initializer.py 33.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
from . import framework
18 19
from . import core
from .framework import in_dygraph_mode
20
import numpy as np
21
from .core import VarDesc
W
Wu Yi 已提交
22
from . import unique_name
23
from .data_feeder import check_variable_and_dtype, check_type, check_dtype
24

25
__all__ = [
26
    'Constant', 'Uniform', 'Normal', 'TruncatedNormal', 'Xavier', 'Bilinear',
27 28
    'MSRA', 'ConstantInitializer', 'UniformInitializer', 'NormalInitializer',
    'TruncatedNormalInitializer', 'XavierInitializer', 'BilinearInitializer',
29
    'MSRAInitializer', 'NumpyArrayInitializer', 'set_global_initializer'
30
]
31

32 33 34
_global_weight_initializer_ = None
_global_bias_initializer_ = None

35 36 37 38 39 40 41 42 43 44

class Initializer(object):
    """Base class for variable initializers

    Defines the common interface of variable initializers.
    They add operations to the init program that are used
    to initialize variables. Users should not use this class
    directly, but need to use one of its implementations.
    """

W
whs 已提交
45
    def __init__(self):
46 47 48 49 50 51 52
        pass

    def __call__(self, param, block):
        """Add corresponding initialization operations to the network
        """
        raise NotImplementedError()

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
    def _compute_fans(self, var):
        """Compute the fan_in and the fan_out for layers

        This method computes the fan_in and the fan_out
        for neural network layers, if not specified. It is
        not possible to perfectly estimate fan_in and fan_out.
        This method will estimate it correctly for matrix multiply and
        convolutions.

        Args:
            var: variable for which fan_in and fan_out have to be computed

        Returns:
            tuple of two integers (fan_in, fan_out)
        """
        shape = var.shape
        if not shape or len(shape) == 0:
            fan_in = fan_out = 1
        elif len(shape) == 1:
            fan_in = fan_out = shape[0]
        elif len(shape) == 2:
            # This is the case for simple matrix multiply
            fan_in = shape[0]
            fan_out = shape[1]
        else:
            # Assume this to be a convolutional kernel
            # In PaddlePaddle, the shape of the kernel is like:
            # [num_filters, num_filter_channels, ...] where the remaining
            # dimensions are the filter_size
            receptive_field_size = np.prod(shape[2:])
            fan_in = shape[1] * receptive_field_size
            fan_out = shape[0] * receptive_field_size

        return (fan_in, fan_out)

88 89 90

class ConstantInitializer(Initializer):
    """Implements the constant initializer
91 92

    Args:
D
Double_V 已提交
93
        value (float32): constant value to initialize the variable 
94 95 96 97

    Examples:
        .. code-block:: python

98
    	    import paddle.fluid as fluid
D
Double_V 已提交
99
            x = fluid.data(name="data", shape=[8, 32, 32], dtype="float32")
100 101 102
	    fc = fluid.layers.fc(input=x, size=10,
    		param_attr=fluid.initializer.Constant(value=2.0))

103 104
    """

105
    def __init__(self, value=0.0, force_cpu=False):
106 107 108
        assert value is not None
        super(ConstantInitializer, self).__init__()
        self._value = value
109
        self._force_cpu = force_cpu
110 111 112 113 114 115 116 117 118 119 120 121 122 123

    def __call__(self, var, block):
        """Add constant initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138

        # to be compatible of fp16 initializers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['constant_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

139
        # Initialization Ops should be prepended and not appended
W
Wu Yi 已提交
140
        op = block._prepend_op(
141
            type="fill_constant",
142
            outputs={"Out": out_var},
143 144
            attrs={
                "shape": var.shape,
145
                "dtype": int(out_dtype),
146
                "value": float(self._value),
147
                'force_cpu': self._force_cpu
M
minqiyang 已提交
148 149
            },
            stop_gradient=True)
150 151 152 153 154 155 156 157 158

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
159
        if not framework.in_dygraph_mode():
160
            var.op = op
161 162 163 164
        return op


class UniformInitializer(Initializer):
165
    """Implements the random uniform distribution initializer
166 167 168 169 170

    Args:
        low (float): lower boundary of the uniform distribution
        high (float): upper boundary of the uniform distribution
        seed (int): random seed
171 172 173 174 175 176
        diag_num (int): the number of diagonal elements to initialize.
            If set to 0, diagonal initialization will be not performed.
        diag_step (int): Step size between two diagonal elements,
            which is generally the width of the square matrix.
        diag_val (float): the value of the diagonal element to be initialized,
            default 1.0. It takes effect only if the diag_num is greater than 0.
177 178 179 180

    Examples:
        .. code-block:: python

X
xiaoting 已提交
181
            import paddle.fluid as fluid
182
            x = fluid.data(name='x', shape=[None, 1], dtype='float32')
183
            fc = fluid.layers.fc(input=x, size=10,
184
    		param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5))
185 186
    """

187 188 189 190 191 192 193
    def __init__(self,
                 low=-1.0,
                 high=1.0,
                 seed=0,
                 diag_num=0,
                 diag_step=0,
                 diag_val=1.0):
194 195
        assert low is not None
        assert high is not None
196
        assert high >= low
197
        assert seed is not None
198 199 200 201 202
        assert diag_num is not None
        assert diag_step is not None
        assert diag_val is not None
        if diag_num > 0 or diag_step > 0:
            assert (diag_num > 0 and diag_step > 0)
203 204 205 206
        super(UniformInitializer, self).__init__()
        self._low = low
        self._high = high
        self._seed = seed
207 208 209
        self._diag_num = diag_num
        self._diag_step = diag_step
        self._diag_val = diag_val
210 211 212 213 214 215 216 217 218 219 220 221 222

    def __call__(self, var, block):
        """Add uniform distribution initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(block, framework.Block)
223 224 225
        check_variable_and_dtype(var, "Out", ["float16", "float32", "float64"],
                                 "uniform_random")

226
        # Initialization Ops should be prepended and not appended
D
dzhwinter 已提交
227 228
        if self._seed == 0:
            self._seed = block.program.random_seed
W
Wu Yi 已提交
229

X
polish  
Xin Pan 已提交
230
        # to be compatible of fp16 initializers
W
Wu Yi 已提交
231 232 233
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
234 235
                name=unique_name.generate(".".join(
                    ['uniform_random', var.name, 'tmp'])),
W
Wu Yi 已提交
236 237 238 239 240 241 242 243
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

W
Wu Yi 已提交
244
        op = block._prepend_op(
245
            type="uniform_random",
246
            inputs={},
W
Wu Yi 已提交
247
            outputs={"Out": out_var},
248 249
            attrs={
                "shape": var.shape,
W
Wu Yi 已提交
250
                "dtype": out_dtype,
251 252
                "min": self._low,
                "max": self._high,
253 254 255 256
                "seed": self._seed,
                "diag_num": self._diag_num,
                "diag_step": self._diag_step,
                "diag_val": self._diag_val
M
minqiyang 已提交
257 258
            },
            stop_gradient=True)
W
Wu Yi 已提交
259 260 261 262 263 264 265 266 267

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
268
        if not framework.in_dygraph_mode():
269
            var.op = op
270
        return op
271 272 273


class NormalInitializer(Initializer):
274 275 276 277 278 279 280 281 282 283
    """Implements the Random Normal(Gaussian) distribution initializer

    Args:
        loc (float): mean of the normal distribution
        scale (float): standard deviation of the normal distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

X
xsrobin 已提交
284
            import paddle.fluid as fluid
285
            x = fluid.data(name="data", shape=[None, 32, 32], dtype="float32")
X
xsrobin 已提交
286 287
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.Normal(loc=0.0, scale=2.0))
288

289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
    """

    def __init__(self, loc=0.0, scale=1.0, seed=0):
        assert loc is not None
        assert scale is not None
        assert seed is not None
        super(NormalInitializer, self).__init__()
        self._mean = loc
        self._std_dev = scale
        self._seed = seed

    def __call__(self, var, block):
        """Add normal distribution initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(block, framework.Block)
312 313 314

        check_variable_and_dtype(var, "Out", ["float16", "float32", "float64"],
                                 "guassian_random")
315
        # Initialization Ops should be prepended and not appended
D
dzhwinter 已提交
316 317
        if self._seed == 0:
            self._seed = block.program.random_seed
W
Wu Yi 已提交
318 319 320 321 322

        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
323 324
                name=unique_name.generate(".".join(
                    ['gaussian_random', var.name, 'tmp'])),
W
Wu Yi 已提交
325 326 327 328 329 330 331 332
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

W
Wu Yi 已提交
333
        op = block._prepend_op(
334
            type="gaussian_random",
W
Wu Yi 已提交
335
            outputs={"Out": out_var},
336 337
            attrs={
                "shape": var.shape,
W
Wu Yi 已提交
338
                "dtype": out_dtype,
339 340
                "mean": self._mean,
                "std": self._std_dev,
G
gongweibao 已提交
341 342
                "seed": self._seed,
                "use_mkldnn": False
M
minqiyang 已提交
343 344
            },
            stop_gradient=True)
W
Wu Yi 已提交
345 346 347 348 349 350 351 352

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})
L
lujun 已提交
353
        if not framework.in_dygraph_mode():
354
            var.op = op
355
        return op
356 357


358 359 360 361 362 363 364 365 366 367 368
class TruncatedNormalInitializer(Initializer):
    """Implements the Random TruncatedNormal(Gaussian) distribution initializer

    Args:
        loc (float): mean of the normal distribution
        scale (float): standard deviation of the normal distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

X
xiaoting 已提交
369
            import paddle.fluid as fluid
370
            x = fluid.data(name='x', shape=[None, 1], dtype='float32')
371 372 373 374 375 376 377 378
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.TruncatedNormal(loc=0.0, scale=2.0))
    """

    def __init__(self, loc=0.0, scale=1.0, seed=0):
        assert loc is not None
        assert scale is not None
        assert seed is not None
W
whs 已提交
379
        super(TruncatedNormalInitializer, self).__init__()
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
        self._mean = loc
        self._std_dev = scale
        self._seed = seed

    def __call__(self, var, block):
        """Add truncated normal distribution initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        # Initialization Ops should be prepended and not appended
        if self._seed == 0:
            self._seed = block.program.random_seed
400 401 402 403 404 405

        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
406
                    ['truncated_gaussian_random', var.name, 'tmp'])),
407 408 409 410 411 412 413 414
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

415 416
        op = block._prepend_op(
            type="truncated_gaussian_random",
417
            outputs={"Out": out_var},
418 419
            attrs={
                "shape": var.shape,
420
                "dtype": out_dtype,
421 422 423
                "mean": self._mean,
                "std": self._std_dev,
                "seed": self._seed
M
minqiyang 已提交
424 425
            },
            stop_gradient=True)
426 427 428 429 430 431 432 433

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})
L
lujun 已提交
434
        if not framework.in_dygraph_mode():
435
            var.op = op
436 437 438
        return op


439
class XavierInitializer(Initializer):
Q
qiaolongfei 已提交
440
    """
441
    This class implements the Xavier weight initializer from the paper
Q
qiaolongfei 已提交
442 443 444
    `Understanding the difficulty of training deep feedforward neural
    networks <http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf>`_
    by Xavier Glorot and Yoshua Bengio.
445 446 447

    This initializer is designed to keep the scale of the gradients
    approximately same in all the layers. In case of Uniform distribution,
Q
qiaolongfei 已提交
448 449 450 451 452 453
    the range is [-x, x], where

    .. math::

        x = \sqrt{\\frac{6.0}{fan\_in + fan\_out}}

454
    In case of Normal distribution, the mean is 0 and the standard deviation
Q
qiaolongfei 已提交
455
    is
456

Q
qiaolongfei 已提交
457
    .. math::
458

Q
qiaolongfei 已提交
459
        \sqrt{\\frac{2.0}{fan\_in + fan\_out}}
460 461


Q
qiaolongfei 已提交
462
    Args:
X
xiaoting 已提交
463 464
        uniform (bool,default True): whether to use uniform ,if False use normal distribution
        fan_in (float,default None): fan_in for Xavier initialization. If None, it is
Q
qiaolongfei 已提交
465
                inferred from the variable.
X
xiaoting 已提交
466
        fan_out (float,default None): fan_out for Xavier initialization. If None, it is
Q
qiaolongfei 已提交
467 468 469 470 471 472 473 474 475
                 inferred from the variable.
        seed (int): random seed

    Note:
        It is recommended to set fan_in and fan_out to None for most cases.

    Examples:
        .. code-block:: python

X
xiaoting 已提交
476
            import paddle.fluid as fluid
X
xiaoting 已提交
477
            queries = fluid.data(name='x', shape=[None,1], dtype='float32')
Q
qiaolongfei 已提交
478 479 480 481 482 483 484
            fc = fluid.layers.fc(
                input=queries, size=10,
                param_attr=fluid.initializer.Xavier(uniform=False))

    """

    def __init__(self, uniform=True, fan_in=None, fan_out=None, seed=0):
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
        assert uniform is not None
        assert seed is not None
        super(XavierInitializer, self).__init__()
        self._uniform = uniform
        self._fan_in = fan_in
        self._fan_out = fan_out
        self._seed = seed

    def __call__(self, var, block):
        """Add xavier initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(block, framework.Block)
505 506 507
        check_variable_and_dtype(var, "Out", ["float16", "float32", "float64"],
                                 "xavier_init")

508 509 510 511 512 513
        f_in, f_out = self._compute_fans(var)

        # If fan_in and fan_out are passed, use them
        fan_in = f_in if self._fan_in is None else self._fan_in
        fan_out = f_out if self._fan_out is None else self._fan_out

D
dzhwinter 已提交
514 515 516
        if self._seed == 0:
            self._seed = block.program.random_seed

517 518 519 520 521 522 523 524 525 526 527 528 529 530
        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['xavier_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

531 532
        if self._uniform:
            limit = np.sqrt(6.0 / float(fan_in + fan_out))
W
Wu Yi 已提交
533
            op = block._prepend_op(
534
                type="uniform_random",
535
                inputs={},
536
                outputs={"Out": out_var},
537
                attrs={
538 539
                    "shape": out_var.shape,
                    "dtype": out_dtype,
540 541 542
                    "min": -limit,
                    "max": limit,
                    "seed": self._seed
M
minqiyang 已提交
543 544
                },
                stop_gradient=True)
545 546 547

        else:
            std = np.sqrt(2.0 / float(fan_in + fan_out))
W
Wu Yi 已提交
548
            op = block._prepend_op(
549
                type="gaussian_random",
550
                outputs={"Out": out_var},
551
                attrs={
552 553
                    "shape": out_var.shape,
                    "dtype": out_dtype,
554 555 556
                    "mean": 0.0,
                    "std": std,
                    "seed": self._seed
M
minqiyang 已提交
557 558
                },
                stop_gradient=True)
559 560 561 562 563 564 565 566 567

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
568
        if not framework.in_dygraph_mode():
569
            var.op = op
570
        return op
571 572 573 574 575 576


class MSRAInitializer(Initializer):
    """Implements the MSRA initializer a.k.a. Kaiming Initializer

    This class implements the weight initialization from the paper
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
    `Delving Deep into Rectifiers: Surpassing Human-Level Performance on
    ImageNet Classification <https://arxiv.org/abs/1502.01852>`_
    by Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. This is a
    robust initialization method that particularly considers the rectifier
    nonlinearities. In case of Uniform distribution, the range is [-x, x], where

    .. math::

        x = \sqrt{\\frac{6.0}{fan\_in}}

    In case of Normal distribution, the mean is 0 and the standard deviation
    is

    .. math::

        \sqrt{\\frac{2.0}{fan\_in}}

    Args:
        uniform (bool): whether to use uniform or normal distribution
D
Double_V 已提交
596 597 598
        fan_in (float32|None): fan_in for MSRAInitializer. If None, it is\
        inferred from the variable. default is None.
        seed (int32): random seed
599 600 601 602 603 604

    Note:
        It is recommended to set fan_in to None for most cases.

    Examples:
        .. code-block:: python
X
xsrobin 已提交
605 606

            import paddle.fluid as fluid
D
Double_V 已提交
607
            x = fluid.data(name="data", shape=[8, 32, 32], dtype="float32")
X
xsrobin 已提交
608 609
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.MSRA(uniform=False))
610

611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
    """

    def __init__(self, uniform=True, fan_in=None, seed=0):
        """Constructor for MSRAInitializer
        """
        assert uniform is not None
        assert seed is not None
        super(MSRAInitializer, self).__init__()
        self._uniform = uniform
        self._fan_in = fan_in
        self._seed = seed

    def __call__(self, var, block):
        """Add MSRA initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        f_in, f_out = self._compute_fans(var)

        # If fan_in is passed, use it
        fan_in = f_in if self._fan_in is None else self._fan_in

D
dzhwinter 已提交
641 642 643
        if self._seed == 0:
            self._seed = block.program.random_seed

644 645 646 647 648 649 650 651 652 653 654 655 656 657
        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['masra_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

658 659
        if self._uniform:
            limit = np.sqrt(6.0 / float(fan_in))
W
Wu Yi 已提交
660
            op = block._prepend_op(
661
                type="uniform_random",
662
                inputs={},
663
                outputs={"Out": out_var},
664
                attrs={
665 666
                    "shape": out_var.shape,
                    "dtype": int(out_dtype),
667 668 669
                    "min": -limit,
                    "max": limit,
                    "seed": self._seed
M
minqiyang 已提交
670 671
                },
                stop_gradient=True)
672 673 674

        else:
            std = np.sqrt(2.0 / float(fan_in))
W
Wu Yi 已提交
675
            op = block._prepend_op(
676
                type="gaussian_random",
677
                outputs={"Out": out_var},
678
                attrs={
679 680
                    "shape": out_var.shape,
                    "dtype": int(out_dtype),
681 682 683
                    "mean": 0.0,
                    "std": std,
                    "seed": self._seed
M
minqiyang 已提交
684 685
                },
                stop_gradient=True)
686 687 688 689 690 691 692 693 694

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
695
        if not framework.in_dygraph_mode():
696
            var.op = op
697
        return op
698 699


700
class BilinearInitializer(Initializer):
701
    """
702 703 704
    This initializer can be used in transposed convolution operator to
    act as upsampling. Users can upsample a feature map with shape of
    (B, C, H, W) by any integer factor. The usage is:
705 706 707 708 709

    Examples:

        .. code-block:: python

X
xsrobin 已提交
710
            import paddle.fluid as fluid
711
            import math
X
xsrobin 已提交
712 713
            factor = 2
            C = 2
D
Double_V 已提交
714 715
            B = 8
            H = W = 32
X
xsrobin 已提交
716 717 718
            w_attr = fluid.param_attr.ParamAttr(
                learning_rate=0., 
                regularizer=fluid.regularizer.L2Decay(0.),
719
                initializer=fluid.initializer.Bilinear())
D
Double_V 已提交
720
            x = fluid.data(name="data", shape=[B, 3, H, W], 
X
xsrobin 已提交
721 722 723 724 725 726 727 728 729 730 731
                                  dtype="float32")
            conv_up = fluid.layers.conv2d_transpose(
                input=x,
                num_filters=C,
                output_size=None,
                filter_size=2 * factor - factor % 2,
                padding=int(math.ceil((factor - 1) / 2.)),
                stride=factor,
                groups=C,
                param_attr=w_attr,
                bias_attr=False)
732 733

    Where, `num_filters=C` and `groups=C` means this is channel-wise transposed
734 735 736 737 738
    convolution. The filter shape will be (C, 1, K, K) where K is `filer_size`,
    This initializer will set a (K, K) interpolation kernel for every channel
    of the filter identically. The resulting shape of the output feature map
    will be (B, C, factor * H, factor * W). Note that the learning rate and the
    weight decay are set to 0 in order to keep coefficient values of bilinear
739 740
    interpolation unchanged during training.

741 742 743 744 745 746 747 748
    """

    def __init__(self):
        """Constructor for BilinearInitializer.
        """
        super(BilinearInitializer, self).__init__()

    def __call__(self, var, block):
T
tianshuo78520a 已提交
749
        """Add bilinear initialization ops for a variable
750 751 752 753 754 755 756

        Args:
            var (Variable): Variable that needs to be initialized.
            block (Block): The block in which initialization ops should
                           be added.

        Returns:
757
            Operator: the initialization op
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787

        Raises:
            ValueError: If type of `var` and `block` is not right.
                        If the shape of `var` size is not 4 and
                        var.shape[2] != var.shape[3].
        """
        if not isinstance(var, framework.Variable):
            raise ValueError("var must be framework.Variable.")

        if not isinstance(block, framework.Block):
            raise ValueError("block must be framework.Block.")

        shape = var.shape
        if len(shape) != 4:
            raise ValueError("the length of shape must be 4.")
        if shape[2] != shape[3]:
            raise ValueError("shape[2] must be equal to shape[3].")

        weight = np.zeros(np.prod(var.shape), dtype='float32')
        size = shape[3]
        # factor
        f = np.ceil(size / 2.)
        # center
        c = (2 * f - 1 - f % 2) / (2. * f)
        for i in range(np.prod(shape)):
            x = i % size
            y = (i / size) % size
            weight[i] = (1 - abs(x / f - c)) * (1 - abs(y / f - c))
        weight = np.reshape(weight, shape)

788
        # to be compatible of fp16 initalizers
789
        if var.dtype == VarDesc.VarType.FP16 or var.dtype == VarDesc.VarType.FP64:
790 791 792 793 794 795 796 797 798 799 800 801 802
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['bilinear_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

        if out_dtype == VarDesc.VarType.FP32:
803 804 805
            value_name = "fp32_values"
            values = [float(v) for v in weight.flat]
        else:
806 807
            raise TypeError("Unsupported dtype %s", var.dtype)

808 809 810 811
        if np.prod(shape) > 1024 * 1024:
            raise ValueError("The size of input is too big. ")
        op = block.append_op(
            type='assign_value',
812
            outputs={'Out': [out_var]},
813
            attrs={
814
                'dtype': out_dtype,
815 816 817
                'shape': list(shape),
                value_name: values
            })
818

819
        if var.dtype == VarDesc.VarType.FP16 or var.dtype == VarDesc.VarType.FP64:
820 821 822 823 824 825 826
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
827
        if not framework.in_dygraph_mode():
828
            var.op = op
829 830 831
        return op


832 833
class NumpyArrayInitializer(Initializer):
    """Init an parameter with an numpy array
834
    This op initialize the variable by numpy array.
835 836 837 838

    Args:
        value (numpy): numpy array to initialize the variable

839 840 841
    Returns:
        A Tensor variable initialized by numpy.

842 843 844
    Examples:
        .. code-block:: python

845
            import paddle.fluid as fluid
846 847
            import numpy
            x = fluid.data(name="x", shape=[2, 1], dtype='float32')
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.NumpyArrayInitializer(numpy.array([1,2])))
    """

    def __init__(self, value):
        import numpy
        assert isinstance(value, numpy.ndarray)
        super(NumpyArrayInitializer, self).__init__()
        self._value = value

    def __call__(self, var, block):
        """Add constant initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887

        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            np_value = self._value.astype("float32")
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['numpy_array_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_var = var
            out_dtype = var.dtype
            np_value = self._value

888
        # Initialization Ops should be prepended and not appended
889
        if out_dtype == VarDesc.VarType.FP32:
890
            value_name = "fp32_values"
891 892
            values = [float(v) for v in np_value.flat]
        elif out_dtype == VarDesc.VarType.INT32:
893
            value_name = "int32_values"
894
            values = [int(v) for v in np_value.flat]
895 896
        else:
            raise ValueError("Unsupported dtype %s", self._value.dtype)
X
Xin Pan 已提交
897
        if self._value.size > 1024 * 1024 * 1024:
898 899 900 901
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
        op = block._prepend_op(
            type='assign_value',
902
            outputs={'Out': out_var},
903
            attrs={
904
                'dtype': out_dtype,
905
                'shape': list(self._value.shape),
906 907 908
                value_name: values
            },
            stop_gradient=True)
909 910 911 912 913 914 915 916 917

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
918
        if not framework.in_dygraph_mode():
919
            var.op = op
920 921 922
        return op


923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
def set_global_initializer(weight_init, bias_init=None):
    """
    This API is used to set up global model parameter initializer in framework.

    After this API is invoked, the global initializer will takes effect in subsequent code.

    The model parameters include ``weight`` and ``bias`` . In the framework, they correspond 
    to ``fluid.Parameter`` , which is inherited from ``fluid.Variable`` , and is a persistable Variable.
    This API only takes effect for model parameters, not for variables created through apis such as 
    :ref:`api_fluid_layers_create_global_var` , :ref:`api_fluid_layers_create_tensor`.
    
    If the initializer is also set up by ``param_attr`` or ``bias_attr`` when creating a network layer,
    the global initializer setting here will not take effect because it has a lower priority.

    If you want to cancel the global initializer in framework, please set global initializer to ``None`` .

    Args:
        weight_init (Initializer): set the global initializer for ``weight`` of model parameters.
        bias_init (Initializer, optional): set the global initializer for ``bias`` of model parameters. 
            Default: None.

    Returns:
        None

    Examples:
        .. code-block:: python
            import paddle.fluid as fluid

            fluid.set_global_initializer(fluid.initializer.Uniform(), fluid.initializer.Constant())
            x = fluid.data(name="x", shape=[1, 3, 32, 32])

            # The weight of conv1 is initialized by Uniform
            # The bias of conv1 is initialized by Constant
            conv1 = fluid.layers.conv2d(x, 5, 3)

            # If set param_attr/bias_attr too, global initializer will not take effect
            # The weight of conv2 is initialized by Xavier
            # The bias of conv2 is initialized by Normal
            conv2 = fluid.layers.conv2d(conv1, 5, 3, 
                param_attr=fluid.initializer.Xavier(), 
                bias_attr=fluid.initializer.Normal())

            # Cancel the global initializer in framework, it will takes effect in subsequent code
            fluid.set_global_initializer(None)


    """
    check_type(weight_init, 'weight_init', (Initializer, type(None)),
               'set_global_initializer')
    global _global_weight_initializer_
    _global_weight_initializer_ = weight_init

    check_type(bias_init, 'bias_init', (Initializer, type(None)),
               'set_global_initializer')
    global _global_bias_initializer_
    _global_bias_initializer_ = bias_init


def _global_weight_initializer():
    """
    Return the global weight initializer, The user doesn't need to use it.
    """
    return _global_weight_initializer_


def _global_bias_initializer():
    """
    Return the global weight initializer, The user doesn't need to use it.
    """
    return _global_bias_initializer_


995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
# We short the class name, since users will use the initializer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# hidden = fluid.layers.fc(...,
#                          param_attr=ParamAttr(fluid.initializer.Xavier()))
#
# It is no need to add an `Initializer` as the class suffix
Constant = ConstantInitializer
Uniform = UniformInitializer
Normal = NormalInitializer
1007
TruncatedNormal = TruncatedNormalInitializer
1008 1009
Xavier = XavierInitializer
MSRA = MSRAInitializer
1010
Bilinear = BilinearInitializer