 and the standard deviation
    is

    .. math::

        \sqrt{\\frac{2.0}{fan\_in}}

    Args:
        uniform (bool): whether to use uniform or normal distribution
D
Double_V 已提交
622 623 624
        fan_in (float32|None): fan_in for MSRAInitializer. If None, it is\
        inferred from the variable. default is None.
        seed (int32): random seed
625 626 627 628 629 630

    Note:
        It is recommended to set fan_in to None for most cases.

    Examples:
        .. code-block:: python
X
xsrobin 已提交
631

632
            import paddle
X
xsrobin 已提交
633
            import paddle.fluid as fluid
634
            paddle.enable_static()
D
Double_V 已提交
635
            x = fluid.data(name="data", shape=[8, 32, 32], dtype="float32")
X
xsrobin 已提交
636 637
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.MSRA(uniform=False))
638

639 640 641 642 643 644 645 646 647 648 649 650
    """

    def __init__(self, uniform=True, fan_in=None, seed=0):
        """Constructor for MSRAInitializer
        """
        assert uniform is not None
        assert seed is not None
        super(MSRAInitializer, self).__init__()
        self._uniform = uniform
        self._fan_in = fan_in
        self._seed = seed

651 652
    def __call__(self, var, block=None):
        """Initialize the input tensor with MSRA initialization.
653 654

        Args:
655 656 657
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
658 659

        Returns:
660
            The initialization op
661
        """
662 663
        block = self._check_block(block)

664 665 666 667 668 669 670
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        f_in, f_out = self._compute_fans(var)

        # If fan_in is passed, use it
        fan_in = f_in if self._fan_in is None else self._fan_in

D
dzhwinter 已提交
671 672 673
        if self._seed == 0:
            self._seed = block.program.random_seed

674
        # to be compatible of fp16 initalizers
675 676
        if var.dtype == VarDesc.VarType.FP16 or (
                var.dtype == VarDesc.VarType.BF16 and not self._uniform):
677 678 679 680 681 682 683 684 685 686 687 688
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['masra_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

689 690
        if self._uniform:
            limit = np.sqrt(6.0 / float(fan_in))
691
            op = block.append_op(
692
                type="uniform_random",
693
                inputs={},
694
                outputs={"Out": out_var},
695
                attrs={
696 697
                    "shape": out_var.shape,
                    "dtype": int(out_dtype),
698 699 700
                    "min": -limit,
                    "max": limit,
                    "seed": self._seed
M
minqiyang 已提交
701 702
                },
                stop_gradient=True)
703 704 705

        else:
            std = np.sqrt(2.0 / float(fan_in))
706
            op = block.append_op(
707
                type="gaussian_random",
708
                outputs={"Out": out_var},
709
                attrs={
710 711
                    "shape": out_var.shape,
                    "dtype": int(out_dtype),
712 713 714
                    "mean": 0.0,
                    "std": std,
                    "seed": self._seed
M
minqiyang 已提交
715 716
                },
                stop_gradient=True)
717

718 719
        if var.dtype == VarDesc.VarType.FP16 or (
                var.dtype == VarDesc.VarType.BF16 and not self._uniform):
720 721 722 723 724 725 726
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
727
        if not framework.in_dygraph_mode():
728
            var.op = op
729
        return op
730 731


732
class BilinearInitializer(Initializer):
733
    """
734 735 736
    This initializer can be used in transposed convolution operator to
    act as upsampling. Users can upsample a feature map with shape of
    (B, C, H, W) by any integer factor. The usage is:
737 738 739 740 741

    Examples:

        .. code-block:: python

742
            import math
743 744 745 746 747

            import paddle
            import paddle.nn as nn
            from paddle.regularizer import L2Decay

X
xsrobin 已提交
748 749
            factor = 2
            C = 2
D
Double_V 已提交
750 751
            B = 8
            H = W = 32
752 753 754 755
            w_attr = paddle.ParamAttr(learning_rate=0.,
                                      regularizer=L2Decay(0.),
                                      initializer=nn.initializer.Bilinear())
            data = paddle.rand([B, 3, H, W], dtype='float32')
C
cnn 已提交
756
            conv_up = nn.Conv2DTranspose(3,
757 758 759 760 761 762 763 764 765 766 767
                                         out_channels=C,
                                         kernel_size=2 * factor - factor % 2,
                                         padding=int(
                                             math.ceil((factor - 1) / 2.)),
                                         stride=factor,
                                         weight_attr=w_attr,
                                         bias_attr=False)
            x = conv_up(data)

    Where, `out_channels=C` and `groups=C` means this is channel-wise transposed
    convolution. The filter shape will be (C, 1, K, K) where K is `kernel_size`,
768 769 770 771
    This initializer will set a (K, K) interpolation kernel for every channel
    of the filter identically. The resulting shape of the output feature map
    will be (B, C, factor * H, factor * W). Note that the learning rate and the
    weight decay are set to 0 in order to keep coefficient values of bilinear
772 773
    interpolation unchanged during training.

774 775 776 777 778 779 780
    """

    def __init__(self):
        """Constructor for BilinearInitializer.
        """
        super(BilinearInitializer, self).__init__()

781 782
    def __call__(self, var, block=None):
        """Initialize the input tensor with Bilinear initialization.
783 784

        Args:
785 786 787
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
788 789

        Returns:
790
            The initialization op
791
        """
792 793
        block = self._check_block(block)

794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
        if not isinstance(var, framework.Variable):
            raise ValueError("var must be framework.Variable.")

        if not isinstance(block, framework.Block):
            raise ValueError("block must be framework.Block.")

        shape = var.shape
        if len(shape) != 4:
            raise ValueError("the length of shape must be 4.")
        if shape[2] != shape[3]:
            raise ValueError("shape[2] must be equal to shape[3].")

        weight = np.zeros(np.prod(var.shape), dtype='float32')
        size = shape[3]
        # factor
        f = np.ceil(size / 2.)
        # center
        c = (2 * f - 1 - f % 2) / (2. * f)
        for i in range(np.prod(shape)):
            x = i % size
            y = (i / size) % size
            weight[i] = (1 - abs(x / f - c)) * (1 - abs(y / f - c))
        weight = np.reshape(weight, shape)

818
        # to be compatible of fp16 initalizers
819 820 821
        if var.dtype in [
                VarDesc.VarType.FP16, VarDesc.VarType.BF16, VarDesc.VarType.FP64
        ]:
822 823 824 825 826 827 828 829 830 831 832 833 834
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['bilinear_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

        if out_dtype == VarDesc.VarType.FP32:
835 836 837
            value_name = "fp32_values"
            values = [float(v) for v in weight.flat]
        else:
838 839
            raise TypeError("Unsupported dtype %s", var.dtype)

840 841 842 843
        if np.prod(shape) > 1024 * 1024:
            raise ValueError("The size of input is too big. ")
        op = block.append_op(
            type='assign_value',
844
            outputs={'Out': [out_var]},
845
            attrs={
846
                'dtype': out_dtype,
847 848 849
                'shape': list(shape),
                value_name: values
            })
850

851 852 853
        if var.dtype in [
                VarDesc.VarType.FP16, VarDesc.VarType.BF16, VarDesc.VarType.FP64
        ]:
854 855 856 857 858 859 860
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
861
        if not framework.in_dygraph_mode():
862
            var.op = op
863 864 865
        return op


866 867
class NumpyArrayInitializer(Initializer):
    """Init an parameter with an numpy array
868
    This op initialize the variable by numpy array.
869 870 871 872

    Args:
        value (numpy): numpy array to initialize the variable

873 874 875
    Returns:
        A Tensor variable initialized by numpy.

876 877 878
    Examples:
        .. code-block:: python

879
            import paddle.fluid as fluid
880 881
            import numpy
            x = fluid.data(name="x", shape=[2, 1], dtype='float32')
882 883 884 885 886 887 888 889 890 891
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.NumpyArrayInitializer(numpy.array([1,2])))
    """

    def __init__(self, value):
        import numpy
        assert isinstance(value, numpy.ndarray)
        super(NumpyArrayInitializer, self).__init__()
        self._value = value

892 893
    def __call__(self, var, block=None):
        """Initialize the input tensor with Numpy array.
894 895

        Args:
896 897 898
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
899 900

        Returns:
901
            The initialization op
902
        """
903 904
        block = self._check_block(block)

905 906
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
907 908

        # to be compatible of fp16 initalizers
909
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
            out_dtype = VarDesc.VarType.FP32
            np_value = self._value.astype("float32")
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['numpy_array_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_var = var
            out_dtype = var.dtype
            np_value = self._value

        if out_dtype == VarDesc.VarType.FP32:
925
            value_name = "fp32_values"
926 927
            values = [float(v) for v in np_value.flat]
        elif out_dtype == VarDesc.VarType.INT32:
928
            value_name = "int32_values"
929
            values = [int(v) for v in np_value.flat]
930 931
        else:
            raise ValueError("Unsupported dtype %s", self._value.dtype)
X
Xin Pan 已提交
932
        if self._value.size > 1024 * 1024 * 1024:
933 934
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
935
        op = block.append_op(
936
            type='assign_value',
937
            outputs={'Out': out_var},
938
            attrs={
939
                'dtype': out_dtype,
940
                'shape': list(self._value.shape),
941 942 943
                value_name: values
            },
            stop_gradient=True)
944

945
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
946 947 948 949 950 951 952
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
953
        if not framework.in_dygraph_mode():
954
            var.op = op
955 956 957
        return op


958 959 960 961 962 963 964
def set_global_initializer(weight_init, bias_init=None):
    """
    This API is used to set up global model parameter initializer in framework.

    After this API is invoked, the global initializer will takes effect in subsequent code.

    The model parameters include ``weight`` and ``bias`` . In the framework, they correspond 
965
    to ``paddle.ParamAttr`` , which is inherited from ``paddle.Tensor`` , and is a persistable Variable.
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
    This API only takes effect for model parameters, not for variables created through apis such as 
    :ref:`api_fluid_layers_create_global_var` , :ref:`api_fluid_layers_create_tensor`.
    
    If the initializer is also set up by ``param_attr`` or ``bias_attr`` when creating a network layer,
    the global initializer setting here will not take effect because it has a lower priority.

    If you want to cancel the global initializer in framework, please set global initializer to ``None`` .

    Args:
        weight_init (Initializer): set the global initializer for ``weight`` of model parameters.
        bias_init (Initializer, optional): set the global initializer for ``bias`` of model parameters. 
            Default: None.

    Returns:
        None

    Examples:
        .. code-block:: python

985 986 987 988 989
            import paddle
            import paddle.nn as nn

            nn.initializer.set_global_initializer(nn.initializer.Uniform(), nn.initializer.Constant())
            x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.)
990 991 992

            # The weight of conv1 is initialized by Uniform
            # The bias of conv1 is initialized by Constant
993 994
            conv1 = nn.Conv2D(4, 6, (3, 3))
            y_var1 = conv1(x_var)
995 996 997 998

            # If set param_attr/bias_attr too, global initializer will not take effect
            # The weight of conv2 is initialized by Xavier
            # The bias of conv2 is initialized by Normal
999 1000 1001 1002
            conv2 = nn.Conv2D(4, 6, (3, 3), 
                weight_attr=nn.initializer.XavierUniform(),
                bias_attr=nn.initializer.Normal())
            y_var2 = conv2(x_var)
1003 1004

            # Cancel the global initializer in framework, it will takes effect in subsequent code
1005
            nn.initializer.set_global_initializer(None)
1006
    """
1007

1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
    check_type(weight_init, 'weight_init', (Initializer, type(None)),
               'set_global_initializer')
    global _global_weight_initializer_
    _global_weight_initializer_ = weight_init

    check_type(bias_init, 'bias_init', (Initializer, type(None)),
               'set_global_initializer')
    global _global_bias_initializer_
    _global_bias_initializer_ = bias_init


def _global_weight_initializer():
    """
    Return the global weight initializer, The user doesn't need to use it.
    """
    return _global_weight_initializer_


def _global_bias_initializer():
    """
    Return the global weight initializer, The user doesn't need to use it.
    """
    return _global_bias_initializer_


1033 1034 1035 1036 1037
def calculate_gain(nonlinearity, param=None):
    """
    Get the recommended gain value of some nonlinearity function.

    Args:
1038 1039 1040 1041
        nonlinearity(str): name of nonlinearity activation function. If it is a linear function, which is one of 
        "linear/conv1d/conv2d/conv3d/conv1d_transpose/conv2d_transpose/conv3d_transpose" , will return 1.0
        param(bool|int|float, optional): optional parameter for somme nonlinearity function. Now, it only applies to 
        'leaky_relu'. Default: None, it will be calculated as 0.01 in the formula.
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064

    Returns:
        The recommended gain value for nonlinearity function.

    Examples:
        .. code-block:: python

            import paddle
            gain = paddle.nn.initializer.calculate_gain('tanh') # 5.0 / 3
            gain = paddle.nn.initializer.calculate_gain('leaky_relu', param=1.0) # 1.0 = math.sqrt(2.0 / (1+param^2))

    """
    if param is None:
        param = 0.01
    else:
        assert isinstance(param, (bool, int, float))
        param = float(param)
    recommended_gain = {
        'sigmoid': 1,
        'linear': 1,
        'conv1d': 1,
        'conv2d': 1,
        'conv3d': 1,
1065 1066 1067
        'conv1d_transpose': 1,
        'conv2d_transpose': 1,
        'conv3d_transpose': 1,
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
        'tanh': 5.0 / 3,
        'relu': math.sqrt(2.0),
        'leaky_relu': math.sqrt(2.0 / (1 + param**2)),
        'selu': 3.0 / 4
    }
    if nonlinearity in recommended_gain.keys():
        return recommended_gain[nonlinearity]
    else:
        raise ValueError("nonlinearity function {} is not suppported now.".
                         format(nonlinearity))


1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
# We short the class name, since users will use the initializer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# hidden = fluid.layers.fc(...,
#                          param_attr=ParamAttr(fluid.initializer.Xavier()))
#
# It is no need to add an `Initializer` as the class suffix
Constant = ConstantInitializer
Uniform = UniformInitializer
Normal = NormalInitializer
1092
TruncatedNormal = TruncatedNormalInitializer
1093 1094
Xavier = XavierInitializer
MSRA = MSRAInitializer
1095
Bilinear = BilinearInitializer