pooling.cu 44.3 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2016 paddlepaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/math/pooling.h"
#include "paddle/platform/cuda_helper.h"

namespace paddle {
namespace operators {
namespace math {

22
template <typename PoolProcess, typename T>
23 24 25 26 27 28 29 30 31 32
__global__ void KernelPool2D(const int nthreads, const T* input_data,
                             T* output_data, const int channels,
                             const int input_height, const int input_width,
                             const int output_height, const int output_width,
                             const int ksize_height, const int ksize_width,
                             const int stride_height, const int stride_width,
                             const int padding_height, const int padding_width,
                             PoolProcess pool_process) {
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads;
       index += blockDim.x * gridDim.x) {
33 34 35 36 37 38 39 40 41 42 43 44 45 46
    int pw = index % output_width;
    int ph = (index / output_width) % output_height;
    int c = (index / output_width / output_height) % channels;
    int batch_idx = index / output_width / output_height / channels;

    int hstart = ph * stride_height - padding_height;
    int hend = min(hstart + ksize_height, input_height);
    hstart = max(hstart, 0);

    int wstart = pw * stride_width - padding_width;
    int wend = min(wstart + ksize_width, input_width);
    wstart = max(wstart, 0);

    input_data += (batch_idx * channels + c) * input_height * input_width;
47
    T ele = pool_process.initial();
48 49
    for (int h = hstart; h < hend; ++h) {
      for (int w = wstart; w < wend; ++w) {
50
        pool_process.compute(ele, input_data[h * input_width + w]);
51 52 53
      }
    }
    int pool_size = (hend - hstart) * (wend - wstart);
54
    pool_process.finalize(ele, (static_cast<T>(pool_size)));
55 56 57 58 59
    output_data[index] = ele;
  }
}

template <typename PoolProcess, typename T>
60
__global__ void KernelPool2DGrad(
61 62 63 64 65
    const int nthreads, const T* input_data, const T* output_data,
    const T* output_grad, T* input_grad, const int channels,
    const int input_height, const int input_width, const int output_height,
    const int output_width, const int ksize_height, const int ksize_width,
    const int stride_height, const int stride_width, const int padding_height,
66 67 68
    const int padding_width, PoolProcess pool_process) {
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads;
       index += blockDim.x * gridDim.x) {
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
    int offsetW = index % input_width + padding_width;
    int offsetH = (index / input_width) % input_height + padding_height;
    int offsetC = (index / input_width / input_height) % channels;
    int batch_idx = index / input_width / input_height / channels;

    int phstart = (offsetH < ksize_height)
                      ? 0
                      : (offsetH - ksize_height) / stride_height + 1;
    int pwstart = (offsetW < ksize_width)
                      ? 0
                      : (offsetW - ksize_width) / stride_width + 1;
    int phend = min(offsetH / stride_height + 1, output_height);
    int pwend = min(offsetW / stride_width + 1, output_width);
    T gradient = 0;
    T input = input_data[index];
    int output_idx =
        (batch_idx * channels + offsetC) * output_height * output_width;
    output_data += output_idx;
    output_grad += output_idx;
    for (int ph = phstart; ph < phend; ++ph) {
      for (int pw = pwstart; pw < pwend; ++pw) {
        int hstart = ph * stride_height - padding_height;
        int wstart = pw * stride_width - padding_width;
        int hend = min(hstart + ksize_height, input_height);
        int wend = min(wstart + ksize_width, input_width);
        hstart = max(hstart, 0);
        wstart = max(wstart, 0);
        int pool_size = (hend - hstart) * (wend - wstart);
        int output_sub_idx = ph * output_width + pw;
98
        pool_process.compute(input, output_data[output_sub_idx],
C
chengduoZH 已提交
99 100
                             output_grad[output_sub_idx], gradient,
                             static_cast<T>(1.0 / pool_size));
101 102 103 104 105 106
      }
    }
    input_grad[index] = gradient;
  }
}

107
template <typename T>
108
__global__ void KernelMaxPool2DGrad(
109 110 111 112 113 114
    const int nthreads, const T* input_data, const T* output_data,
    const T* output_grad, T* input_grad, const int channels,
    const int input_height, const int input_width, const int output_height,
    const int output_width, const int ksize_height, const int ksize_width,
    const int stride_height, const int stride_width, const int padding_height,
    const int padding_width) {
115 116
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads;
       index += blockDim.x * gridDim.x) {
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
    int pw = index % output_width;
    int ph = (index / output_width) % output_height;
    int c = (index / output_width / output_height) % channels;
    int batch_idx = index / output_width / output_height / channels;

    int hstart = ph * stride_height - padding_height;
    int hend = min(hstart + ksize_height, input_height);
    hstart = max(hstart, 0);

    int wstart = pw * stride_width - padding_width;
    int wend = min(wstart + ksize_width, input_width);
    wstart = max(wstart, 0);

    input_data += (batch_idx * channels + c) * input_height * input_width;
    input_grad += (batch_idx * channels + c) * input_height * input_width;

    T ele = output_data[index];
    int maxIndex = -1;
    bool stop = false;
    for (int h = hstart; h < hend && !stop; ++h) {
      for (int w = wstart; w < wend && !stop; ++w) {
        if (ele == input_data[h * input_width + w]) {
          maxIndex = h * input_width + w;
          stop = true;
        }
      }
    }

    if (maxIndex != -1) {
      // atomic add
C
chengduoZH 已提交
147
      platform::CudaAtomicAdd(input_grad + maxIndex, output_grad[index]);
148 149 150 151
    }
  }
}

C
chengduoZH 已提交
152 153 154 155 156
/*
 * All tensors are in NCHW format.
 * Ksize, strides, paddings are two elements. These two elements represent
 * height and width, respectively.
 */
157
template <typename PoolProcess, typename T>
C
chengduoZH 已提交
158
class Pool2dFunctor<platform::GPUPlace, PoolProcess, T> {
159
 public:
160 161
  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& input, framework::Tensor& output,
162
                  std::vector<int>& ksize, std::vector<int>& strides,
163
                  std::vector<int>& paddings, PoolProcess pool_process) {
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
    const int batch_size = input.dims()[0];
    const int input_channels = input.dims()[1];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_channels = output.dims()[1];
    const int output_height = output.dims()[2];
    const int output_width = output.dims()[3];
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];

    const T* input_data = input.data<T>();
C
chengduoZH 已提交
179
    T* output_data = output.mutable_data<T>(context.GetPlace());
180 181 182 183 184 185

    int nthreads = batch_size * output_channels * output_height * output_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

186
    KernelPool2D<
C
chengduoZH 已提交
187 188 189 190 191 192 193
        PoolProcess,
        T><<<grid, threads, 0,
             reinterpret_cast<const platform::CUDADeviceContext&>(context)
                 .stream()>>>(nthreads, input_data, output_data, input_channels,
                              input_height, input_width, output_height,
                              output_width, ksize_height, ksize_width,
                              stride_height, stride_width, padding_height,
194
                              padding_width, pool_process);
195 196 197
  }
};

C
chengduoZH 已提交
198 199 200 201 202
/*
 * All tensors are in NCHW format.
 * Ksize, strides, paddings are two elements. These two elements represent
 * height and width, respectively.
 */
203
template <typename PoolProcess, typename T>
C
chengduoZH 已提交
204
class Pool2dGradFunctor<platform::GPUPlace, PoolProcess, T> {
205
 public:
206 207
  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& input, framework::Tensor& input_grad,
208 209 210
                  const framework::Tensor& output,
                  const framework::Tensor& output_grad, std::vector<int>& ksize,
                  std::vector<int>& strides, std::vector<int>& paddings,
211
                  PoolProcess pool_process) {
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
    const int batch_size = input.dims()[0];
    const int input_channels = input.dims()[1];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_height = output.dims()[2];
    const int output_width = output.dims()[3];
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
C
chengduoZH 已提交
228
    T* input_grad_data = input_grad.mutable_data<T>(context.GetPlace());
229 230 231 232 233 234

    int nthreads = batch_size * input_channels * input_height * input_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

235
    KernelPool2DGrad<
C
chengduoZH 已提交
236 237 238 239
        PoolProcess,
        T><<<grid, threads, 0,
             reinterpret_cast<const platform::CUDADeviceContext&>(context)
                 .stream()>>>(
240 241 242
        nthreads, input_data, output_data, output_grad_data, input_grad_data,
        input_channels, input_height, input_width, output_height, output_width,
        ksize_height, ksize_width, stride_height, stride_width, padding_height,
243
        padding_width, pool_process);
244 245 246
  }
};

C
chengduoZH 已提交
247 248 249 250 251
/*
 * All tensors are in NCHW format.
 * Ksize, strides, paddings are two elements. These two elements represent
 * height and width, respectively.
 */
252
template <typename T>
C
chengduoZH 已提交
253
class MaxPool2dGradFunctor<platform::GPUPlace, T> {
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
 public:
  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& input, framework::Tensor& input_grad,
                  const framework::Tensor& output,
                  const framework::Tensor& output_grad, std::vector<int>& ksize,
                  std::vector<int>& strides, std::vector<int>& paddings) {
    const int batch_size = input.dims()[0];
    const int input_channels = input.dims()[1];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_channels = output.dims()[1];
    const int output_height = output.dims()[2];
    const int output_width = output.dims()[3];
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
    T* input_grad_data = input_grad.mutable_data<T>(context.GetPlace());

    int nthreads = batch_size * output_channels * output_height * output_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

284
    KernelMaxPool2DGrad<
285 286 287 288 289 290 291 292 293 294
        T><<<grid, threads, 0,
             reinterpret_cast<const platform::CUDADeviceContext&>(context)
                 .stream()>>>(
        nthreads, input_data, output_data, output_grad_data, input_grad_data,
        input_channels, input_height, input_width, output_height, output_width,
        ksize_height, ksize_width, stride_height, stride_width, padding_height,
        padding_width);
  }
};

C
chengduoZH 已提交
295
template class MaxPool2dGradFunctor<platform::GPUPlace, float>;
C
chengduoZH 已提交
296
template class MaxPool2dGradFunctor<platform::GPUPlace, double>;
C
chengduoZH 已提交
297 298

template class Pool2dFunctor<platform::GPUPlace,
299
                             paddle::operators::math::MaxPool<float>, float>;
C
chengduoZH 已提交
300
template class Pool2dFunctor<platform::GPUPlace,
301
                             paddle::operators::math::AvgPool<float>, float>;
C
chengduoZH 已提交
302
template class Pool2dGradFunctor<
303
    platform::GPUPlace, paddle::operators::math::MaxPoolGrad<float>, float>;
C
chengduoZH 已提交
304
template class Pool2dGradFunctor<
305
    platform::GPUPlace, paddle::operators::math::AvgPoolGrad<float>, float>;
C
chengduoZH 已提交
306
template class Pool2dFunctor<platform::GPUPlace,
307
                             paddle::operators::math::MaxPool<double>, double>;
C
chengduoZH 已提交
308
template class Pool2dFunctor<platform::GPUPlace,
309
                             paddle::operators::math::AvgPool<double>, double>;
C
chengduoZH 已提交
310
template class Pool2dGradFunctor<
311
    platform::GPUPlace, paddle::operators::math::MaxPoolGrad<double>, double>;
C
chengduoZH 已提交
312
template class Pool2dGradFunctor<
313
    platform::GPUPlace, paddle::operators::math::AvgPoolGrad<double>, double>;
314 315

template <typename PoolProcess, typename T>
316
__global__ void KernelPool3D(
317 318 319 320 321 322
    const int nthreads, const T* input_data, T* output_data, const int channels,
    const int input_depth, const int input_height, const int input_width,
    const int output_depth, const int output_height, const int output_width,
    const int ksize_depth, const int ksize_height, const int ksize_width,
    const int stride_depth, const int stride_height, const int stride_width,
    const int padding_depth, const int padding_height, const int padding_width,
323 324
    PoolProcess pool_process) {
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads;
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
       index += blockDim.x * gridDim.x) {
    int pw = index % output_width;
    int ph = (index / output_width) % output_height;
    int pd = (index / output_width / output_height) % output_depth;
    int c = (index / output_width / output_height / output_depth) % channels;
    int batch_idx =
        index / output_width / output_height / output_depth / channels;
    int dstart = pd * stride_depth - padding_depth;
    int hstart = ph * stride_height - padding_height;
    int wstart = pw * stride_width - padding_width;
    int dend = min(dstart + ksize_depth, input_depth);
    int hend = min(hstart + ksize_height, input_height);
    int wend = min(wstart + ksize_width, input_width);
    dstart = max(dstart, 0);
    hstart = max(hstart, 0);
    wstart = max(wstart, 0);
341
    T ele = pool_process.initial();
342 343 344 345 346
    input_data +=
        (batch_idx * channels + c) * input_depth * input_height * input_width;
    for (int d = dstart; d < dend; ++d) {
      for (int h = hstart; h < hend; ++h) {
        for (int w = wstart; w < wend; ++w) {
347
          pool_process.compute(
348 349 350 351 352
              ele, input_data[(d * input_height + h) * input_width + w]);
        }
      }
    }
    int pool_size = (dend - dstart) * (hend - hstart) * (wend - wstart);
353
    pool_process.finalize(ele, static_cast<T>(pool_size));
354 355 356 357 358
    output_data[index] = ele;
  }
}

template <typename PoolProcess, typename T>
359
__global__ void KernelPool3DGrad(
360 361 362 363 364 365 366
    const int nthreads, const T* input_data, const T* output_data,
    const T* output_grad, T* input_grad, const int channels,
    const int input_depth, const int input_height, const int input_width,
    const int output_depth, const int output_height, const int output_width,
    const int ksize_depth, const int ksize_height, const int ksize_width,
    const int stride_depth, const int stride_height, const int stride_width,
    const int padding_depth, const int padding_height, const int padding_width,
367 368
    PoolProcess pool_process) {
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads;
369 370 371 372 373 374 375 376 377 378
       index += blockDim.x * gridDim.x) {
    int offsetW = index % input_width + padding_width;
    int offsetH = (index / input_width) % input_height + padding_height;
    int offsetD =
        (index / input_width / input_height) % input_depth + padding_depth;
    int offsetC = (index / input_width / input_height / input_depth) % channels;
    int batch_idx = index / input_width / input_height / input_depth / channels;

    int pdstart = (offsetD < ksize_depth)
                      ? 0
379
                      : (offsetD - ksize_depth) / stride_depth + 1;
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
    int phstart = (offsetH < ksize_height)
                      ? 0
                      : (offsetH - ksize_height) / stride_height + 1;
    int pwstart = (offsetW < ksize_width)
                      ? 0
                      : (offsetW - ksize_width) / stride_width + 1;
    int pdend = min((offsetD) / stride_depth + 1, output_depth);
    int phend = min((offsetH) / stride_height + 1, output_height);
    int pwend = min((offsetW) / stride_width + 1, output_width);

    T gradient = 0;
    T input = input_data[index];
    int output_idx = (batch_idx * channels + offsetC) * output_depth *
                     output_height * output_width;
    output_data += output_idx;
    output_grad += output_idx;

    for (int pd = pdstart; pd < pdend; ++pd) {
      for (int ph = phstart; ph < phend; ++ph) {
        for (int pw = pwstart; pw < pwend; ++pw) {
          // figure out the pooling size
          int dstart = pd * stride_depth - padding_depth;
          int hstart = ph * stride_height - padding_height;
          int wstart = pw * stride_width - padding_width;
          int dend = min(dstart + ksize_depth, input_depth);
          int hend = min(hstart + ksize_height, input_height);
          int wend = min(wstart + ksize_width, input_width);
          dstart = max(dstart, 0);
          hstart = max(hstart, 0);
          wstart = max(wstart, 0);
          int pool_size = (dend - dstart) * (hend - hstart) * (wend - wstart);
411
          int output_sub_idx = (pd * output_height + ph) * output_width + pw;
412
          pool_process.compute(input, output_data[output_sub_idx],
C
chengduoZH 已提交
413 414
                               output_grad[output_sub_idx], gradient,
                               static_cast<T>(1.0 / pool_size));
415 416 417 418 419 420 421
        }
      }
    }
    input_grad[index] = gradient;
  }
}

422
template <typename T>
423
__global__ void KernelMaxPool3DGrad(
424 425 426 427 428 429 430 431
    const int nthreads, const T* input_data, const T* output_data,
    const T* output_grad, T* input_grad, const int channels,
    const int input_depth, const int input_height, const int input_width,
    const int output_depth, const int output_height, const int output_width,
    const int ksize_depth, const int ksize_height, const int ksize_width,
    const int stride_depth, const int stride_height, const int stride_width,
    const int padding_depth, const int padding_height,
    const int padding_width) {
432
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads;
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
       index += blockDim.x * gridDim.x) {
    int pw = index % output_width;
    int ph = (index / output_width) % output_height;
    int pd = (index / output_width / output_height) % output_depth;
    int c = (index / output_width / output_height / output_depth) % channels;
    int batch_idx =
        index / output_width / output_height / output_depth / channels;
    int dstart = pd * stride_depth - padding_depth;
    int hstart = ph * stride_height - padding_height;
    int wstart = pw * stride_width - padding_width;
    int dend = min(dstart + ksize_depth, input_depth);
    int hend = min(hstart + ksize_height, input_height);
    int wend = min(wstart + ksize_width, input_width);
    dstart = max(dstart, 0);
    hstart = max(hstart, 0);
    wstart = max(wstart, 0);
    T ele = output_data[index];
    bool stop = false;
    int maxIdx = -1;
    input_data +=
        (batch_idx * channels + c) * input_depth * input_height * input_width;
    input_grad +=
        (batch_idx * channels + c) * input_depth * input_height * input_width;

    for (int d = dstart; d < dend && !stop; ++d) {
      for (int h = hstart; h < hend && !stop; ++h) {
        for (int w = wstart; w < wend && !stop; ++w) {
          if (ele == input_data[(d * input_height + h) * input_width + w]) {
            stop = true;
            maxIdx = (d * input_height + h) * input_width + w;
          }
        }
      }
    }
    if (maxIdx != -1) {
      // atomic add
C
chengduoZH 已提交
469
      platform::CudaAtomicAdd(input_grad + maxIdx, output_grad[index]);
470 471 472 473
    }
  }
}

C
chengduoZH 已提交
474 475 476 477 478
/*
 * All tensors are in NCDHW format.
 * Ksize, strides, paddings are three elements. These three elements represent
 * depth, height and width, respectively.
 */
479
template <typename PoolProcess, class T>
C
chengduoZH 已提交
480
class Pool3dFunctor<platform::GPUPlace, PoolProcess, T> {
481
 public:
482 483
  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& input, framework::Tensor& output,
484
                  std::vector<int>& ksize, std::vector<int>& strides,
485
                  std::vector<int>& paddings, PoolProcess pool_process) {
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
    const int batch_size = input.dims()[0];
    const int input_channels = input.dims()[1];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
    const int output_channels = output.dims()[1];
    const int output_depth = output.dims()[2];
    const int output_height = output.dims()[3];
    const int output_width = output.dims()[4];
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];

    const T* input_data = input.data<T>();
C
chengduoZH 已提交
506
    T* output_data = output.mutable_data<T>(context.GetPlace());
507 508 509 510 511 512 513

    int nthreads = batch_size * output_channels * output_depth * output_height *
                   output_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

514
    KernelPool3D<
C
chengduoZH 已提交
515 516 517 518
        PoolProcess,
        T><<<grid, threads, 0,
             reinterpret_cast<const platform::CUDADeviceContext&>(context)
                 .stream()>>>(
519 520 521 522
        nthreads, input_data, output_data, input_channels, input_depth,
        input_height, input_width, output_depth, output_height, output_width,
        ksize_depth, ksize_height, ksize_width, stride_depth, stride_height,
        stride_width, padding_depth, padding_height, padding_width,
523
        pool_process);
524 525 526
  }
};

C
chengduoZH 已提交
527 528 529 530 531
/*
 * All tensors are in NCDHW format.
 * Ksize, strides, paddings are three elements. These three elements represent
 * depth, height and width, respectively.
 */
532
template <typename PoolProcess, class T>
C
chengduoZH 已提交
533
class Pool3dGradFunctor<platform::GPUPlace, PoolProcess, T> {
534
 public:
535 536
  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& input, framework::Tensor& input_grad,
537 538 539
                  const framework::Tensor& output,
                  const framework::Tensor& output_grad, std::vector<int>& ksize,
                  std::vector<int>& strides, std::vector<int>& paddings,
540
                  PoolProcess pool_process) {
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
    const int batch_size = input.dims()[0];
    const int input_channels = input.dims()[1];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
    const int output_channels = output.dims()[1];
    const int output_depth = output.dims()[2];
    const int output_height = output.dims()[3];
    const int output_width = output.dims()[4];
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
C
chengduoZH 已提交
563
    T* input_grad_data = input_grad.mutable_data<T>(context.GetPlace());
564

565 566
    int nthreads =
        batch_size * input_channels * input_depth * input_height * input_width;
567 568 569 570
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

571
    KernelPool3DGrad<
C
chengduoZH 已提交
572 573 574 575
        PoolProcess,
        T><<<grid, threads, 0,
             reinterpret_cast<const platform::CUDADeviceContext&>(context)
                 .stream()>>>(
576 577 578 579
        nthreads, input_data, output_data, output_grad_data, input_grad_data,
        input_channels, input_depth, input_height, input_width, output_depth,
        output_height, output_width, ksize_depth, ksize_height, ksize_width,
        stride_depth, stride_height, stride_width, padding_depth,
580
        padding_height, padding_width, pool_process);
581 582 583
  }
};

C
chengduoZH 已提交
584 585 586 587 588
/*
 * All tensors are in NCDHW format.
 * Ksize, strides, paddings are three elements. These three elements represent
 * depth, height and width, respectively.
 */
589
template <class T>
C
chengduoZH 已提交
590
class MaxPool3dGradFunctor<platform::GPUPlace, T> {
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
 public:
  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& input, framework::Tensor& input_grad,
                  const framework::Tensor& output,
                  const framework::Tensor& output_grad, std::vector<int>& ksize,
                  std::vector<int>& strides, std::vector<int>& paddings) {
    const int batch_size = input.dims()[0];
    const int input_channels = input.dims()[1];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
    const int output_channels = output.dims()[1];
    const int output_depth = output.dims()[2];
    const int output_height = output.dims()[3];
    const int output_width = output.dims()[4];
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
    T* input_grad_data = input_grad.mutable_data<T>(context.GetPlace());

    int nthreads = batch_size * output_channels * output_depth * output_height *
                   output_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

627
    KernelMaxPool3DGrad<
628 629 630 631 632 633 634 635 636 637 638
        T><<<grid, threads, 0,
             reinterpret_cast<const platform::CUDADeviceContext&>(context)
                 .stream()>>>(
        nthreads, input_data, output_data, output_grad_data, input_grad_data,
        input_channels, input_depth, input_height, input_width, output_depth,
        output_height, output_width, ksize_depth, ksize_height, ksize_width,
        stride_depth, stride_height, stride_width, padding_depth,
        padding_height, padding_width);
  }
};

C
chengduoZH 已提交
639
template class MaxPool3dGradFunctor<platform::GPUPlace, float>;
C
chengduoZH 已提交
640
template class MaxPool3dGradFunctor<platform::GPUPlace, double>;
C
chengduoZH 已提交
641 642

template class Pool3dFunctor<platform::GPUPlace,
643
                             paddle::operators::math::MaxPool<float>, float>;
C
chengduoZH 已提交
644
template class Pool3dFunctor<platform::GPUPlace,
645
                             paddle::operators::math::AvgPool<float>, float>;
C
chengduoZH 已提交
646
template class Pool3dGradFunctor<
647
    platform::GPUPlace, paddle::operators::math::MaxPoolGrad<float>, float>;
C
chengduoZH 已提交
648
template class Pool3dGradFunctor<
649
    platform::GPUPlace, paddle::operators::math::AvgPoolGrad<float>, float>;
C
chengduoZH 已提交
650
template class Pool3dFunctor<platform::GPUPlace,
651
                             paddle::operators::math::MaxPool<double>, double>;
C
chengduoZH 已提交
652
template class Pool3dFunctor<platform::GPUPlace,
653
                             paddle::operators::math::AvgPool<double>, double>;
C
chengduoZH 已提交
654
template class Pool3dGradFunctor<
655
    platform::GPUPlace, paddle::operators::math::MaxPoolGrad<double>, double>;
C
chengduoZH 已提交
656
template class Pool3dGradFunctor<
657
    platform::GPUPlace, paddle::operators::math::AvgPoolGrad<double>, double>;
658

C
chengduoZH 已提交
659
template <typename T>
C
chengduoZH 已提交
660
__global__ void KernelMaxPool2dWithIdx(
C
chengduoZH 已提交
661 662 663 664 665
    const int nthreads, const T* input_data, T* output_data, T* mask_data,
    const int channels, const int input_height, const int input_width,
    const int output_height, const int output_width, const int ksize_height,
    const int ksize_width, const int stride_height, const int stride_width,
    const int padding_height, const int padding_width) {
C
chengduoZH 已提交
666
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads;
C
chengduoZH 已提交
667
       index += blockDim.x * gridDim.x) {
C
chengduoZH 已提交
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
    int pw = index % output_width;
    int ph = (index / output_width) % output_height;
    int c = (index / output_width / output_height) % channels;
    int batch_idx = index / output_width / output_height / channels;

    int hstart = ph * stride_height - padding_height;
    int hend = min(hstart + ksize_height, input_height);
    hstart = max(hstart, 0);

    int wstart = pw * stride_width - padding_width;
    int wend = min(wstart + ksize_width, input_width);
    wstart = max(wstart, 0);

    input_data += (batch_idx * channels + c) * input_height * input_width;
    T ele = -FLT_MAX;
C
chengduoZH 已提交
683
    int max_index = -1;
C
chengduoZH 已提交
684 685
    for (int h = hstart; h < hend; ++h) {
      for (int w = wstart; w < wend; ++w) {
C
chengduoZH 已提交
686 687 688 689
        int input_index = h * input_width + w;
        if (ele < input_data[input_index]) {
          max_index = input_index;
          ele = input_data[input_index];
C
chengduoZH 已提交
690 691 692 693
        }
      }
    }
    output_data[index] = ele;
C
chengduoZH 已提交
694
    mask_data[index] = max_index;
C
chengduoZH 已提交
695 696 697 698
  }
}

template <typename T>
C
chengduoZH 已提交
699
__global__ void KernelMaxPool2DWithIdxGrad(
C
chengduoZH 已提交
700 701 702 703 704
    const int nthreads, T* input_grad, const T* output_grad, const T* mask_data,
    const int channels, const int input_height, const int input_width,
    const int output_height, const int output_width, const int ksize_height,
    const int ksize_width, const int stride_height, const int stride_width,
    const int padding_height, const int padding_width) {
C
chengduoZH 已提交
705
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads;
C
chengduoZH 已提交
706 707 708 709
       index += blockDim.x * gridDim.x) {
    int w_offset = index % input_width;
    int h_offset = (index / input_width) % input_height;
    int c_offset = (index / input_width / input_height) % channels;
C
chengduoZH 已提交
710 711
    int batch_idx = index / input_width / input_height / channels;

C
chengduoZH 已提交
712 713 714 715 716 717 718 719 720 721 722 723 724
    int ph_start =
        (h_offset + padding_height < ksize_height)
            ? 0
            : (h_offset + padding_height - ksize_height) / stride_height + 1;
    int pw_start =
        (w_offset + padding_width < ksize_width)
            ? 0
            : (w_offset + padding_width - ksize_width) / stride_width + 1;
    int ph_end =
        min((h_offset + padding_height) / stride_height + 1, output_height);
    int pw_end =
        min((w_offset + padding_width) / stride_width + 1, output_width);

C
chengduoZH 已提交
725
    T gradient = 0;
C
chengduoZH 已提交
726
    int input_current_featuremap_idx = h_offset * input_width + w_offset;
C
chengduoZH 已提交
727
    int output_idx =
C
chengduoZH 已提交
728 729
        (batch_idx * channels + c_offset) * output_height * output_width;

C
chengduoZH 已提交
730 731
    mask_data += output_idx;
    output_grad += output_idx;
C
chengduoZH 已提交
732 733 734
    for (int ph = ph_start; ph < ph_end; ++ph) {
      for (int pw = pw_start; pw < pw_end; ++pw) {
        if (mask_data[ph * output_width + pw] == input_current_featuremap_idx)
C
chengduoZH 已提交
735 736 737 738 739 740 741
          gradient += output_grad[ph * output_width + pw];
      }
    }
    input_grad[index] = gradient;
  }
}

C
chengduoZH 已提交
742 743 744 745 746
/*
 * All tensors are in NCHW format.
 * Ksize, strides, paddings are two elements. These two elements represent
 * height and width, respectively.
 */
C
chengduoZH 已提交
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
template <typename T>
class MaxPool2dWithIndexFunctor<platform::GPUPlace, T> {
 public:
  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& input, framework::Tensor& output,
                  framework::Tensor& mask, std::vector<int>& ksize,
                  std::vector<int>& strides, std::vector<int>& paddings) {
    const int batch_size = input.dims()[0];
    const int input_channels = input.dims()[1];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_channels = output.dims()[1];
    const int output_height = output.dims()[2];
    const int output_width = output.dims()[3];
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];

    const T* input_data = input.data<T>();
    T* output_data = output.mutable_data<T>(context.GetPlace());
    T* mask_data = mask.mutable_data<T>(context.GetPlace());

    int nthreads = batch_size * output_channels * output_height * output_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

C
chengduoZH 已提交
777
    KernelMaxPool2dWithIdx<
C
chengduoZH 已提交
778 779 780 781 782 783 784 785 786 787
        T><<<grid, threads, 0,
             reinterpret_cast<const platform::CUDADeviceContext&>(context)
                 .stream()>>>(nthreads, input_data, output_data, mask_data,
                              input_channels, input_height, input_width,
                              output_height, output_width, ksize_height,
                              ksize_width, stride_height, stride_width,
                              padding_height, padding_width);
  }
};

C
chengduoZH 已提交
788 789 790 791 792
/*
 * All tensors are in NCHW format.
 * Ksize, strides, paddings are two elements. These two elements represent
 * height and width, respectively.
 */
C
chengduoZH 已提交
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
template <typename T>
class MaxPool2dWithIndexGradFunctor<platform::GPUPlace, T> {
 public:
  void operator()(const platform::DeviceContext& context,
                  framework::Tensor& input_grad,
                  const framework::Tensor& output_grad,
                  const framework::Tensor& mask, std::vector<int>& ksize,
                  std::vector<int>& strides, std::vector<int>& paddings) {
    const int batch_size = input_grad.dims()[0];
    const int input_channels = input_grad.dims()[1];
    const int input_height = input_grad.dims()[2];
    const int input_width = input_grad.dims()[3];
    const int output_height = output_grad.dims()[2];
    const int output_width = output_grad.dims()[3];
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];

    const T* mask_data = mask.data<T>();
    const T* output_grad_data = output_grad.data<T>();
    T* input_grad_data = input_grad.mutable_data<T>(context.GetPlace());

    int nthreads = batch_size * input_channels * input_height * input_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

C
chengduoZH 已提交
823
    KernelMaxPool2DWithIdxGrad<
C
chengduoZH 已提交
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
        T><<<grid, threads, 0,
             reinterpret_cast<const platform::CUDADeviceContext&>(context)
                 .stream()>>>(nthreads, input_grad_data, output_grad_data,
                              mask_data, input_channels, input_height,
                              input_width, output_height, output_width,
                              ksize_height, ksize_width, stride_height,
                              stride_width, padding_height, padding_width);
  }
};

template class MaxPool2dWithIndexFunctor<platform::GPUPlace, float>;
template class MaxPool2dWithIndexGradFunctor<platform::GPUPlace, float>;
template class MaxPool2dWithIndexFunctor<platform::GPUPlace, double>;
template class MaxPool2dWithIndexGradFunctor<platform::GPUPlace, double>;

template <typename T>
C
chengduoZH 已提交
840
__global__ void KernelMaxPool3DWithIdx(
C
chengduoZH 已提交
841 842 843 844 845 846 847
    const int nthreads, const T* input_data, T* output_data, T* mask_data,
    const int channels, const int input_depth, const int input_height,
    const int input_width, const int output_depth, const int output_height,
    const int output_width, const int ksize_depth, const int ksize_height,
    const int ksize_width, const int stride_depth, const int stride_height,
    const int stride_width, const int padding_depth, const int padding_height,
    const int padding_width) {
C
chengduoZH 已提交
848
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads;
C
chengduoZH 已提交
849 850 851 852 853 854 855
       index += blockDim.x * gridDim.x) {
    int pw = index % output_width;
    int ph = (index / output_width) % output_height;
    int pd = (index / output_width / output_height) % output_depth;
    int c = (index / output_width / output_height / output_depth) % channels;
    int batch_idx =
        index / output_width / output_height / output_depth / channels;
C
chengduoZH 已提交
856

C
chengduoZH 已提交
857 858 859 860 861 862 863 864 865
    int dstart = pd * stride_depth - padding_depth;
    int hstart = ph * stride_height - padding_height;
    int wstart = pw * stride_width - padding_width;
    int dend = min(dstart + ksize_depth, input_depth);
    int hend = min(hstart + ksize_height, input_height);
    int wend = min(wstart + ksize_width, input_width);
    dstart = max(dstart, 0);
    hstart = max(hstart, 0);
    wstart = max(wstart, 0);
C
chengduoZH 已提交
866

C
chengduoZH 已提交
867
    T ele = -FLT_MAX;
C
chengduoZH 已提交
868
    int max_index = -1;
C
chengduoZH 已提交
869 870 871 872 873 874 875
    input_data +=
        (batch_idx * channels + c) * input_depth * input_height * input_width;

    for (int d = dstart; d < dend; ++d) {
      for (int h = hstart; h < hend; ++h) {
        for (int w = wstart; w < wend; ++w) {
          if (ele < input_data[(d * input_height + h) * input_width + w]) {
C
chengduoZH 已提交
876 877
            max_index = (d * input_height + h) * input_width + w;
            ele = input_data[max_index];
C
chengduoZH 已提交
878 879 880 881 882
          }
        }
      }
    }
    output_data[index] = ele;
C
chengduoZH 已提交
883
    mask_data[index] = max_index;
C
chengduoZH 已提交
884 885 886 887
  }
}

template <typename T>
C
chengduoZH 已提交
888
__global__ void KernelMaxPool3DWithIdxGrad(
C
chengduoZH 已提交
889 890 891 892 893 894 895
    const int nthreads, T* input_grad, const T* output_grad, const T* mask,
    const int channels, const int input_depth, const int input_height,
    const int input_width, const int output_depth, const int output_height,
    const int output_width, const int ksize_depth, const int ksize_height,
    const int ksize_width, const int stride_depth, const int stride_height,
    const int stride_width, const int padding_depth, const int padding_height,
    const int padding_width) {
C
chengduoZH 已提交
896
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads;
C
chengduoZH 已提交
897
       index += blockDim.x * gridDim.x) {
C
chengduoZH 已提交
898 899 900 901 902
    int w_offset = index % input_width;
    int h_offset = (index / input_width) % input_height;
    int d_offset = (index / input_width / input_height) % input_depth;
    int c_offset =
        (index / input_width / input_height / input_depth) % channels;
C
chengduoZH 已提交
903 904
    int batch_idx = index / input_width / input_height / input_depth / channels;

C
chengduoZH 已提交
905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
    int pd_start =
        (d_offset + padding_depth < ksize_depth)
            ? 0
            : (d_offset + padding_depth - ksize_depth) / stride_depth + 1;
    int ph_start =
        (h_offset + padding_height < ksize_height)
            ? 0
            : (h_offset + padding_height - ksize_height) / stride_height + 1;
    int pw_start =
        (w_offset + padding_width < ksize_width)
            ? 0
            : (w_offset + padding_width - ksize_width) / stride_width + 1;
    int pd_end =
        min((d_offset + padding_depth) / stride_depth + 1, output_depth);
    int ph_end =
        min((h_offset + padding_height) / stride_height + 1, output_height);
    int pw_end =
        min((w_offset + padding_width) / stride_width + 1, output_width);
C
chengduoZH 已提交
923 924

    T gradient = 0;
C
chengduoZH 已提交
925 926 927
    int input_current_feature_map_idx =
        (d_offset * input_height + h_offset) * input_width + w_offset;
    int output_idx = (batch_idx * channels + c_offset) * output_depth *
C
chengduoZH 已提交
928 929 930 931
                     output_height * output_width;
    mask += output_idx;
    output_grad += output_idx;

C
chengduoZH 已提交
932 933 934 935 936
    for (int pd = pd_start; pd < pd_end; ++pd) {
      for (int ph = ph_start; ph < ph_end; ++ph) {
        for (int pw = pw_start; pw < pw_end; ++pw) {
          if (mask[(pd * output_height + ph) * output_width + pw] ==
              input_current_feature_map_idx)
C
chengduoZH 已提交
937 938 939 940 941 942 943 944 945
            gradient +=
                output_grad[(pd * output_height + ph) * output_width + pw];
        }
      }
    }
    input_grad[index] = gradient;
  }
}

C
chengduoZH 已提交
946 947 948 949 950
/*
 * All tensors are in NCDHW format.
 * Ksize, strides, paddings are three elements. These three elements represent
 * depth, height and width, respectively.
 */
C
chengduoZH 已提交
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
template <typename T>
class MaxPool3dWithIndexFunctor<platform::GPUPlace, T> {
 public:
  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& input, framework::Tensor& output,
                  framework::Tensor& mask, std::vector<int>& ksize,
                  std::vector<int>& strides, std::vector<int>& paddings) {
    const int batch_size = input.dims()[0];
    const int input_channels = input.dims()[1];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
    const int output_channels = output.dims()[1];
    const int output_depth = output.dims()[2];
    const int output_height = output.dims()[3];
    const int output_width = output.dims()[4];
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];

    const T* input_data = input.data<T>();
    T* output_data = output.mutable_data<T>(context.GetPlace());
C
chengduoZH 已提交
979
    T* mask_data = mask.mutable_data<T>(context.GetPlace());
C
chengduoZH 已提交
980 981 982 983 984 985 986

    int nthreads = batch_size * output_channels * output_depth * output_height *
                   output_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

C
chengduoZH 已提交
987
    KernelMaxPool3DWithIdx<
C
chengduoZH 已提交
988 989 990 991 992 993 994 995 996 997 998
        T><<<grid, threads, 0,
             reinterpret_cast<const platform::CUDADeviceContext&>(context)
                 .stream()>>>(
        nthreads, input_data, output_data, mask_data, input_channels,
        input_depth, input_height, input_width, output_depth, output_height,
        output_width, ksize_depth, ksize_height, ksize_width, stride_depth,
        stride_height, stride_width, padding_depth, padding_height,
        padding_width);
  }
};

C
chengduoZH 已提交
999 1000 1001 1002 1003
/*
 * All tensors are in NCDHW format.
 * Ksize, strides, paddings are three elements. These three elements represent
 * depth, height and width, respectively.
 */
C
chengduoZH 已提交
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
template <typename T>
class MaxPool3dWithIndexGradFunctor<platform::GPUPlace, T> {
 public:
  void operator()(const platform::DeviceContext& context,
                  framework::Tensor& input_grad,
                  const framework::Tensor& output_grad,
                  const framework::Tensor& mask, std::vector<int>& ksize,
                  std::vector<int>& strides, std::vector<int>& paddings) {
    const int batch_size = input_grad.dims()[0];
    const int input_channels = input_grad.dims()[1];
    const int input_depth = input_grad.dims()[2];
    const int input_height = input_grad.dims()[3];
    const int input_width = input_grad.dims()[4];
C
chengduoZH 已提交
1017 1018 1019
    const int output_depth = output_grad.dims()[2];
    const int output_height = output_grad.dims()[3];
    const int output_width = output_grad.dims()[4];
C
chengduoZH 已提交
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];

    const T* output_grad_data = output_grad.data<T>();
    const T* mask_data = mask.data<T>();
    T* input_grad_data = input_grad.mutable_data<T>(context.GetPlace());

    int nthreads =
        batch_size * input_channels * input_depth * input_height * input_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

C
chengduoZH 已提交
1040
    KernelMaxPool3DWithIdxGrad<
C
chengduoZH 已提交
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
        T><<<grid, threads, 0,
             reinterpret_cast<const platform::CUDADeviceContext&>(context)
                 .stream()>>>(
        nthreads, input_grad_data, output_grad_data, mask_data, input_channels,
        input_depth, input_height, input_width, output_depth, output_height,
        output_width, ksize_depth, ksize_height, ksize_width, stride_depth,
        stride_height, stride_width, padding_depth, padding_height,
        padding_width);
  }
};

template class MaxPool3dWithIndexFunctor<platform::GPUPlace, float>;
template class MaxPool3dWithIndexGradFunctor<platform::GPUPlace, float>;
template class MaxPool3dWithIndexFunctor<platform::GPUPlace, double>;
template class MaxPool3dWithIndexGradFunctor<platform::GPUPlace, double>;

}  // namespace math
}  // namespace operators
}  // namespace paddle