lookup_table_op.h 9.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15 16

#pragma once

17 18 19
#include <string>
#include <vector>

Y
Yi Wang 已提交
20 21 22 23
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/selected_rows.h"
M
minqiyang 已提交
24
#include "paddle/fluid/operators/math/blas.h"
25

Q
Qiao Longfei 已提交
26
#ifdef PADDLE_WITH_DISTRIBUTE
Q
Qiao Longfei 已提交
27
#include "paddle/fluid/operators/distributed/parameter_prefetch.h"
Q
Qiao Longfei 已提交
28 29
#endif

30 31 32
namespace paddle {
namespace operators {

C
chengduoZH 已提交
33
using Tensor = framework::Tensor;
F
fengjiayi 已提交
34
using LoDTensor = framework::LoDTensor;
35
using SelectedRows = framework::SelectedRows;
36 37
using DDim = framework::DDim;

Q
qiaolongfei 已提交
38
constexpr int64_t kNoPadding = -1;
39 40

template <typename T>
Y
Yu Yang 已提交
41
class LookupTableKernel : public framework::OpKernel<T> {
42
 public:
43
  void Compute(const framework::ExecutionContext &context) const override {
44 45
    auto *ids_t = context.Input<LoDTensor>("Ids");      // int tensor
    auto *output_t = context.Output<LoDTensor>("Out");  // float tensor
46
    auto *table_var = context.InputVar("W");
47

H
hong 已提交
48 49 50
    auto id_name = context.InputNames("Ids").front();
    auto embedding_name = context.InputNames("W").front();
    auto out_name = context.OutputNames("Out").front();
Q
Qiao Longfei 已提交
51

52 53
    int64_t padding_idx = context.Attr<int64_t>("padding_idx");
    bool is_test = context.Attr<bool>("is_test");
Q
Qiao Longfei 已提交
54

55 56
    int64_t *ids = const_cast<int64_t *>(ids_t->data<int64_t>());
    int64_t ids_numel = ids_t->numel();
Q
Qiao Longfei 已提交
57

58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
    if (table_var->IsType<LoDTensor>()) {
      auto *table_t = context.Input<LoDTensor>("W");
      int64_t row_number = table_t->dims()[0];
      int64_t row_width = table_t->dims()[1];

      auto *table = table_t->data<T>();
      auto *output = output_t->mutable_data<T>(context.GetPlace());

      for (int64_t i = 0; i < ids_numel; ++i) {
        if (padding_idx != kNoPadding && ids[i] == padding_idx) {
          memset(output + i * row_width, 0, row_width * sizeof(T));
        } else {
          PADDLE_ENFORCE_LT(
              ids[i], row_number,
              platform::errors::InvalidArgument(
                  "Variable value (input) of OP(fluid.layers.embedding) "
                  "expected >= 0 and < %ld, but got %ld. Please check input "
                  "value.",
                  row_number, ids[i]));
          PADDLE_ENFORCE_GE(
              ids[i], 0,
              platform::errors::InvalidArgument(
                  "Variable value (input) of OP(fluid.layers.embedding) "
                  "expected >= 0 and < %ld, but got %ld. Please check input "
                  "value.",
                  row_number, ids[i]));
          memcpy(output + i * row_width, table + ids[i] * row_width,
                 row_width * sizeof(T));
86
        }
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
      }

    } else if (table_var->IsType<SelectedRows>()) {
      const auto &table_t = table_var->Get<SelectedRows>();
      int64_t row_width = table_t.value().dims()[1];
      const auto *table = table_t.value().data<T>();
      auto *output = output_t->mutable_data<T>(context.GetPlace());
      auto input_data_type = table_t.value().type();
      for (int64_t i = 0; i < ids_numel; ++i) {
        if (padding_idx != kNoPadding && ids[i] == padding_idx) {
          memset(output + i * row_width, 0, row_width * sizeof(T));
        } else {
          PADDLE_ENFORCE_GE(
              ids[i], 0,
              platform::errors::InvalidArgument(
                  "Variable value (input) of OP(fluid.layers.embedding) "
                  "expected >= 0. But received %ld",
                  ids[i]));
          if (is_test) {
            auto id_index = table_t.GetIndexFromId(ids[i]);

            if (id_index != -1) {
              if (input_data_type == framework::proto::VarType::INT8) {
                memcpy(output + i * row_width, table + id_index * row_width,
                       row_width * sizeof(T));
              } else {
                auto blas =
                    math::GetBlas<platform::CPUDeviceContext, T>(context);
                blas.VCOPY(row_width, table + id_index * row_width,
                           output + i * row_width);
              }
            } else {
              memset(output + i * row_width, 0, row_width * sizeof(T));
            }
Q
Qiao Longfei 已提交
121
          } else {
122
            auto id_index = table_t.Index(ids[i]);
123 124
            PADDLE_ENFORCE_GE(
                ids[i], 0,
125 126 127 128
                platform::errors::InvalidArgument(
                    "Variable value (input) of OP(fluid.layers.embedding) "
                    "expected >= 0. But received %ld",
                    ids[i]));
129
            PADDLE_ENFORCE_GE(
130 131 132 133
                id_index, 0,
                platform::errors::InvalidArgument(
                    "the input key should be exists. But received %d.",
                    id_index));
134

135 136 137 138 139 140 141 142
            if (input_data_type == framework::proto::VarType::INT8) {
              memcpy(output + i * row_width, table + id_index * row_width,
                     row_width * sizeof(T));
            } else {
              auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
              blas.VCOPY(row_width, table + id_index * row_width,
                         output + i * row_width);
            }
Q
Qiao Longfei 已提交
143
          }
144 145
        }
      }
146 147 148 149 150
    }
  }
};

template <typename T>
Y
Yu Yang 已提交
151
class LookupTableGradKernel : public framework::OpKernel<T> {
152
 public:
153
  void Compute(const framework::ExecutionContext &context) const override {
Q
qiaolongfei 已提交
154 155 156 157 158 159 160 161
    auto *table_var = context.InputVar("W");
    DDim table_dim;
    if (table_var->IsType<LoDTensor>()) {
      table_dim = context.Input<LoDTensor>("W")->dims();
    } else if (table_var->IsType<SelectedRows>()) {
      auto *table_t = context.Input<SelectedRows>("W");
      table_dim = table_t->value().dims();
    } else {
162
      PADDLE_THROW(platform::errors::InvalidArgument(
Q
qiaolongfei 已提交
163
          "The parameter W of a LookupTable "
164
          "must be either LoDTensor or SelectedRows"));
Q
qiaolongfei 已提交
165 166
    }

167
    int64_t padding_idx = context.Attr<int64_t>("padding_idx");
168
    bool is_sparse = context.Attr<bool>("is_sparse");
169 170
    // Since paddings are not trainable and fixed in forward, the gradient of
    // paddings makes no sense and we don't deal with it in backward.
171
    if (is_sparse) {
172 173 174
      auto *ids = context.Input<LoDTensor>("Ids");
      auto *d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto *d_table = context.Output<SelectedRows>(framework::GradVarName("W"));
175

176
      auto *ids_data = ids->data<int64_t>();
177
      int64_t ids_num = ids->numel();
178

M
minqiyang 已提交
179
      std::vector<int64_t> new_rows;
M
minqiyang 已提交
180 181
      new_rows.resize(ids_num);
      std::memcpy(&new_rows[0], ids_data, ids_num * sizeof(int64_t));
182
      d_table->set_rows(new_rows);
183

184
      auto *d_table_value = d_table->mutable_value();
185
      d_table_value->Resize({ids_num, table_dim[1]});
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
      d_table_value->mutable_data<T>(context.GetPlace());
      d_table->set_height(table_dim[0]);

      auto *d_output_data = d_output->data<T>();
      auto *d_table_data = d_table_value->data<T>();

      auto d_output_dims = d_output->dims();
      auto d_output_dims_2d =
          framework::flatten_to_2d(d_output_dims, d_output_dims.size() - 1);
      PADDLE_ENFORCE_EQ(d_table_value->dims(), d_output_dims_2d,
                        platform::errors::InvalidArgument(
                            "ShapeError: The shape of lookup_table@Grad and "
                            "output@Grad should be same. "
                            "But received lookup_table@Grad's shape = [%s], "
                            "output@Grad's shape = [%s].",
                            d_table_value->dims(), d_output_dims_2d));
      memcpy(d_table_data, d_output_data, sizeof(T) * d_output->numel());
203
    } else {
204 205 206
      auto *ids = context.Input<LoDTensor>("Ids");
      auto *d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto *d_table = context.Output<LoDTensor>(framework::GradVarName("W"));
207

208
      auto *ids_data = ids->data<int64_t>();
209

210 211
      int64_t N = table_dim[0];
      int64_t D = table_dim[1];
212

213 214
      auto *d_output_data = d_output->data<T>();
      auto *d_table_data = d_table->mutable_data<T>(context.GetPlace());
215

216 217
      memset(d_table_data, 0, d_table->numel() * sizeof(T));

218
      for (int64_t i = 0; i < ids->numel(); ++i) {
Q
Qiao Longfei 已提交
219 220 221 222
        if (padding_idx != kNoPadding && ids_data[i] == padding_idx) {
          // the gradient of padding_idx should be 0, already done by memset, so
          // do nothing.
        } else {
223 224
          PADDLE_ENFORCE_LT(
              ids_data[i], N,
225 226 227 228 229
              platform::errors::InvalidArgument(
                  "Variable value (input) of OP(fluid.layers.embedding) "
                  "expected >= 0 and < %ld, but got %ld. Please check input "
                  "value.",
                  N, ids_data[i]));
230 231
          PADDLE_ENFORCE_GE(
              ids_data[i], 0,
232 233 234 235 236
              platform::errors::InvalidArgument(
                  "Variable value (input) of OP(fluid.layers.embedding) "
                  "expected >= 0 and < %ld, but got %ld. Please check input"
                  "value.",
                  N, ids_data[i]));
237 238 239
          for (int j = 0; j < D; ++j) {
            d_table_data[ids_data[i] * D + j] += d_output_data[i * D + j];
          }
240
        }
241 242 243 244 245 246 247
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle