提交 3416f5e0 编写于 作者: C chengduoZH

fix function define

......@@ -27,3 +27,4 @@ CMakeFiles
cmake_install.cmake
paddle/.timestamp
python/paddlepaddle.egg-info/
paddle/pybind/pybind.h
......@@ -36,10 +36,6 @@ before_install:
# protobuf version.
- sudo pip install -r $TRAVIS_BUILD_DIR/python/requirements.txt
- sudo pip install wheel sphinx==1.5.6 recommonmark sphinx-rtd-theme==0.1.9 virtualenv pre-commit LinkChecker
- curl https://glide.sh/get | bash
- eval "$(GIMME_GO_VERSION=1.8.3 gimme)"
- go get -u github.com/alecthomas/gometalinter
- gometalinter --install
- |
function timeout() { perl -e 'alarm shift; exec @ARGV' "$@"; }
script:
......
......@@ -27,7 +27,7 @@ if(NOT CMAKE_CROSSCOMPILING)
endif(NOT CMAKE_CROSSCOMPILING)
find_package(Git REQUIRED)
find_package(Threads REQUIRED)
if(NOT ANDROID)
if(NOT ANDROID AND NOT IOS)
find_package(Boost QUIET)
endif()
......@@ -64,27 +64,29 @@ if(NOT CMAKE_BUILD_TYPE)
FORCE)
endif()
if(ANDROID)
if(${CMAKE_SYSTEM_VERSION} VERSION_LESS "16")
message(FATAL_ERROR "Unsupport standalone toolchains with Android API level lower than 16")
elseif(${CMAKE_SYSTEM_VERSION} VERSION_LESS "21")
# TODO: support glog for Android api 16 ~ 19 in the future
message(WARNING "Using the unofficial git repository <https://github.com/Xreki/glog.git> instead")
if(ANDROID OR IOS)
if(ANDROID)
if(${CMAKE_SYSTEM_VERSION} VERSION_LESS "16")
message(FATAL_ERROR "Unsupport standalone toolchains with Android API level lower than 16")
elseif(${CMAKE_SYSTEM_VERSION} VERSION_LESS "21")
# TODO: support glog for Android api 16 ~ 19 in the future
message(WARNING "Using the unofficial git repository <https://github.com/Xreki/glog.git> instead")
endif()
endif()
set(WITH_GPU OFF CACHE STRING
"Disable GPU when cross-compiling for Android" FORCE)
"Disable GPU when cross-compiling for Android and iOS" FORCE)
set(WITH_AVX OFF CACHE STRING
"Disable AVX when cross-compiling for Android" FORCE)
"Disable AVX when cross-compiling for Android and iOS" FORCE)
set(WITH_PYTHON OFF CACHE STRING
"Disable PYTHON when cross-compiling for Android" FORCE)
"Disable PYTHON when cross-compiling for Android and iOS" FORCE)
set(WITH_RDMA OFF CACHE STRING
"Disable RDMA when cross-compiling for Android" FORCE)
"Disable RDMA when cross-compiling for Android and iOS" FORCE)
set(WITH_MKLDNN OFF CACHE STRING
"Disable MKLDNN when cross-compiling for Android" FORCE)
"Disable MKLDNN when cross-compiling for Android and iOS" FORCE)
set(WITH_MKLML OFF CACHE STRING
"Disable MKLML package when cross-compiling for Android" FORCE)
endif(ANDROID)
"Disable MKLML package when cross-compiling for Android and iOS" FORCE)
endif()
set(THIRD_PARTY_PATH "${CMAKE_BINARY_DIR}/third_party" CACHE STRING
"A path setting third party libraries download & build directories.")
......
......@@ -171,3 +171,10 @@ if (REFERENCE_CBLAS_INCLUDE_DIR AND REFERENCE_CBLAS_LIBRARY)
add_definitions(-DPADDLE_USE_REFERENCE_CBLAS)
message(STATUS "Found reference-cblas (include: ${CBLAS_INC_DIR}, library: ${CBLAS_LIBRARIES})")
endif()
if(IOS_USE_VECLIB_FOR_BLAS AND VECLIB_FOUND)
set(CBLAS_FOUND ON)
set(CBLAS_PROVIDER vecLib)
set(CBLAS_INC_DIR ${VECLIB_INC_DIR})
add_definitions(-DPADDLE_USE_VECLIB)
endif()
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This is a toolchain file for cross-compiling for iOS, and the
# configuration largely refers to public toolchain file:
# https://raw.githubusercontent.com/leetal/ios-cmake/master/ios.toolchain.cmake
# and
# https://github.com/cristeab/ios-cmake
#
# Supports options:
# IOS_PLATFORM = OS (default) or SIMULATOR
# This decides if SDKS will be selected from the iPhoneOS.platform or iPhoneSimulator.platform folders
# OS - the default, used to build for iPhone and iPad physical devices, which have an arm arch.
# SIMULATOR - used to build for the Simulator platforms, which have an x86 arch.
# IOS_ARCH
# The archectures wanted to support, such "arm64", "armv7;arm64"
# IOS_DEPLOYMENT_TARGET
# The minimum iOS deployment version, such as "7.0"
# IOS_ENABLE_BITCODE = ON (default) or OFF
# IOS_USE_VECLIB_FOR_BLAS = OFF (default) or ON
# IOS_DEVELOPER_ROOT = automatic(default) or /path/to/platform/Developer folder
# By default this location is automatcially chosen based on the IOS_PLATFORM value above.
# If set manually, it will override the default location and force the user of a particular Developer Platform
# IOS_SDK_ROOT = automatic(default) or /path/to/platform/Developer/SDKs/SDK folder
# By default this location is automatcially chosen based on the IOS_DEVELOPER_ROOT value.
# In this case it will always be the most up-to-date SDK found in the IOS_DEVELOPER_ROOT path.
# If set manually, this will force the use of a specific SDK version
# Macros:
# set_xcode_property (TARGET XCODE_PROPERTY XCODE_VALUE)
# A convenience macro for setting xcode specific properties on targets
# example: set_xcode_property (myioslib IPHONEOS_DEPLOYMENT_TARGET "3.1")
# find_host_package (PROGRAM ARGS)
# A macro used to find executable programs on the host system, not within the iOS environment.
# Thanks to the android-cmake project for providing the command
if(NOT IOS)
return()
endif()
set(CMAKE_SYSTEM_NAME Darwin)
# Get the Xcode version being used.
execute_process(COMMAND xcodebuild -version
OUTPUT_VARIABLE XCODE_VERSION
RESULT_VARIABLE XCODE_VERSION_RESULT
ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE)
if(NOT ${XCODE_VERSION_RESULT})
string(REGEX MATCH "Xcode [0-9\\.]+" XCODE_VERSION "${XCODE_VERSION}")
string(REGEX REPLACE "Xcode ([0-9\\.]+)" "\\1" XCODE_VERSION "${XCODE_VERSION}")
message(STATUS "Building with Xcode version: ${XCODE_VERSION}")
else()
message(FATAL_ERROR "Cannot execute xcodebuild, please check whether xcode is installed.")
endif()
# Required as of cmake 2.8.10
set(CMAKE_OSX_DEPLOYMENT_TARGET "" CACHE STRING "Force unset of the deployment target for iOS" FORCE)
# Setup iOS platform unless specified manually with IOS_PLATFORM
if(NOT DEFINED IOS_PLATFORM)
set(IOS_PLATFORM "OS")
endif()
set(IOS_PLATFORM ${IOS_PLATFORM} CACHE STRING "Type of iOS Platform")
# Set the architecture for iOS
if(NOT DEFINED IOS_ARCH)
if(IOS_PLATFORM STREQUAL "OS")
# FIXME(liuyiqun): support "armv7;armv7s;arm64" future
set(IOS_ARCH "arm64")
elseif(IOS_PLATFORM STREQUAL "SIMULATOR")
set(IOS_ARCH "i386;x86_64")
elseif(IOS_PLATFORM STREQUAL "WATCHOS")
set(IOS_ARCH armv7k)
endif()
endif()
set(CMAKE_OSX_ARCHITECTURES ${IOS_ARCH} CACHE string "Build architecture for iOS")
# Specify minimum iOS deployment version
if(NOT DEFINED IOS_DEPLOYMENT_TARGET)
set(IOS_DEPLOYMENT_TARGET "7.0")
endif()
set(IOS_DEPLOYMENT_TARGET ${IOS_DEPLOYMENT_TARGET} CACHE STRING "Minimum iOS version")
# Whether to enable bitcode
if(NOT DEFINED IOS_ENABLE_BITCODE)
set(IOS_ENABLE_BITCODE ON)
endif()
set(IOS_ENABLE_BITCODE ${IOS_ENABLE_BITCODE} CACHE BOOL "Whether to enable bitcode")
if(NOT DEFINED IOS_USE_VECLIB_FOR_BLAS)
set(IOS_USE_VECLIB_FOR_BLAS OFF)
endif()
set(IOS_USE_VECLIB_FOR_BLAS ${IOS_UES_VECLIB_FOR_BLAS} CACHE BOOL "Whether to use veclib")
# Check the platform selection and setup for developer root
if(${IOS_PLATFORM} STREQUAL "OS")
set(IOS_PLATFORM_LOCATION "iPhoneOS.platform")
set(XCODE_IOS_PLATFORM iphoneos)
# This causes the installers to properly locate the output libraries
set(CMAKE_XCODE_EFFECTIVE_PLATFORMS "-iphoneos")
elseif(${IOS_PLATFORM} STREQUAL "SIMULATOR")
set(IOS_PLATFORM_LOCATION "iPhoneSimulator.platform")
set(XCODE_IOS_PLATFORM iphonesimulator)
# This causes the installers to properly locate the output libraries
set(CMAKE_XCODE_EFFECTIVE_PLATFORMS "-iphonesimulator")
elseif(${IOS_PLATFORM} STREQUAL "WATCHOS")
set(IOS_PLATFORM_LOCATION "WatchOS.platform")
set(XCODE_IOS_PLATFORM watchos)
# This causes the installers to properly locate the output libraries
set(CMAKE_XCODE_EFFECTIVE_PLATFORMS "-watchos")
else(${IOS_PLATFORM} STREQUAL "OS")
message(FATAL_ERROR "Unsupported IOS_PLATFORM value selected. Please set to\n"
"\t OS, SIMULATOR, or WATCHOS.")
endif()
# Check iOS developer toolchain
if(NOT DEFINED IOS_DEVELOPER_ROOT)
# Setup iOS developer location
execute_process(COMMAND xcode-select -print-path
OUTPUT_VARIABLE XCODE_DEVELOPER_DIR
RESULT_VARIABLE XCODE_DEVELOPER_DIR_RESULT
ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE)
# Xcode 4.3 changed the installation location, choose the most recent one available
if(${XCODE_VERSION} VERSION_LESS "4.3.0")
set(IOS_DEVELOPER_ROOT "/Developer/Platforms/${IOS_PLATFORM_LOCATION}/Developer")
else()
set(IOS_DEVELOPER_ROOT "${XCODE_DEVELOPER_DIR}/Platforms/${IOS_PLATFORM_LOCATION}/Developer")
endif()
endif()
if(EXISTS ${IOS_DEVELOPER_ROOT})
set(IOS_DEVELOPER_ROOT ${IOS_DEVELOPER_ROOT} CACHE PATH "Location of iOS Platform")
else()
message(FATAL_ERROR "Invalid IOS_DEVELOPER_ROOT: ${IOS_DEVELOPER_ROOT} does not exist.")
endif()
# Check iOS SDK
if(NOT DEFINED IOS_SDK_ROOT)
# Find and use the most recent iOS sdk
file(GLOB IOS_SDK_LISTS "${IOS_DEVELOPER_ROOT}/SDKs/*")
if(IOS_SDK_LISTS)
list(SORT IOS_SDK_LISTS)
list(REVERSE IOS_SDK_LISTS)
list(GET IOS_SDK_LISTS 0 IOS_SDK_ROOT)
else(IOS_SDK_LISTS)
message(FATAL_ERROR "No iOS SDK's found in default search path ${IOS_DEVELOPER_ROOT}."
" Please manually set IOS_SDK_ROOT or install the iOS SDK.")
endif(IOS_SDK_LISTS)
endif()
if(EXISTS ${IOS_SDK_ROOT})
set(IOS_SDK_ROOT ${IOS_SDK_ROOT} CACHE PATH "Location of the selected iOS SDK")
message(STATUS "iOS toolchain: ${IOS_SDK_ROOT}")
else()
message(FATAL_ERROR "Invalid IOS_SDK_ROOT: ${IOS_SDK_ROOT} does not exist.")
endif()
# Set the sysroot default to the most recent SDK
set(CMAKE_OSX_SYSROOT ${IOS_SDK_ROOT} CACHE PATH "Sysroot used for iOS support")
# Get version of iOS SDK
execute_process(COMMAND xcodebuild -sdk ${CMAKE_OSX_SYSROOT} -version SDKVersion
OUTPUT_VARIABLE IOS_SDK_VERSION
RESULT_VARIABLE IOS_SDK_VERSION_RESULT
ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE)
if(${IOS_SDK_VERSION_RESULT})
string(REGEX MATCH "(([0-9]+)\\.)+([0-9]+)" IOS_SDK_VERSION "${IOS_SDK_ROOT}")
endif()
if(NOT IOS_SDK_VERSION)
message(WARNING "Cannot get SDK's version.")
set(IOS_SDK_VERSION 1)
endif()
set(CMAKE_SYSTEM_VERSION ${IOS_SDK_VERSION})
# Find the C & C++ compilers for the specified SDK.
if(NOT CMAKE_C_COMPILER)
# Default to use clang
execute_process(COMMAND xcrun -sdk ${CMAKE_OSX_SYSROOT} -find clang
OUTPUT_VARIABLE IOS_C_COMPILER
RESULT_VARIABLE IOS_C_COMPILER_RESULT
ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE)
if(${IOS_C_COMPILER_RESULT})
get_filename_component(IOS_C_COMPILER clang PROGRAM)
endif()
else(NOT CMAKE_C_COMPILER)
# User can set it in cmake command
get_filename_component(IOS_C_COMPILER ${CMAKE_C_COMPILER} PROGRAM)
endif(NOT CMAKE_C_COMPILER)
if(NOT EXISTS ${IOS_C_COMPILER})
message(FATAL_ERROR "Cannot find C compiler: ${IOS_C_COMPILER}")
endif()
if(NOT CMAKE_CXX_COMPILER)
# Default to use clang++
execute_process(COMMAND xcrun -sdk ${CMAKE_OSX_SYSROOT} -find clang++
OUTPUT_VARIABLE IOS_CXX_COMPILER
RESULT_VARIABLE IOS_CXX_COMPILER_RESULT
ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE)
if(${IOS_CXX_COMPILER_RESULT})
get_filename_component(IOS_CXX_COMPILER clang++ PROGRAM)
endif()
else(NOT CMAKE_CXX_COMPILER)
# User can set it in cmake command
get_filename_component(IOS_CXX_COMPILER ${CMAKE_CXX_COMPILER} PROGRAM)
endif(NOT CMAKE_CXX_COMPILER)
if(NOT EXISTS ${IOS_CXX_COMPILER})
message(FATAL_ERROR "Cannot find CXX compiler: ${IOS_CXX_COMPILER}")
endif()
set(CMAKE_C_COMPILER ${IOS_C_COMPILER} CACHE PATH "C compiler" FORCE)
set(CMAKE_CXX_COMPILER ${IOS_CXX_COMPILER} CACHE PATH "CXX compiler" FORCE)
set(CMAKE_C_OSX_COMPATIBILITY_VERSION_FLAG "-compatibility_version ")
set(CMAKE_C_OSX_CURRENT_VERSION_FLAG "-current_version ")
set(CMAKE_CXX_OSX_COMPATIBILITY_VERSION_FLAG "${CMAKE_C_OSX_COMPATIBILITY_VERSION_FLAG}")
set(CMAKE_CXX_OSX_CURRENT_VERSION_FLAG "${CMAKE_C_OSX_CURRENT_VERSION_FLAG}")
# Set iOS specific C/C++ flags
if(IOS_PLATFORM STREQUAL "OS")
if(XCODE_VERSION VERSION_LESS "7.0")
set(XCODE_IOS_PLATFORM_VERSION_FLAGS "-mios-version-min=${IOS_DEPLOYMENT_TARGET}")
else()
# Xcode 7.0+ uses flags we can build directly from XCODE_IOS_PLATFORM.
set(XCODE_IOS_PLATFORM_VERSION_FLAGS "-m${XCODE_IOS_PLATFORM}-version-min=${IOS_DEPLOYMENT_TARGET}")
endif()
else()
set(XCODE_IOS_FLATFORM_VERSION_FLAGS "-mios-simulator-version-min=${IOS_DEPLOYMENT_TARGET}")
endif()
if(IOS_ENABLE_BITCODE)
set(XCODE_IOS_BITCODE_FLAGS "${IOS_COMPILER_FLAGS} -fembed-bitcode")
else()
set(XCODE_IOS_BITCODE_FLAGS "")
endif()
set(IOS_COMPILER_FLAGS "${XCODE_IOS_PLATFORM_VERSION_FLAGS} ${XCODE_IOS_BITCODE_FLAGS}")
# Hidden visibilty is required for cxx on iOS
set(CMAKE_C_FLAGS "${IOS_COMPILER_FLAGS} ${CMAKE_C_FLAGS}" CACHE STRING "C flags")
set(CMAKE_CXX_FLAGS "${IOS_COMPILER_FLAGS} -fvisibility-inlines-hidden ${CMAKE_CXX_FLAGS}" CACHE STRING "CXX flags")
set(IOS_LINK_FLAGS "${XCODE_IOS_PLATFORM_VERSION_FLAGS} -Wl,-search_paths_first")
if(IOS_USE_VECLIB_FOR_BLAS)
# Find vecLib for iOS
set(VECLIB_SEARCH_DIRS
${IOS_SDK_ROOT}/System/Library/Frameworks/Accelerate.framework/Versions/Current/Frameworks
${IOS_SDK_ROOT}/System/Library/Frameworks/Accelerate.framework/Frameworks
)
find_path(VECLIB_INC_DIR vecLib.h PATHS ${VECLIB_SEARCH_DIRS}/vecLib.framework/Headers)
include(FindPackageHandleStandardArgs)
find_package_handle_standard_args(vecLib DEFAULT_MSG VECLIB_INC_DIR)
if(VECLIB_FOUND)
if(VECLIB_INC_DIR MATCHES "^/System/Library/Frameworks/vecLib.framework.*")
set(IOS_LINK_FLAGS ${IOS_LINK_FLAGS} -lcblas "-framework vecLib")
message(STATUS "Found standalone vecLib.framework")
else()
set(IOS_LINK_FLAGS ${IOS_LINK_FLAGS} -lcblas "-framework Accelerate")
message(STATUS "Found vecLib as part of Accelerate.framework")
endif()
endif()
endif()
set(CMAKE_C_LINK_FLAGS "${IOS_LINK_FLAGS} ${CMAKE_C_LINK_FLAGS}")
set(CMAKE_CXX_LINK_FLAGS "${IOS_LINK_FLAGS} ${CMAKE_CXX_LINK_FLAGS}")
set(CMAKE_PLATFORM_HAS_INSTALLNAME 1)
if(NOT IOS_ENABLE_BITCODE)
set(CMAKE_SHARED_LIBRARY_CREATE_C_FLAGS "-dynamiclib -headerpad_max_install_names")
set(CMAKE_SHARED_MODULE_CREATE_C_FLAGS "-bundle -headerpad_max_install_names")
else()
set(CMAKE_SHARED_LIBRARY_CREATE_C_FLAGS "-dynamiclib")
set(CMAKE_SHARED_MODULE_CREATE_C_FLAGS "-bundle")
endif()
set(CMAKE_SHARED_MODULE_LOADER_C_FLAG "-Wl,-bundle_loader,")
set(CMAKE_SHARED_MODULE_LOADER_CXX_FLAG "-Wl,-bundle_loader,")
set(CMAKE_FIND_LIBRARY_SUFFIXES ".dylib" ".so" ".a")
# hack: if a new cmake (which uses CMAKE_INSTALL_NAME_TOOL) runs on an old build tree
# (where install_name_tool was hardcoded) and where CMAKE_INSTALL_NAME_TOOL isn't in the cache
# and still cmake didn't fail in CMakeFindBinUtils.cmake (because it isn't rerun)
# hardcode CMAKE_INSTALL_NAME_TOOL here to install_name_tool, so it behaves as it did before, Alex
if(NOT DEFINED CMAKE_INSTALL_NAME_TOOL)
find_program(CMAKE_INSTALL_NAME_TOOL install_name_tool)
endif()
# Set the find root to the iOS developer roots and to user defined paths
set(CMAKE_FIND_ROOT_PATH ${IOS_DEVELOPER_ROOT} ${IOS_SDK_ROOT} ${CMAKE_PREFIX_PATH}
CACHE string "iOS find search path root")
# default to searching for frameworks first
set(CMAKE_FIND_FRAMEWORK FIRST)
# set up the default search directories for frameworks
set(CMAKE_SYSTEM_FRAMEWORK_PATH
${IOS_SDK_ROOT}/System/Library/Frameworks
${IOS_SDK_ROOT}/System/Library/PrivateFrameworks
${IOS_SDK_ROOT}/Developer/Library/Frameworks
)
# only search the iOS sdks, not the remainder of the host filesystem
set(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER)
set(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)
set(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)
message(STATUS "iOS: Targeting iOS '${CMAKE_SYSTEM_VERSION}', "
"building for '${IOS_PLATFORM}' platform, with architecture '${CMAKE_OSX_ARCHITECTURES}'")
message(STATUS "System CMAKE_C_FLAGS: ${CMAKE_C_FLAGS}")
message(STATUS "System CMAKE_CXX_FLAGS: ${CMAKE_CXX_FLAGS}")
# Used in ExternalProject command
string(REPLACE ";" "\\$<SEMICOLON>" EXTERNAL_IOS_ARCHITECTURES "${CMAKE_OSX_ARCHITECTURES}")
set(EXTERNAL_OPTIONAL_ARGS
-DCMAKE_OSX_SYSROOT=${CMAKE_OSX_SYSROOT}
-DCMAKE_OSX_ARCHITECTURES=${EXTERNAL_IOS_ARCHITECTURES})
# This little macro lets you set any XCode specific property
macro(set_xcode_property TARGET XCODE_PROPERTY XCODE_VALUE)
set_property (TARGET ${TARGET} PROPERTY XCODE_ATTRIBUTE_${XCODE_PROPERTY} ${XCODE_VALUE})
endmacro(set_xcode_property)
# This macro lets you find executable programs on the host system
macro(find_host_package)
set(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER)
set(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY NEVER)
set(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE NEVER)
set(IOS FALSE)
find_package(${ARGN})
set(IOS TRUE)
set(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM ONLY)
set(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)
set(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)
endmacro(find_host_package)
......@@ -39,13 +39,14 @@ ExternalProject_Add(
PREFIX ${GFLAGS_SOURCES_DIR}
UPDATE_COMMAND ""
CMAKE_ARGS -DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER}
CMAKE_ARGS -DCMAKE_C_COMPILER=${CMAKE_C_COMPILER}
CMAKE_ARGS -DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS}
CMAKE_ARGS -DCMAKE_C_FLAGS=${CMAKE_C_FLAGS}
CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${GFLAGS_INSTALL_DIR}
CMAKE_ARGS -DCMAKE_POSITION_INDEPENDENT_CODE=ON
CMAKE_ARGS -DBUILD_TESTING=OFF
CMAKE_ARGS -DCMAKE_BUILD_TYPE=Release
-DCMAKE_C_COMPILER=${CMAKE_C_COMPILER}
-DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS}
-DCMAKE_C_FLAGS=${CMAKE_C_FLAGS}
-DCMAKE_INSTALL_PREFIX=${GFLAGS_INSTALL_DIR}
-DCMAKE_POSITION_INDEPENDENT_CODE=ON
-DBUILD_TESTING=OFF
-DCMAKE_BUILD_TYPE=Release
${EXTERNAL_OPTIONAL_ARGS}
CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=${GFLAGS_INSTALL_DIR}
-DCMAKE_POSITION_INDEPENDENT_CODE:BOOL=ON
-DCMAKE_BUILD_TYPE:STRING=Release
......
......@@ -34,16 +34,17 @@ ExternalProject_Add(
PREFIX ${GLOG_SOURCES_DIR}
UPDATE_COMMAND ""
CMAKE_ARGS -DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER}
CMAKE_ARGS -DCMAKE_C_COMPILER=${CMAKE_C_COMPILER}
CMAKE_ARGS -DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS}
CMAKE_ARGS -DCMAKE_C_FLAGS=${CMAKE_C_FLAGS}
CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${GLOG_INSTALL_DIR}
CMAKE_ARGS -DCMAKE_INSTALL_LIBDIR=${GLOG_INSTALL_DIR}/lib
CMAKE_ARGS -DCMAKE_POSITION_INDEPENDENT_CODE=ON
CMAKE_ARGS -DWITH_GFLAGS=ON
CMAKE_ARGS -Dgflags_DIR=${GFLAGS_INSTALL_DIR}/lib/cmake/gflags
CMAKE_ARGS -DBUILD_TESTING=OFF
CMAKE_ARGS -DCMAKE_BUILD_TYPE=Release
-DCMAKE_C_COMPILER=${CMAKE_C_COMPILER}
-DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS}
-DCMAKE_C_FLAGS=${CMAKE_C_FLAGS}
-DCMAKE_INSTALL_PREFIX=${GLOG_INSTALL_DIR}
-DCMAKE_INSTALL_LIBDIR=${GLOG_INSTALL_DIR}/lib
-DCMAKE_POSITION_INDEPENDENT_CODE=ON
-DWITH_GFLAGS=ON
-Dgflags_DIR=${GFLAGS_INSTALL_DIR}/lib/cmake/gflags
-DBUILD_TESTING=OFF
-DCMAKE_BUILD_TYPE=Release
${EXTERNAL_OPTIONAL_ARGS}
CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=${GLOG_INSTALL_DIR}
-DCMAKE_INSTALL_LIBDIR:PATH=${GLOG_INSTALL_DIR}/lib
-DCMAKE_POSITION_INDEPENDENT_CODE:BOOL=ON
......
......@@ -48,15 +48,16 @@ IF(WITH_TESTING)
PREFIX ${GTEST_SOURCES_DIR}
UPDATE_COMMAND ""
CMAKE_ARGS -DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER}
CMAKE_ARGS -DCMAKE_C_COMPILER=${CMAKE_C_COMPILER}
CMAKE_ARGS -DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS}
CMAKE_ARGS -DCMAKE_C_FLAGS=${CMAKE_C_FLAGS}
CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${GTEST_INSTALL_DIR}
CMAKE_ARGS -DCMAKE_POSITION_INDEPENDENT_CODE=ON
CMAKE_ARGS -DBUILD_GMOCK=ON
CMAKE_ARGS -Dgtest_disable_pthreads=ON
CMAKE_ARGS -Dgtest_force_shared_crt=ON
CMAKE_ARGS -DCMAKE_BUILD_TYPE=Release
-DCMAKE_C_COMPILER=${CMAKE_C_COMPILER}
-DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS}
-DCMAKE_C_FLAGS=${CMAKE_C_FLAGS}
-DCMAKE_INSTALL_PREFIX=${GTEST_INSTALL_DIR}
-DCMAKE_POSITION_INDEPENDENT_CODE=ON
-DBUILD_GMOCK=ON
-Dgtest_disable_pthreads=ON
-Dgtest_force_shared_crt=ON
-DCMAKE_BUILD_TYPE=Release
${EXTERNAL_OPTIONAL_ARGS}
CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=${GTEST_INSTALL_DIR}
-DCMAKE_POSITION_INDEPENDENT_CODE:BOOL=ON
-DCMAKE_BUILD_TYPE:STRING=Release
......
......@@ -29,30 +29,41 @@ IF(NOT ${CBLAS_FOUND})
"${CBLAS_INSTALL_DIR}/lib/${CMAKE_STATIC_LIBRARY_PREFIX}openblas${CMAKE_STATIC_LIBRARY_SUFFIX}"
CACHE FILEPATH "openblas library." FORCE)
IF(APPLE)
SET(OPENBLAS_CC "${CMAKE_C_COMPILER} -isysroot ${CMAKE_OSX_SYSROOT}")
SET(COMMON_ARGS CC=${OPENBLAS_CC} NO_SHARED=1 NO_LAPACK=1 libs)
ELSE()
SET(COMMON_ARGS CC=${CMAKE_C_COMPILER} NO_SHARED=1 NO_LAPACK=1 libs)
ENDIF()
SET(OPENBLAS_CC "${CMAKE_C_COMPILER}")
IF(CMAKE_CROSSCOMPILING)
SET(OPTIONAL_ARGS HOSTCC=${HOST_C_COMPILER})
GET_FILENAME_COMPONENT(CROSS_SUFFIX ${CMAKE_C_COMPILER} DIRECTORY)
SET(CROSS_SUFFIX ${CROSS_SUFFIX}/)
IF(ANDROID)
# arm_soft_fp_abi branch of OpenBLAS to support softfp
# https://github.com/xianyi/OpenBLAS/tree/arm_soft_fp_abi
SET(OPENBLAS_COMMIT "b5c96fcfcdc82945502a2303116a64d89985daf5")
IF(ANDROID_ABI MATCHES "^armeabi(-v7a)?$")
SET(TARGET "ARMV7")
SET(OPTIONAL_ARGS ${OPTIONAL_ARGS} TARGET=ARMV7 ARM_SOFTFP_ABI=1 USE_THREAD=0)
ELSEIF(ANDROID_ABI STREQUAL "arm64-v8a")
SET(TARGET "ARMV8")
SET(OPTIONAL_ARGS ${OPTIONAL_ARGS} TARGET=ARMV8 BINARY=64 USE_THREAD=0)
ENDIF()
ELSEIF(IOS)
# FIXME(liuyiqun): support multiple architectures
SET(OPENBLAS_COMMIT "b5c96fcfcdc82945502a2303116a64d89985daf5")
SET(OPENBLAS_CC "${OPENBLAS_CC} ${CMAKE_C_FLAGS} -isysroot ${CMAKE_OSX_SYSROOT}")
IF(CMAKE_OSX_ARCHITECTURES MATCHES "armv7")
SET(OPENBLAS_CC "${OPENBLAS_CC} -arch armv7")
SET(OPTIONAL_ARGS ${OPTIONAL_ARGS} TARGET=ARMV7 ARM_SOFTFP_ABI=1 USE_THREAD=0)
ELSEIF(CMAKE_OSX_ARCHITECTURES MATCHES "arm64")
SET(OPENBLAS_CC "${OPENBLAS_CC} -arch arm64")
SET(OPTIONAL_ARGS ${OPTIONAL_ARGS} TARGET=ARMV8 BINARY=64 USE_THREAD=0 CROSS_SUFFIX=${CROSS_SUFFIX})
ENDIF()
SET(OPTIONAL_ARGS HOSTCC=${HOST_C_COMPILER} TARGET=${TARGET} ARM_SOFTFP_ABI=1 USE_THREAD=0)
ELSEIF(RPI)
# use hardfp
SET(OPENBLAS_COMMIT "v0.2.20")
SET(OPTIONAL_ARGS HOSTCC=${HOST_C_COMPILER} TARGET=ARMV7 USE_THREAD=0)
SET(OPTIONAL_ARGS ${OPTIONAL_ARGS} TARGET=ARMV7 USE_THREAD=0)
ENDIF()
ELSE()
IF(APPLE)
SET(OPENBLAS_CC "${CMAKE_C_COMPILER} -isysroot ${CMAKE_OSX_SYSROOT}")
ENDIF()
SET(OPENBLAS_COMMIT "v0.2.20")
SET(OPTIONAL_ARGS "")
IF(CMAKE_SYSTEM_PROCESSOR MATCHES "^x86(_64)?$")
......@@ -60,6 +71,8 @@ IF(NOT ${CBLAS_FOUND})
ENDIF()
ENDIF()
SET(COMMON_ARGS CC=${OPENBLAS_CC} NO_SHARED=1 NO_LAPACK=1 libs)
ExternalProject_Add(
extern_openblas
${EXTERNAL_PROJECT_LOG_ARGS}
......
......@@ -173,7 +173,8 @@ FUNCTION(build_protobuf TARGET_NAME BUILD_FOR_HOST)
"-DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS}"
"-DCMAKE_C_FLAGS=${CMAKE_C_FLAGS}"
"-Dprotobuf_WITH_ZLIB=ON"
"-DZLIB_ROOT:FILEPATH=${ZLIB_ROOT}")
"-DZLIB_ROOT:FILEPATH=${ZLIB_ROOT}"
${EXTERNAL_OPTIONAL_ARGS})
SET(OPTIONAL_CACHE_ARGS "-DZLIB_ROOT:STRING=${ZLIB_ROOT}")
ENDIF()
......
......@@ -12,16 +12,17 @@
# See the License for the specific language governing permissions and
# limitations under the License.
INCLUDE(ExternalProject)
IF(NOT WITH_PYTHON)
return()
ENDIF()
INCLUDE(python_module)
FIND_PACKAGE(PythonInterp 2.7)
IF(WITH_PYTHON)
FIND_PACKAGE(PythonLibs 2.7)
# Fixme: Maybe find a static library. Get SHARED/STATIC by FIND_PACKAGE.
ADD_LIBRARY(python SHARED IMPORTED GLOBAL)
SET_PROPERTY(TARGET python PROPERTY IMPORTED_LOCATION ${PYTHON_LIBRARIES})
ENDIF(WITH_PYTHON)
FIND_PACKAGE(PythonLibs 2.7)
# Fixme: Maybe find a static library. Get SHARED/STATIC by FIND_PACKAGE.
ADD_LIBRARY(python SHARED IMPORTED GLOBAL)
SET_PROPERTY(TARGET python PROPERTY IMPORTED_LOCATION ${PYTHON_LIBRARIES})
SET(py_env "")
IF(PYTHONINTERP_FOUND)
......@@ -36,9 +37,5 @@ IF(PYTHONINTERP_FOUND)
ENDIF()
ENDIF(PYTHONINTERP_FOUND)
IF(WITH_PYTHON)
INCLUDE_DIRECTORIES(${PYTHON_INCLUDE_DIR})
INCLUDE_DIRECTORIES(${PYTHON_NUMPY_INCLUDE_DIR})
ELSE()
SET(PYTHON_LIBRARIES "")
ENDIF()
INCLUDE_DIRECTORIES(${PYTHON_INCLUDE_DIR})
INCLUDE_DIRECTORIES(${PYTHON_NUMPY_INCLUDE_DIR})
......@@ -12,6 +12,10 @@
# See the License for the specific language governing permissions and
# limitations under the License.
IF(NOT WITH_SWIG_PY)
return()
ENDIF()
FIND_PACKAGE(SWIG)
IF(NOT SWIG_FOUND)
......
......@@ -16,25 +16,14 @@ INCLUDE(ExternalProject)
SET(WARPCTC_SOURCES_DIR ${THIRD_PARTY_PATH}/warpctc)
SET(WARPCTC_INSTALL_DIR ${THIRD_PARTY_PATH}/install/warpctc)
SET(WARPCTC_INCLUDE_DIR "${WARPCTC_INSTALL_DIR}/include" CACHE PATH "Warp-ctc Directory" FORCE)
INCLUDE_DIRECTORIES(${WARPCTC_INCLUDE_DIR})
SET(WARPCTC_LIB_DIR "${WARPCTC_INSTALL_DIR}/lib" CACHE PATH "Warp-ctc Library Directory" FORCE)
IF(WIN32)
SET(WARPCTC_LIBRARIES
"${WARPCTC_INSTALL_DIR}/lib/warpctc.dll" CACHE FILEPATH "Warp-ctc Library" FORCE)
ELSE(WIN32)
IF(APPLE)
SET(_warpctc_SHARED_SUFFIX dylib)
ELSE(APPLE)
SET(_warpctc_SHARED_SUFFIX so)
ENDIF(APPLE)
SET(WARPCTC_LIBRARIES
"${WARPCTC_INSTALL_DIR}/lib/libwarpctc.${_warpctc_SHARED_SUFFIX}" CACHE FILEPATH "Warp-ctc Library" FORCE)
ENDIF(WIN32)
SET(WARPCTC_INCLUDE_DIR "${WARPCTC_INSTALL_DIR}/include"
CACHE PATH "Warp-ctc Directory" FORCE)
# Used in unit test test_WarpCTCLayer
SET(WARPCTC_LIB_DIR "${WARPCTC_INSTALL_DIR}/lib"
CACHE PATH "Warp-ctc Library Directory" FORCE)
SET(WARPCTC_LIBRARIES "${WARPCTC_INSTALL_DIR}/lib/libwarpctc${CMAKE_SHARED_LIBRARY_SUFFIX}"
CACHE FILEPATH "Warp-ctc Library" FORCE)
IF(CMAKE_CXX_COMPILER_ID STREQUAL "Clang" OR CMAKE_CXX_COMPILER_ID STREQUAL "AppleClang" )
SET(USE_OMP OFF)
......@@ -49,22 +38,26 @@ ExternalProject_Add(
PREFIX ${WARPCTC_SOURCES_DIR}
UPDATE_COMMAND ""
CMAKE_ARGS -DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER}
CMAKE_ARGS -DCMAKE_C_COMPILER=${CMAKE_C_COMPILER}
CMAKE_ARGS -DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS}
CMAKE_ARGS -DCMAKE_C_FLAGS=${CMAKE_C_FLAGS}
CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${WARPCTC_INSTALL_DIR}
CMAKE_ARGS -DWITH_GPU=${WITH_GPU}
CMAKE_ARGS -DWITH_OMP=${USE_OMP}
CMAKE_ARGS -DWITH_TORCH=OFF
CMAKE_ARGS -DCMAKE_DISABLE_FIND_PACKAGE_Torch=ON
CMAKE_ARGS -DBUILD_SHARED=ON
CMAKE_ARGS -DCMAKE_POSITION_INDEPENDENT_CODE=ON
CMAKE_ARGS -DCMAKE_BUILD_TYPE=Release
-DCMAKE_C_COMPILER=${CMAKE_C_COMPILER}
-DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS}
-DCMAKE_C_FLAGS=${CMAKE_C_FLAGS}
-DCMAKE_INSTALL_PREFIX=${WARPCTC_INSTALL_DIR}
-DWITH_GPU=${WITH_GPU}
-DWITH_OMP=${USE_OMP}
-DWITH_TORCH=OFF
-DCMAKE_DISABLE_FIND_PACKAGE_Torch=ON
-DBUILD_SHARED=ON
-DCMAKE_POSITION_INDEPENDENT_CODE=ON
-DCMAKE_BUILD_TYPE=Release
${EXTERNAL_OPTIONAL_ARGS}
CMAKE_CACHE_ARGS -DCMAKE_BUILD_TYPE:STRING=Release
-DCMAKE_POSITION_INDEPENDENT_CODE:BOOL=ON
-DCMAKE_INSTALL_PREFIX:PATH=${WARPCTC_INSTALL_DIR}
)
MESSAGE(STATUS "warp-ctc library: ${WARPCTC_LIBRARIES}")
INCLUDE_DIRECTORIES(${WARPCTC_INCLUDE_DIR})
ADD_LIBRARY(warpctc STATIC IMPORTED GLOBAL)
SET_PROPERTY(TARGET warpctc PROPERTY IMPORTED_LOCATION ${WARPCTC_LIBRARIES})
ADD_DEPENDENCIES(warpctc extern_warpctc)
......
......@@ -34,15 +34,16 @@ ExternalProject_Add(
GIT_TAG "v1.2.8"
PREFIX ${ZLIB_SOURCES_DIR}
UPDATE_COMMAND ""
CMAKE_ARGS -DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER}
CMAKE_ARGS -DCMAKE_C_COMPILER=${CMAKE_C_COMPILER}
CMAKE_ARGS -DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS}
CMAKE_ARGS -DCMAKE_C_FLAGS=${CMAKE_C_FLAGS}
CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${ZLIB_INSTALL_DIR}
CMAKE_ARGS -DBUILD_SHARED_LIBS=OFF
CMAKE_ARGS -DCMAKE_POSITION_INDEPENDENT_CODE=ON
CMAKE_ARGS -DCMAKE_MACOSX_RPATH=ON
CMAKE_ARGS -DCMAKE_BUILD_TYPE=Release
-DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER}
-DCMAKE_C_FLAGS=${CMAKE_C_FLAGS}
-DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS}
-DCMAKE_INSTALL_PREFIX=${ZLIB_INSTALL_DIR}
-DBUILD_SHARED_LIBS=OFF
-DCMAKE_POSITION_INDEPENDENT_CODE=ON
-DCMAKE_MACOSX_RPATH=ON
-DCMAKE_BUILD_TYPE=Release
${EXTERNAL_OPTIONAL_ARGS}
CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=${ZLIB_INSTALL_DIR}
-DCMAKE_POSITION_INDEPENDENT_CODE:BOOL=ON
-DCMAKE_BUILD_TYPE:STRING=Release
......
......@@ -128,8 +128,10 @@ set(GPU_COMMON_FLAGS
)
if (APPLE)
# On Mac OS X build fat binaries with x86_64 architectures by default.
set (CMAKE_OSX_ARCHITECTURES "x86_64" CACHE STRING "Build architectures for OSX" FORCE)
if(NOT CMAKE_CROSSCOMPILING)
# On Mac OS X build fat binaries with x86_64 architectures by default.
set (CMAKE_OSX_ARCHITECTURES "x86_64" CACHE STRING "Build architectures for OSX" FORCE)
endif()
else()
set(GPU_COMMON_FLAGS
-Wall
......
......@@ -24,11 +24,10 @@ IF(WIN32)
SET(HOST_SYSTEM "win32")
ELSE(WIN32)
IF(APPLE)
EXEC_PROGRAM (sw_vers ARGS -productVersion OUTPUT_VARIABLE MACOSX_VERSION)
STRING(REGEX MATCH "[0-9]+.[0-9]+" VERSION "${MACOSX_VERSION}")
SET(MACOS_VERSION ${VERSION})
SET(HOST_SYSTEM "macosx")
IF(NOT DEFINED ENV{MACOSX_DEPLOYMENT_TARGET})
EXEC_PROGRAM(sw_vers ARGS -productVersion OUTPUT_VARIABLE HOST_SYSTEM_VERSION)
STRING(REGEX MATCH "[0-9]+.[0-9]+" MACOS_VERSION "${HOST_SYSTEM_VERSION}")
IF(NOT DEFINED $ENV{MACOSX_DEPLOYMENT_TARGET})
# Set cache variable - end user may change this during ccmake or cmake-gui configure.
SET(CMAKE_OSX_DEPLOYMENT_TARGET ${MACOS_VERSION} CACHE STRING
"Minimum OS X version to target for deployment (at runtime); newer APIs weak linked. Set to empty string for default value.")
......@@ -49,6 +48,8 @@ ELSE(WIN32)
ELSEIF(LINUX_ISSUE MATCHES "Fedora")
SET(HOST_SYSTEM "fedora")
ENDIF()
STRING(REGEX MATCH "(([0-9]+)\\.)+([0-9]+)" HOST_SYSTEM_VERSION "${LINUX_ISSUE}")
ENDIF(EXISTS "/etc/issue")
IF(EXISTS "/etc/redhat-release")
......@@ -70,7 +71,7 @@ CMAKE_HOST_SYSTEM_INFORMATION(RESULT CPU_CORES QUERY NUMBER_OF_LOGICAL_CORES)
MARK_AS_ADVANCED(HOST_SYSTEM CPU_CORES)
MESSAGE(STATUS "Found Paddle host system: ${HOST_SYSTEM}")
MESSAGE(STATUS "Found Paddle host system: ${HOST_SYSTEM}, version: ${HOST_SYSTEM_VERSION}")
MESSAGE(STATUS "Found Paddle host system's CPU: ${CPU_CORES} cores")
# configuration for cross-compiling
......@@ -82,6 +83,9 @@ IF(DEFINED CMAKE_SYSTEM_NAME)
ELSEIF(${CMAKE_SYSTEM_NAME} STREQUAL "RPi")
SET(RPI TRUE)
INCLUDE(cross_compiling/raspberry_pi)
ELSEIF(${CMAKE_SYSTEM_NAME} STREQUAL "iOS")
SET(IOS TRUE)
INCLUDE(cross_compiling/ios)
ENDIF()
ENDIF()
......
......@@ -25,7 +25,9 @@ function(target_circle_link_libraries TARGET_NAME)
endif()
endforeach()
if("${CMAKE_CXX_COMPILER_ID}" STREQUAL "Clang" OR "${CMAKE_CXX_COMPILER_ID}" STREQUAL "AppleClang")
list(APPEND LIBS "-undefined dynamic_lookup")
if(IOS AND NOT IOS_ENABLE_BITCODE)
list(APPEND LIBS "-undefined dynamic_lookup")
endif()
endif()
list(REVERSE libsInArgn)
target_link_libraries(${TARGET_NAME}
......
......@@ -3,7 +3,7 @@
## Ingredients
As our design principle is starting from the essence: how could we
allow users to express and solve their problems at neural networks.
allow users to express and solve their problems as neural networks.
Some essential concepts that our API have to provide include:
1. A *topology* is an expression of *layers*.
......@@ -233,7 +233,7 @@ paddle.dist_train(model,
num_parameter_servers=15)
```
The pseudo code if `paddle.dist_train` is as follows:
The pseudo code of `paddle.dist_train` is as follows:
```python
def dist_train(topology, parameters, trainer, reader, ...):
......
## Auto Gradient Checker Design
## Backgraound:
- Operator forward computing is easy to check if the result is right because it has a clear definition. **But** backpropagation is a notoriously difficult algorithm to debug and get right:
- 1. you should get the right backpropagation formula according to the forward computation.
- 2. you should implement it right in CPP.
- 3. it's difficult to prepare test data.
- Generally, it is easy to check whether the forward computation of an Operator is correct or not. However, backpropagation is a notoriously difficult algorithm to debug and get right:
1. you should get the right backpropagation formula according to the forward computation.
2. you should implement it right in CPP.
3. it's difficult to prepare test data.
- Auto gradient check gets a numeric gradient by forward Operator and use it as a reference of the backward Operator's result. It has several advantages:
- 1. numeric gradient checker only need forward operator.
- 2. user only need to prepare the input data for forward Operator.
- Auto gradient checking gets a numerical gradient by forward Operator and use it as a reference of the backward Operator's result. It has several advantages:
1. numerical gradient checker only need forward operator.
2. user only need to prepare the input data for forward Operator.
## Mathematical Theory
The following two document from stanford has a detailed explanation of how to get numeric gradient and why it's useful.
The following two document from Stanford has a detailed explanation of how to get numerical gradient and why it's useful.
- [Gradient checking and advanced optimization(en)](http://deeplearning.stanford.edu/wiki/index.php/Gradient_checking_and_advanced_optimization)
- [Gradient checking and advanced optimization(cn)](http://ufldl.stanford.edu/wiki/index.php/%E6%A2%AF%E5%BA%A6%E6%A3%80%E9%AA%8C%E4%B8%8E%E9%AB%98%E7%BA%A7%E4%BC%98%E5%8C%96)
......@@ -20,7 +20,7 @@ The following two document from stanford has a detailed explanation of how to ge
## Numeric Gradient Implementation
### Python Interface
```python
def get_numeric_gradient(op,
def get_numerical_gradient(op,
input_values,
output_name,
input_to_check,
......@@ -30,13 +30,13 @@ def get_numeric_gradient(op,
Get Numeric Gradient for an operator's input.
:param op: C++ operator instance, could be an network
:param input_values: The input variables. Should be an dictionary, key is
variable name. Value is numpy array.
:param input_values: The input variables. Should be an dictionary, whose key is
variable name, and value is numpy array.
:param output_name: The final output variable name.
:param input_to_check: The input variable need to get gradient.
:param input_to_check: The input variable with respect to which to compute the gradient.
:param delta: The perturbation value for numeric gradient method. The
smaller delta is, the more accurate result will get. But if that delta is
too small, it could occur numerical stability problem.
too small, it will suffer from numerical stability problem.
:param local_scope: The local scope used for get_numeric_gradient.
:return: The gradient array in numpy format.
"""
......@@ -45,28 +45,28 @@ def get_numeric_gradient(op,
### Explaination:
- Why need `output_name`
- One Operator may have multiple Output, you can get independent gradient from each Output. So user should set one output to calculate.
- An Operator may have multiple Output, one can get independent gradient from each Output. So caller should specify the name of the output variable.
- Why need `input_to_check`
- One operator may have multiple inputs. Gradient Op can calculate the gradient of these Inputs at the same time. But Numeric Gradient needs to calculate them one by one. So `get_numeric_gradient` is designed to calculate the gradient for one input. If you need to compute multiple inputs, you can call `get_numeric_gradient` multiple times.
- One operator may have multiple inputs. Gradient Op can calculate the gradient of these inputs at the same time. But Numeric Gradient needs to calculate them one by one. So `get_numeric_gradient` is designed to calculate the gradient for one input. If you need to compute multiple inputs, you can call `get_numeric_gradient` multiple times.
### Core Algorithm Implementation
```python
# we only compute gradient of one element each time.
# we use a for loop to compute the gradient of every element.
# we only compute gradient of one element a time.
# we use a for loop to compute the gradient of each element.
for i in xrange(tensor_size):
# get one input element throw it's index i.
# get one input element by its index i.
origin = tensor_to_check.get_float_element(i)
# add delta to it, run op and then get the sum of the result tensor.
# add delta to it, run op and then get the new value of the result tensor.
x_pos = origin + delta
tensor_to_check.set_float_element(i, x_pos)
y_pos = get_output()
# plus delta to this element, run op and get the sum of the result tensor.
# plus delta to this element, run op and get the new value of the result tensor.
x_neg = origin - delta
tensor_to_check.set_float_element(i, x_neg)
y_neg = get_output()
......@@ -85,15 +85,15 @@ def get_numeric_gradient(op,
Each Operator Kernel has three kinds of Gradient:
- 1. Numeric Gradient
- 2. CPU Operator Gradient
- 3. GPU Operator Gradient(if supported)
1. Numerical gradient
2. CPU kernel gradient
3. GPU kernel gradient (if supported)
Numeric Gradient Only relies on forward Operator. So we use Numeric Gradient as the reference value.
The numerical gradient only relies on forward Operator. So we use the numerical gradient as the reference value. And the gradient checking is performed in the following three steps:
- 1. calculate the numeric gradient.
- 2. calculate CPU kernel Gradient with the backward Operator and compare it with the numeric gradient.
- 3. calculate GPU kernel Gradient with the backward Operator and compare it with the numeric gradient.(if support GPU)
1. calculate the numerical gradient
2. calculate CPU kernel gradient with the backward Operator and compare it with the numerical gradient
3. calculate GPU kernel gradient with the backward Operator and compare it with the numeric gradient (if supported)
#### Python Interface
......@@ -110,8 +110,8 @@ Numeric Gradient Only relies on forward Operator. So we use Numeric Gradient as
:param forward_op: used to create backward_op
:param input_vars: numpy value of input variable. The following
computation will use these variables.
:param inputs_to_check: inputs var names that should check gradient.
:param output_name: output name that used to
:param inputs_to_check: the input variable with respect to which to compute the gradient.
:param output_name: The final output variable name.
:param max_relative_error: The relative tolerance parameter.
:param no_grad_set: used when create backward ops
:param only_cpu: only compute and check gradient on cpu kernel.
......@@ -120,24 +120,24 @@ Numeric Gradient Only relies on forward Operator. So we use Numeric Gradient as
```
### How to check if two numpy array is close enough?
if `abs_numeric_grad` is nearly zero, then use abs error for numeric_grad, not relative
if `abs_numerical_grad` is nearly zero, then use abs error for numerical_grad
```python
numeric_grad = ...
numerical_grad = ...
operator_grad = numpy.array(scope.find_var(grad_var_name(name)).get_tensor())
abs_numeric_grad = numpy.abs(numeric_grad)
# if abs_numeric_grad is nearly zero, then use abs error for numeric_grad, not relative
abs_numerical_grad = numpy.abs(numerical_grad)
# if abs_numerical_grad is nearly zero, then use abs error for numeric_grad, not relative
# error.
abs_numeric_grad[abs_numeric_grad < 1e-3] = 1
abs_numerical_grad[abs_numerical_grad < 1e-3] = 1
diff_mat = numpy.abs(abs_numeric_grad - operator_grad) / abs_numeric_grad
diff_mat = numpy.abs(abs_numerical_grad - operator_grad) / abs_numerical_grad
max_diff = numpy.max(diff_mat)
```
#### Notes:
1,The Input data for auto gradient checker should be reasonable to avoid numeric problem.
The Input data for auto gradient checker should be reasonable to avoid numerical stability problem.
#### Refs:
......
......@@ -53,12 +53,12 @@ Let's explain using an example. Suppose that we are going to compose the FC usi
```python
def operator.mul(X1, X2):
O = Var()
paddle.cpp.create_operator("mul", input={X1, Y1], output=O)
paddle.cpp.create_operator("mul", input={X1, Y1}, output=O)
return O
def operator.add(X1, X2):
O = Var()
paddle.cpp.create_operator("add", input={X1, X2], output=O)
paddle.cpp.create_operator("add", input={X1, X2}, output=O)
return O
```
......
......@@ -56,7 +56,7 @@ For each parameter, like W and b created by `layer.fc`, marked as double circles
## Block and Graph
The word block and graph are interchangable in the desgin of PaddlePaddle. A [Block[(https://github.com/PaddlePaddle/Paddle/pull/3708) is a metaphore of the code and local variables in a pair of curly braces in programming languages, where operators are like statements or instructions. A graph of operators and variables is a representation of the block.
The word block and graph are interchangable in the desgin of PaddlePaddle. A [Block](https://github.com/PaddlePaddle/Paddle/pull/3708) is a metaphore of the code and local variables in a pair of curly braces in programming languages, where operators are like statements or instructions. A graph of operators and variables is a representation of the block.
A Block keeps operators in an array `BlockDesc::ops`
......@@ -67,4 +67,4 @@ message BlockDesc {
}
```
in the order that there appear in user programs, like the Python program at the beginning of this article. We can imagine that in `ops`, we have some forward operators, followed by some gradient operators, and then some optimization operators.
in the order that they appear in user programs, like the Python program at the beginning of this article. We can imagine that in `ops`, we have some forward operators, followed by some gradient operators, and then some optimization operators.
# Design Doc: The C++ Class `Parameters`
`Parameters` is a concept we designed in Paddle V2 API. `Parameters` is a container of parameters, and make Paddle can shared parameter between topologies. We described usages of `Parameter` in [api.md](./api.md).
`Parameters` is a concept we designed in PaddlePaddle V2 API. `Parameters` is a container of parameters, which makes PaddlePaddle capable of sharing parameter between topologies. We described usages of `Parameter` in [api.md](./api.md).
We used Python to implement Parameters when designing V2 API before. There are several defects for current implementation:
We used Python to implement Parameters when designing V2 API before. There are several defects for the current implementation:
* We just use `memcpy` to share Parameters between topologies, but this is very inefficient.
* We did not implement share Parameters while training. We just trigger `memcpy` when start training.
* We did not support sharing Parameters while training. We just trigger `memcpy` when start training.
It is necessary that we implement Parameters in CPP side. However, it could be a code refactoring for Paddle, because Paddle was designed for training only one topology before, i.e., each GradientMachine contains its Parameter as a data member. In current Paddle implementation, there are three concepts associated with `Parameters`:
It is necessary that we implement Parameters in CPP side. However, it could result a code refactoring for PaddlePaddle, because PaddlePaddle was designed for training only one topology before, i.e., each GradientMachine contains its Parameter as a data member. In current PaddlePaddle implementation, there are three concepts associated with `Parameters`:
1. `paddle::Parameter`. A `Parameters` is a container for `paddle::Parameter`.
It is evident that we should use `paddle::Parameter` when developing `Parameters`.
However, the `Parameter` class contains many functions and does not have a clear interface.
It contains `create/store Parameter`, `serialize/deserialize`, `optimize(i.e SGD)`, `randomize/zero`.
When we developing `Parameters`, we only use `create/store Parameter` functionality.
We should extract functionalities of Parameter into many classes to clean Paddle CPP implementation.
We should extract functionalities of Parameter into many classes to clean PaddlePaddle CPP implementation.
2. `paddle::GradientMachine` and its sub-classes, e.g., `paddle::MultiGradientMachine`, `paddle::NeuralNetwork`.
We should pass `Parameters` to `paddle::GradientMachine` when `forward/backward` to avoid `memcpy` between topologies.
......@@ -24,7 +24,7 @@ Also, we should handle multi-GPU/CPU training, because `forward` and `backward`
So `Parameters` should be used by `paddle::ParameterUpdater`, and `paddle::ParameterUpdater` should optimize `Parameters` (by SGD).
The step by step approach for implementation Parameters in Paddle C++ core is listed below. Each step should be a PR and could be merged into Paddle one by one.
The step by step approach for implementation Parameters in PaddlePaddle C++ core is listed below. Each step should be a PR and could be merged into PaddlePaddle one by one.
1. Clean `paddle::Parameter` interface. Extract the functionalities of `paddle::Parameter` to prepare for the implementation of Parameters.
......
# Design Doc: ProgramDesc
The basic structure of a PaddlePaddle program is some nested blocks, as a C++ or Java program.
As described in [graph.md](./graph.md), the first five lines of the following PaddlePaddle program
```python
x = layer.data("images")
l = layer.data("label")
y = layer.fc(x)
cost = layer.mse(y, l)
optimize(cost)
train(cost, reader=mnist.train())
```
generates, or compiles, a PaddelPaddle program, which is represented by the following protobuf message:
```protobuf
message ProgramDesc {
repeated BlockDesc blocks = 1;
}
message BlockDesc {
required int32 parent = 1;
repeated VarDesc vars = 2;
repeated OpDesc ops = 3;
}
message OpDesc {
AttrDesc attrs = 1;
...
}
message AttrDesc {
required AttrType type = 1;
// index into ProgramDesc::blocks when type==BLOCK
optional int32 block = 2;
...
}
```
When each of the first five lines runs, related Python function, e.g., `layer.fc`, calls C++ InferShape functions. This InferShape function needs to access the properties of VarDesc's accessed by the current OpDesc. These VarDesc's might not be defined in the current block, but in some ancestor blocks. This requires that we can trace the parent of a block.
A nested block is often an attribute of an operator, most likely, an IfElseOp or a WhileOp. In above solution, all blocks are in `ProgramDesc::blocks`, this implicitly assigns a zero-based ID to each block -- the index of the block in `ProgramDesc::blocks`. So that `AttrDesc::block` could be an integer block ID.
With this design, the InferShape function should take the following parameters:
```c++
void InferShape(int current_block,
int current_operator,
ProgramDesc* program // might change VarDesc values.
) {
...
}
```
where
- `current_block` indices into `ProgramDesc::blocks`,
- `current_operator` indices into `BlockDesc::ops`.
......@@ -52,7 +52,7 @@ Here are valid outputs:
# a mini batch of three data items, each data item is a list (single column).
[([1,1,1],),
([2,2,2],),
([3,3,3],),
([3,3,3],)]
```
Please note that each item inside the list must be a tuple, below is an invalid output:
......
# Design Doc: Refactorization Overview
The goal of refactorizaiton include:
1. Make it easy for external contributors to write new elementory computaiton operations.
1. Make the codebase clean and readable.
1. Introduce a new design of computation representation -- a computation graph of operators and variables.
1. The graph representation helps implementing auto-scalable and auto fault recoverable distributed computing.
## Computation Graphs
1. PaddlePaddle represent the computation, training and inference of DL models, by computation graphs.
1. Please dig into [computation graphs](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/graph.md) for a solid example.
1. Users write Python programs to describe the graphs and run it (locally or remotely).
1. A graph is composed of *variables* and *operators*.
1. The description of graphs must be able to be serialized/deserialized, so it
1. could to be sent to the cloud for distributed execution, and
1. be sent to clients for mobile or enterprise deployment.
1. The Python program do
1. *compilation*: runs a Python program to generate a protobuf message representation of the graph and send it to
1. the C++ library `libpaddle.so` for local execution,
1. the master process of a distributed training job for training, or
1. the server process of a Kubernetes serving job for distributed serving.
1. *execution*: according to the protobuf message, constructs instances of class `Variable` and `OperatorBase`, and run them.
## Description and Realization
At compile time, the Python program generates protobuf message representation of the graph, or the description of the graph.
At runtime, the C++ program realizes the graph and run it.
| | Representation (protobuf messages) | Realization (C++ class objects) |
|---|---|---|
|Data|[VarDesc](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/framework.proto#L107)|[Variable](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/variable.h#L24)|
|Operation|[OpDesc](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/framework.proto#L35)|[Operator](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/operator.h#L64)|
|Block|BlockDesc|Block|
The word *graph* is exchangable with *block* in this document. A graph represent computation steps and local variables as a C++/Java program block, or a pair of { and }.
## Compilation and Execution
1. Run an applicaton Python program to describe the graph. In particular,
1. create VarDesc to represent local/intermediate variables,
1. create operators and set attributes,
1. validate attribute values,
1. inference the type and the shape of variables,
1. plan for memory-reuse for variables,
1. generate backward and optimization part of the Graph.
1. possiblly split the graph for distributed training.
1. The invocation of `train` or `infer` in the application Python program:
1. create a new Scope instance in the [scope hierarchy](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/scope.md) for each run of a block,
1. realize local variables defined in the BlockDesc message in the new scope,
1. a scope is similar to the stack frame in programming languages,
1. create an instance of class `Block`, in which,
1. realize operators in the BlockDesc message,
1. run the Block by calling
1. `Block::Eval(vector<Variable>* targets)` for forward and backward computations, or
1. `Block::Eval(vector<Operator>* targets)` for optimization.
## Intermediate Representation (IR)
```text
Compile Time -> IR -> Runtime
```
### Benefit
- Optimization
```text
Compile Time -> IR -> Optimized IR -> Runtime
```
- Send automatically partitioned IR to different nodes.
- Automatic data parallel
```text
Compile Time
|-> Single GPU IR
|-> [trainer-IR-0, trainer-IR-1, pserver-IR]
|-> Node-0 (runs trainer-IR-0)
|-> Node-1 (runs trainer-IR-1)
|-> Node-2 (runs pserver-IR)
```
- Automatic model parallel (planned for future)
---
# Operator/OpWithKernel/OpKernel
![class_diagram](http://api.paddlepaddle.org/graphviz?dot=https://gist.githubusercontent.com/reyoung/53df507f6749762675dff3e7ce53372f/raw/49caf1fb70820fb4a6c217634317c9306f361f36/op_op_with_kern_class_diagram.dot)
---
# Operator
![class_diagram](http://api.paddlepaddle.org/graphviz?dot=https://gist.githubusercontent.com/reyoung/53df507f6749762675dff3e7ce53372f/raw/dd598e8f1976f5759f58af5e5ef94738a6b2e661/op.dot)
* `Operator` is the fundamental building block as the user interface.
* Operator stores input/output variable name, and attributes.
* The `InferShape` interface is used to infer output variable shapes by its input shapes.
* Use `Run` to compute `input variables` to `output variables`.
---
# OpWithKernel/Kernel
![class_diagram](http://api.paddlepaddle.org/graphviz?dot=https://gist.githubusercontent.com/reyoung/53df507f6749762675dff3e7ce53372f/raw/9d7f4eba185cf41c8e2fbfb40ae21890dbddcd39/op_with_kernel.dot)
* `OpWithKernel` inherits `Operator`.
* `OpWithKernel` contains a Kernel map.
* `OpWithKernel::Run` get device's kernel, and invoke `OpKernel::Compute`.
* `OpKernelKey` is the map key. Only device place now, but may be data type later.
---
# Why separate Kernel and Operator
* Separate GPU and CPU code.
* Make Paddle can run without GPU.
* Make one operator (which is user interface) can contain many implementations.
* Same mul op, different FP16, FP32 Kernel. different MKL, eigen kernel.
---
# Libraries for Kernel development
* `Eigen::Tensor` contains basic math and element-wise functions.
* Note that `Eigen::Tensor` has broadcast implementation.
* Limit number of `tensor.device(dev) = ` in your code.
* `thrust::tranform` and `std::transform`.
* `thrust` has the same API as C++ standard library. Using `transform` can quickly implement a customized elementwise kernel.
* `thrust` has more complex API, like `scan`, `reduce`, `reduce_by_key`.
* Hand-writing `GPUKernel` and `CPU` code
* Do not write `.h`. CPU Kernel should be in `.cc`. GPU kernel should be in `.cu`. (`GCC` cannot compile GPU code.)
---
# Operator Register
## Why register is necessary?
We need a method to build mappings between Op type names and Op classes.
## How to do the register?
Maintain a map, whose key is the type name and value is corresponding Op constructor.
---
# The Registry Map
### `OpInfoMap`
`op_type(string)` -> `OpInfo`
`OpInfo`:
- **`creator`**: The Op constructor.
- **`grad_op_type`**: The type of the gradient Op.
- **`proto`**: The Op's Protobuf, including inputs, outputs and required attributes.
- **`checker`**: Used to check attributes.
---
# Related Concepts
### Op_Maker
It's constructor takes `proto` and `checker`. They are compeleted during Op_Maker's construction. ([ScaleOpMaker](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/scale_op.cc#L37))
### Register Macros
```cpp
REGISTER_OP(op_type, op_class, op_maker_class, grad_op_type, grad_op_class)
REGISTER_OP_WITHOUT_GRADIENT(op_type, op_class, op_maker_class)
```
### `USE` Macros
make sure the registration process is executed and linked.
---
# Register Process
1. Write Op class, as well as its gradient Op class if there is.
2. Write Op maker class. In the constructor, describe its inputs, outputs, and attributes.
3. Invoke macro `REGISTER_OP`. The macro will
1. call maker class to complete `proto` and `checker`
2. with the completed `proto` and `checker`, build a new key-value pair in the `OpInfoMap`
4. Invoke `USE` macro in where the Op is used to make sure it is linked.
---
# Backward Module (1/2)
### Create Backward Operator
- Mapping from forwarding Op to backward Op
![backward](https://gist.githubusercontent.com/dzhwinter/a6fbd4623ee76c459f7f94591fd1abf0/raw/61026ab6e518e66bde66a889bc42557a1fccff33/backward.png)
---
# Backward Module (2/2)
### Build Backward Network
- **Input** graph of forwarding operators
- **Output** graph of backward operators
- **corner case in construction**
- shared variable => insert `Add` operator
- no gradient => insert `fill_zero_grad` operator
- recursive netOp => call `Backward` recursively
- RNN Op => recursively call `Backward` on stepnet
---
# Scope, Variable, Tensor
* `Tensor` is an n-dimension array with type.
* Only dims and data pointers are stored in `Tensor`.
* All operators on `Tensor` is written in `Operator` or global functions.
* variable length Tensor design [LoDTensor](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/lod_tensor.md)
* `Variable` is the inputs and outputs of an operator. Not just `Tensor`.
* step_scopes in RNN is a variable and not a tensor.
* `Scope` is where variables store at.
* map<string/*var name */, Variable>
* `Scope` has a hierarchical structure. The local scope can get variable from its parent scope.
---
# Block (in design)
## the difference with original RNNOp
- as an operator is more intuitive than `RNNOp`,
- offers new interface `Eval(targets)` to deduce the minimal block to `Run`,
- fits the compile-time/ runtime separation design.
- during the compilation, `SymbolTable` stores `VarDesc`s and `OpDesc`s and serialize to a `BlockDesc`
- when graph executes, a Block with `BlockDesc` passed in creates `Op` and `Var` then `Run`
---
# Milestone
- take Paddle/books as the main line, the requirement of the models motivates framework refactoring,
- model migration
- framework development gives **priority support** to model migration, for example,
- the MNIST demo needs a Python interface,
- the RNN models require the framework to support `LoDTensor`.
- determine some timelines,
- heavily-relied Ops need to be migrated first,
- different models can be migrated parallelly.
- improve the framework at the same time
- accept imperfection, concentrated on solving the specific problem at the right price.
---
# Control the migration quality
- compare the performance of migrated models with old ones.
- follow google C style
- build the automatic workflow of generating Python/C++ documentations
- the documentation of layers and ops should be written inside the code
- take the documentation quality into account when doing PR
- preview the documentations, read and improve them from users' perspective
# Paddle发行规范
# PaddlePaddle发行规范
Paddle使用git-flow branching model做分支管理,使用[Semantic Versioning](http://semver.org/)标准表示Paddle版本号。
PaddlePaddle使用git-flow branching model做分支管理,使用[Semantic Versioning](http://semver.org/)标准表示PaddlePaddle版本号。
Paddle每次发新的版本,遵循以下流程:
PaddlePaddle每次发新的版本,遵循以下流程:
1.`develop`分支派生出新的分支,分支名为`release/版本号`。例如,`release/0.10.0`
2. 将新分支的版本打上tag,tag为`版本号rc.Patch号`。第一个tag为`0.10.0rc1`,第二个为`0.10.0rc2`,依次类推。
......@@ -27,14 +27,14 @@ Paddle每次发新的版本,遵循以下流程:
需要注意的是:
* `release/版本号`分支一旦建立,一般不允许再从`develop`分支合入`release/版本号`。这样保证`release/版本号`分支功能的封闭,方便测试人员测试Paddle的行为。
* `release/版本号`分支一旦建立,一般不允许再从`develop`分支合入`release/版本号`。这样保证`release/版本号`分支功能的封闭,方便测试人员测试PaddlePaddle的行为。
*`release/版本号`分支存在的时候,如果有bugfix的行为,需要将bugfix的分支同时merge到`master`, `develop``release/版本号`这三个分支。
# Paddle 分支规范
# PaddlePaddle 分支规范
Paddle开发过程使用[git-flow](http://nvie.com/posts/a-successful-git-branching-model/)分支规范,并适应github的特性做了一些区别。
PaddlePaddle开发过程使用[git-flow](http://nvie.com/posts/a-successful-git-branching-model/)分支规范,并适应github的特性做了一些区别。
* Paddle的主版本库遵循[git-flow](http://nvie.com/posts/a-successful-git-branching-model/)分支规范。其中:
* PaddlePaddle的主版本库遵循[git-flow](http://nvie.com/posts/a-successful-git-branching-model/)分支规范。其中:
* `master`分支为稳定(stable branch)版本分支。每一个`master`分支的版本都是经过单元测试和回归测试的版本。
* `develop`分支为开发(develop branch)版本分支。每一个`develop`分支的版本都经过单元测试,但并没有经过回归测试。
* `release/版本号`分支为每一次Release时建立的临时分支。在这个阶段的代码正在经历回归测试。
......@@ -42,18 +42,18 @@ Paddle开发过程使用[git-flow](http://nvie.com/posts/a-successful-git-branch
* 其他用户的fork版本库并不需要严格遵守[git-flow](http://nvie.com/posts/a-successful-git-branching-model/)分支规范,但所有fork的版本库的所有分支都相当于特性分支。
* 建议,开发者fork的版本库使用`develop`分支同步主版本库的`develop`分支
* 建议,开发者fork的版本库中,再基于`develop`版本fork出自己的功能分支。
* 当功能分支开发完毕后,向Paddle的主版本库提交`Pull Reuqest`,进而进行代码评审。
* 当功能分支开发完毕后,向PaddlePaddle的主版本库提交`Pull Reuqest`,进而进行代码评审。
* 在评审过程中,开发者修改自己的代码,可以继续在自己的功能分支提交代码。
* BugFix分支也是在开发者自己的fork版本库维护,与功能分支不同的是,BugFix分支需要分别给主版本库的`master``develop`与可能有的`release/版本号`分支,同时提起`Pull Request`
# Paddle回归测试列表
# PaddlePaddle回归测试列表
本列表说明Paddle发版之前需要测试的功能点。
本列表说明PaddlePaddle发版之前需要测试的功能点。
## Paddle Book中所有章节
## PaddlePaddle Book中所有章节
Paddle每次发版本首先要保证Paddle Book中所有章节功能的正确性。功能的正确性包括验证Paddle目前的`paddle_trainer`训练和纯使用`Python`训练模型正确性。
PaddlePaddle每次发版本首先要保证PaddlePaddle Book中所有章节功能的正确性。功能的正确性包括验证PaddlePaddle目前的`paddle_trainer`训练和纯使用`Python`训练模型正确性。
| | 新手入门章节 | 识别数字 | 图像分类 | 词向量 | 情感分析 | 语意角色标注 | 机器翻译 | 个性化推荐 |
| --- | --- | --- | --- | --- | --- | --- | --- | --- |
......
......@@ -17,7 +17,7 @@ Scope is an association of a name to variable. All variables belong to `Scope`.
1. Scope only contains a map of a name to variable.
All parameters, data, states in a Net should be variables and stored inside a scope. Each op should get inputs and outputs to do computation from a scope, such as data buffer, state(momentum) etc.
All parameters, data, states in a Net should be variables and stored inside a scope. Each op should get inputs and outputs to do computation from a scope, such as data buffer, state (momentum) etc.
1. Variable can only be created by Scope and a variable can only be got from Scope. User cannot create or get a variable outside a scope. This is a constraints of our framework, and will keep our framework simple and clear.
......@@ -32,7 +32,7 @@ Scope is an association of a name to variable. All variables belong to `Scope`.
1. Scope should destruct all Variables inside it when itself is destructed. User can never store `Variable` pointer somewhere else.
Because Variable can only be got from Scope. When destroying Scope, we also need to destroy all the Variables in it. If user store `Variable` pointer to private data member or some global variable, the pointer will be a invalid pointer when associated `Scope` is destroyed.
Because Variable can only be got from Scope. When destroying Scope, we also need to destroy all the Variables in it. If user store `Variable` pointer to private data member or some global variable, the pointer will be an invalid pointer when associated `Scope` is destroyed.
```cpp
class Scope {
......@@ -50,7 +50,7 @@ class Scope {
Just like [scope](https://en.wikipedia.org/wiki/Scope_(computer_science)) in programming languages, `Scope` in the neural network can also be a local scope. There are two attributes about local scope.
1. We can create local variables in a local scope. When that local scope are destroyed, all local variables should also be destroyed.
1. We can create local variables in a local scope. When that local scope is destroyed, all local variables should also be destroyed.
2. Variables in a parent scope can be retrieved from local scopes of that parent scope, i.e., when user get a variable from a scope, it will try to search this variable in current scope. If there is no such variable in the local scope, `scope` will keep searching from its parent, until the variable is found or there is no parent.
```cpp
......@@ -121,4 +121,4 @@ Also, as the parent scope is a `shared_ptr`, we can only `Create()` a scope shar
## Orthogonal interface
`FindVar` will return `nullptr` when `name` is not found. It can be used as `Contains` method. `NewVar` will return a `Error` when there is a name conflict locally. Combine `FindVar` and `NewVar`, we can implement `NewVar` easily.
`FindVar` will return `nullptr` when `name` is not found. It can be used as `Contains` method. `NewVar` will return an `Error` when there is a name conflict locally. Combine `FindVar` and `NewVar`, we can implement `NewVar` easily.
......@@ -6,9 +6,9 @@ The Interaction between Python and C++ can be simplified as two steps:
1. C++ tells Python how many Ops there are, and what parameter do users need to offer to initialize a new Op. Python then builds API for each Op at compile time.
2. Users invoke APIs built by Python and provide necessary parameters. These parameters will be sent to C++ fo finish Op construction task.
2. Users invoke APIs built by Python and provide necessary parameters. These parameters will be sent to C++ for finishing the Op construction task.
### Message form C++ to Python
### Message from C++ to Python
We define a Protobuf message class `OpProto` to hold message needed in the first step. What should an `OpProto` contain? This question is equivalent to “What message do we need to offer, to build a Python API which is legal and user oriented and can use to describe a whole Op.”
......@@ -193,7 +193,7 @@ def fc_layer(input, size, with_bias, activation):
elif:
# ...
return act_output;
```
```
### Low Leval API
......
## Background
PaddlePaddle divides the description of neural network computation graph into two stages: compile time and runtime.
PaddlePaddle use proto message to describe compile time graph for
PaddlePaddle use proto message to describe compile time graph because
1. Computation graph should be able to be saved to a file.
1. In distributed training, the graph will be serialized and send to multiple workers.
......
......@@ -321,3 +321,55 @@ pip uninstall py_paddle paddle
然后安装paddle的python环境, 在build目录下执行
pip install python/dist/paddle*.whl && pip install ../paddle/dist/py_paddle*.whl
16. PaddlePaddle存储的参数格式是什么,如何和明文进行相互转化
---------------------------------------------------------
PaddlePaddle保存的模型参数文件内容由16字节头信息和网络参数两部分组成。头信息中,1~4字节表示PaddlePaddle版本信息,请直接填充0;5~8字节表示每个参数占用的字节数,当保存的网络参数为float类型时为4,double类型时为8;9~16字节表示保存的参数总个数。
将PaddlePaddle保存的模型参数还原回明文时,可以使用相应数据类型的 :code:`numpy.array` 加载具体网络参数,此时可以跳过PaddlePaddle模型参数文件的头信息。若在PaddlePaddle编译时,未指定按照double精度编译,默认情况下按照float精度计算,保存的参数也是float类型。这时在使用 :code:`numpy.array` 时,一般设置 :code:`dtype=float32` 。示例如下:
.. code-block:: python
def read_parameter(fname, width):
s = open(fname).read()
# skip header
vec = np.fromstring(s[16:], dtype=np.float32)
# width is the size of the corresponding layer
np.savetxt(fname + ".csv", vec.reshape(width, -1),
fmt="%.6f", delimiter=",")
将明文参数转化为PaddlePaddle可加载的模型参数时,首先构造头信息,再写入网络参数。下面的代码将随机生成的矩阵转化为可以被PaddlePaddle加载的模型参数。
.. code-block:: python
def gen_rand_param(param_file, width, height, need_trans):
np.random.seed()
header = struct.pack("iil", 0, 4, height * width)
param = np.float32(np.random.rand(height, width))
with open(param_file, "w") as fparam:
fparam.write(header + param.tostring())
17. 如何加载预训练参数
------------------------------
* 对加载预训练参数的层,设置其参数属性 :code:`is_static=True`,使该层的参数在训练过程中保持不变。以embedding层为例,代码如下:
.. code-block:: python
emb_para = paddle.attr.Param(name='emb', is_static=True)
paddle.layer.embedding(size=word_dim, input=x, param_attr=emb_para)
* 从模型文件将预训练参数载入 :code:`numpy.array`,在创建parameters后,使用 :code:`parameters.set()` 加载预训练参数。PaddlePaddle保存的模型参数文件前16字节为头信息,用户将参数载入 :code:`numpy.array` 时须从第17字节开始。以embedding层为例,代码如下:
.. code-block:: python
def load_parameter(file_name, h, w):
with open(file_name, 'rb') as f:
f.read(16) # skip header.
return np.fromfile(f, dtype=np.float32).reshape(h, w)
parameters = paddle.parameters.create(my_cost)
parameters.set('emb', load_parameter(emb_param_file, 30000, 256))
......@@ -54,9 +54,9 @@ class MulOpMaker : public framework::OpProtoAndCheckerMaker {
public:
MulOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "The first input of mul op");
AddInput("Y", "The second input of mul op");
AddOutput("Out", "The output of mul op");
AddInput("X", "(Tensor), 2D tensor of size (M x K)");
AddInput("Y", "(Tensor), 2D tensor of size (K x N)");
AddOutput("Out", "(Tensor), 2D tensor of size (M x N)");
AddComment(R"DOC(
Two Element Mul Operator.
The equation is: Out = X * Y
......@@ -72,7 +72,7 @@ The equation is: Out = X * Y
构造函数里通过`AddInput`添加输入参数,通过`AddOutput`添加输出参数,通过`AddComment`添加Op的注释。这些函数会将对应内容添加到`OpProto`中。
上面的代码在`MulOp`中添加两个输入`X``Y`,添加了一个输出`Out`,并解释了各自含义,命名请遵守命名规范
上面的代码在`MulOp`中添加两个输入`X``Y`,添加了一个输出`Out`,并解释了各自含义,命名请遵守[命名规范](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/name_convention.md)
再以[`ScaleOp`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/scale_op.cc#L37)为例:
......
......@@ -19,7 +19,7 @@ if(Boost_FOUND)
endif()
if(WITH_C_API)
add_subdirectory(capi)
add_subdirectory(capi)
endif()
if(WITH_SWIG_PY)
......
......@@ -28,42 +28,38 @@ add_style_check_target(paddle_capi ${CAPI_SOURCES} ${CAPI_HEADER}
add_dependencies(paddle_capi paddle_proto)
# combine all paddle static libraries together, into libpaddle_capi_whole.a
# user should use PaddleCAPI as -lpaddle_capi_whole
set(capi_whole_library libpaddle_capi_whole.a)
add_custom_target(paddle_capi_whole ALL
COMMAND mkdir -p o_files/capi && cd o_files/capi/ && ar -x $<TARGET_FILE:paddle_capi>
COMMAND mkdir -p o_files/utils && cd o_files/utils/ && ar -x $<TARGET_FILE:paddle_utils>
COMMAND mkdir -p o_files/parameter && cd o_files/parameter/ && ar -x $<TARGET_FILE:paddle_parameter>
COMMAND mkdir -p o_files/math && cd o_files/math/ && ar -x $<TARGET_FILE:paddle_math>
COMMAND mkdir -p o_files/cuda && cd o_files/cuda/ && ar -x $<TARGET_FILE:paddle_cuda>
COMMAND mkdir -p o_files/function && cd o_files/function/ && ar -x $<TARGET_FILE:paddle_function>
COMMAND mkdir -p o_files/gserver && cd o_files/gserver/ && ar -x $<TARGET_FILE:paddle_gserver>
COMMAND mkdir -p o_files/proto && cd o_files/proto/ && ar -x $<TARGET_FILE:paddle_proto>
COMMAND mkdir -p o_files/network && cd o_files/network/ && ar -x $<TARGET_FILE:paddle_network>
COMMAND mkdir -p o_files/pserver && cd o_files/pserver/ && ar -x $<TARGET_FILE:paddle_pserver>
COMMAND ar crs ${capi_whole_library} `find ./o_files -name '*.o'`
COMMAND rm -rf o_files
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}
DEPENDS paddle_capi paddle_utils paddle_parameter paddle_math
paddle_cuda paddle_function paddle_gserver
paddle_proto paddle_pserver paddle_network
)
set_target_properties(paddle_capi_whole
PROPERTIES IMPORTED_LOCATION ${CMAKE_CURRENT_BINARY_DIR}/${capi_whole_library})
set(PADDLE_CAPI_INFER_LIBS
paddle_utils
paddle_parameter
paddle_math
paddle_cuda
paddle_function
paddle_gserver
paddle_proto
paddle_pserver
paddle_network)
cc_library(paddle_capi_whole DEPS paddle_capi ${PADDLE_CAPI_INFER_LIBS})
set(LINK_FLAGS " -Wl,--retain-symbols-file ${CMAKE_CURRENT_SOURCE_DIR}/export.sym -Wl,--version-script ${CMAKE_CURRENT_SOURCE_DIR}/export.map")
# TODO: merge mkl into paddle_capi_shared
add_library(paddle_capi_shared SHARED ${CAPI_SOURCES})
set_target_properties(paddle_capi_shared PROPERTIES LINK_FLAGS "${LINK_FLAGS}")
target_include_directories(paddle_capi_shared PUBLIC ${CMAKE_CURRENT_BINARY_DIR})
link_paddle_exe(paddle_capi_shared)
# No shared library for iOS
if(NOT IOS)
set(LINK_FLAGS " -Wl,--retain-symbols-file ${CMAKE_CURRENT_SOURCE_DIR}/export.sym -Wl,--version-script ${CMAKE_CURRENT_SOURCE_DIR}/export.map")
# TODO: merge mkl into paddle_capi_shared
add_library(paddle_capi_shared SHARED ${CAPI_SOURCES})
set_target_properties(paddle_capi_shared PROPERTIES LINK_FLAGS "${LINK_FLAGS}")
target_include_directories(paddle_capi_shared PUBLIC ${CMAKE_CURRENT_BINARY_DIR})
link_paddle_exe(paddle_capi_shared)
endif()
# install library & headers.
install(FILES ${CAPI_HEADERS} DESTINATION include/paddle)
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/config.h DESTINATION include/paddle)
if(ANDROID)
install(TARGETS paddle_capi_whole paddle_capi_shared
ARCHIVE DESTINATION lib/${ANDROID_ABI}
LIBRARY DESTINATION lib/${ANDROID_ABI})
execute_process(
COMMAND ${GIT_EXECUTABLE} log --pretty=oneline -1
OUTPUT_VARIABLE GIT_COMMITS_LIST
......@@ -72,9 +68,6 @@ if(ANDROID)
if(${GIT_COMMITS_LIST_RESULT})
set(GIT_COMMITS_LIST "No commits.")
endif()
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/${capi_whole_library}
DESTINATION lib/${ANDROID_ABI})
install(TARGETS paddle_capi_shared DESTINATION lib/${ANDROID_ABI})
install(CODE "FILE(WRITE ${CMAKE_INSTALL_PREFIX}/lib/${ANDROID_ABI}/BUILD.txt
\"Compiler:\n\"
\"\\t${CMAKE_C_COMPILER}\\n\"
......@@ -88,8 +81,11 @@ if(ANDROID)
)"
)
else(ANDROID)
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/${capi_whole_library} DESTINATION lib)
install(TARGETS paddle_capi_shared DESTINATION lib)
install(TARGETS paddle_capi_whole
ARCHIVE DESTINATION lib)
if(NOT IOS)
install(TARGETS paddle_capi_shared DESTINATION lib)
endif()
endif(ANDROID)
# this variable used for unittest
......
......@@ -22,10 +22,10 @@ limitations under the License. */
*/
typedef enum {
HL_POOLING_MAX = 0,
// average includes padded values
HL_POOLING_AVERAGE = 1,
// average does not include padded values
HL_POOLING_AVERAGE_EXCLUDE_PADDING = 2,
HL_POOLING_AVERAGE = 1,
// average includes padded values
HL_POOLING_AVERAGE_INCLUDE_PADDING = 2,
HL_POOLING_END
} hl_pooling_mode_t;
......
......@@ -461,7 +461,7 @@ class add<float32x4_t> {
public:
INLINE float32x4_t operator()(const float32x4_t a,
const float32x4_t b) const {
return vmulq_f32(a, b);
return vaddq_f32(a, b);
}
};
......
......@@ -211,13 +211,11 @@ __global__ void KeAvgPoolForward(const int nthreads,
int hstart = ph * strideH - padH;
int wstart = pw * strideW - padW;
int hend = min(hstart + sizeY, height + padH);
int wend = min(wstart + sizeX, width + padW);
int pool_size = (hend - hstart) * (wend - wstart);
int hend = min(hstart + sizeY, height);
int wend = min(wstart + sizeX, width);
hstart = max(hstart, 0);
wstart = max(wstart, 0);
hend = min(hend, height);
wend = min(wend, width);
int pool_size = (hend - hstart) * (wend - wstart);
real aveval = 0;
inputData += (frameNum * channels + c) * height * width;
......@@ -299,12 +297,14 @@ __global__ void KeAvgPoolBackward(const int nthreads,
outGrad += (frameNum * outStride + offsetC * pooledH * pooledW);
for (int ph = phstart; ph < phend; ++ph) {
int hstart = ph * strideH - padH;
int hend = min(hstart + sizeY, height);
hstart = max(hstart, 0);
for (int pw = pwstart; pw < pwend; ++pw) {
// figure out the pooling size
int hstart = ph * strideH - padH;
int wstart = pw * strideW - padW;
int hend = min(hstart + sizeY, height + padH);
int wend = min(wstart + sizeX, width + padW);
int wend = min(wstart + sizeX, width);
wstart = max(wstart, 0);
int poolsize = (hend - hstart) * (wend - wstart);
gradient += outGrad[ph * pooledW + pw] / poolsize;
}
......@@ -600,16 +600,13 @@ __global__ void KeAvgPool3DForward(const int nthreads,
int dstart = pd * strideD - padD;
int hstart = ph * strideH - padH;
int wstart = pw * strideW - padW;
int dend = min(dstart + sizeZ, depth + padD);
int hend = min(hstart + sizeY, height + padH);
int wend = min(wstart + sizeX, width + padW);
int pool_size = (dend - dstart) * (hend - hstart) * (wend - wstart);
int dend = min(dstart + sizeZ, depth);
int hend = min(hstart + sizeY, height);
int wend = min(wstart + sizeX, width);
dstart = max(dstart, 0);
hstart = max(hstart, 0);
wstart = max(wstart, 0);
dend = min(dend, depth);
hend = min(hend, height);
wend = min(wend, width);
int pool_size = (dend - dstart) * (hend - hstart) * (wend - wstart);
real aveval = 0;
inputData += (frameNum * channels + c) * depth * height * width;
......@@ -712,15 +709,18 @@ __global__ void KeAvgPool3DBackward(const int nthreads,
outGrad += (frameNum * channels + offsetC) * pooledD * pooledH * pooledW;
for (int pd = pdstart; pd < pdend; ++pd) {
int dstart = pd * strideD - padD;
int dend = min(dstart + sizeZ, depth);
dstart = max(dstart, 0);
for (int ph = phstart; ph < phend; ++ph) {
int hstart = ph * strideH - padH;
int hend = min(hstart + sizeY, height);
hstart = max(hstart, 0);
for (int pw = pwstart; pw < pwend; ++pw) {
// figure out the pooling size
int dstart = pd * strideD - padD;
int hstart = ph * strideH - padH;
int wstart = pw * strideW - padW;
int dend = min(dstart + sizeZ, depth + padD);
int hend = min(hstart + sizeY, height + padH);
int wend = min(wstart + sizeX, width + padW);
int wend = min(wstart + sizeX, width);
wstart = max(wstart, 0);
int poolsize = (dend - dstart) * (hend - hstart) * (wend - wstart);
gradient += outGrad[(pd * pooledH + ph) * pooledW + pw] / poolsize;
}
......
......@@ -432,11 +432,11 @@ void hl_create_pooling_descriptor(hl_pooling_descriptor* pooling_desc,
cudnn_mode = CUDNN_POOLING_MAX;
break;
case HL_POOLING_AVERAGE:
cudnn_mode = CUDNN_POOLING_AVERAGE_COUNT_INCLUDE_PADDING;
break;
case HL_POOLING_AVERAGE_EXCLUDE_PADDING:
cudnn_mode = CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING;
break;
case HL_POOLING_AVERAGE_INCLUDE_PADDING:
cudnn_mode = CUDNN_POOLING_AVERAGE_COUNT_INCLUDE_PADDING;
break;
default:
LOG(FATAL) << "parameter mode error";
}
......
......@@ -19,12 +19,14 @@ cc_test(scope_test SRCS scope_test.cc DEPS scope)
proto_library(framework_proto SRCS framework.proto)
cc_library(attribute SRCS attribute.cc DEPS framework_proto)
cc_library(op_proto_maker SRCS op_proto_maker.cc DEPS framework_proto attribute)
cc_test(op_proto_maker_test SRCS op_proto_maker_test.cc DEPS op_proto_maker)
cc_library(op_info SRCS op_info.cc DEPS attribute framework_proto)
cc_library(operator SRCS operator.cc DEPS op_info device_context tensor scope)
cc_test(operator_test SRCS operator_test.cc DEPS operator op_registry)
cc_library(grad_op_builder SRCS grad_op_builder.cc DEPS operator)
cc_library(op_registry SRCS op_registry.cc DEPS grad_op_builder)
cc_library(op_registry SRCS op_registry.cc DEPS grad_op_builder op_proto_maker)
cc_test(op_registry_test SRCS op_registry_test.cc DEPS op_registry)
cc_test(grad_op_builder_test SRCS grad_op_builder_test.cc DEPS grad_op_builder op_registry add_op)
......
......@@ -292,5 +292,13 @@ DDim flatten_to_2d(const DDim& src, int num_col_dims) {
DDim flatten_to_1d(const DDim& src) { return make_ddim({product(src)}); }
DDim stride(const DDim& ddim) {
std::vector<int64_t> strides(ddim.size());
strides[ddim.size() - 1] = 1;
for (int i = ddim.size() - 2; i >= 0; --i) {
strides[i] = strides[i + 1] * ddim[i + 1];
}
return framework::make_ddim(strides);
}
} // namespace framework
} // namespace paddle
......@@ -121,6 +121,7 @@ DDim flatten_to_2d(const DDim& src, int num_col_dims);
DDim flatten_to_1d(const DDim& src);
DDim stride(const DDim& ddim);
} // namespace framework
} // namespace paddle
......
......@@ -4,13 +4,13 @@ PaddlePaddle's RNN doesn't require that all instances have the same length. To
## Challenge of Variable-length Inputs
People usually represent a mini-batch by a Tensor. For example, a mini-batch of 32 images, each of size 32x32, is a 10x32x32 Tensor. So a transformation, T, of all images can be a matrix multiplication of the 32x32xO-dimensional tensor T and the 10x32x32 Tensor.
People usually represent a mini-batch by a Tensor. For example, a mini-batch of 10 images, each of size 32x32, is a 10x32x32 Tensor. So a transformation, T, of all images can be a matrix multiplication of the 10xOx32-dimensional tensor T and the 10x32x32 Tensor.
Another example is that each mini-batch contains 32 sentences, where each word is a D-dimensional one-hot vector. If all sentences have the same length L, we can represent this mini-batch by a 32xLxD tensor. However, in most cases, sentences have variable lengths, and we will need an index data structure to record these variable lengths.
## LoD as a Solution
### Mini-Batch of variable-length sentenses
### Mini-Batch of variable-length sentences
Let's imagine a mini-batch of 3 variable lengths sentences, containing 3, 1, and 2 words respectively. We can represent it by a (3+1+2)xD tensor plus some index information:
......@@ -51,17 +51,17 @@ The many 1's on the second level seem duplicated. For this particular case of 2
In summary, as long as that the essential elements (words or images) have the same size, we can represent mini-batches by a LoD Tensor:
- The underlying tensor has size LxD1xD2x..., where D1xD2... is the size of the essential elements, and
- the first dimension size L has an additon property -- a LoD index as a nested vector:
- The first dimension size L has an additonal property -- a LoD index as a nested vector:
```c++
typedef std::vector<std::vector> > LoD;
typedef std::vector<std::<vector>> LoD;
```
- The LoD index can is not necessary when there are only two levels and all elements of the second level have length 1.
- The LoD index is not necessary when there are only two levels and all elements of the second level have length 1.
## Slicing of LoD Tensor
Consider that we have a network with three levels of RNN: the top level one handles articles, the second level one handles sentences, and the basic level one handles words. This network requires that mini-batches represented by 4 level LoD Tensor, for example,
Consider that we have a network with three levels of RNN: the top level one handles articles, the second level one handles sentences, and the basic level one handles words. This network requires that mini-batches represented by 3 level LoD Tensor, for example,
```
3
......@@ -90,8 +90,9 @@ and the <1,2>-slice of above example is
Let's go on slicing this slice. Its <1,1>-slice is
```
3
|||
1
1
|
```
### The Slicing Algorithm
......@@ -99,7 +100,7 @@ Let's go on slicing this slice. Its <1,1>-slice is
The algorithm, with over-simplified data structure, is defined as
```c++
typedef vector<vector<int> > LoD;
typedef std::vector<std::vector<int>> LoD;
struct LoDTensor {
LoD lod_;
......@@ -128,7 +129,7 @@ Suppose that we want to retrieve the <1,2>-slice
we will need to find out the starting position of this slice by summing over all leaf nodes in `LoD` to the left of the slice, i.e., 3 + 2 + 4 + 1 = 10.
To avoid the traversal of the LoD tree at slcing time, we can do it at the construction time -- instead of saving the lengths of the next level in the LoD tree, we can save the starting offset of the next level. For example, above LoD Tensor can be transformed into
To avoid the traversal of the LoD tree at slicing time, we can do it at the construction time -- instead of saving the lengths of the next level in the LoD tree, we can save the starting offset of the next level. For example, above LoD Tensor can be transformed into
```
0
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/framework/op_proto_maker.h"
namespace paddle {
namespace framework {
void OpProtoAndCheckerMaker::Validate() {
validated_ = true;
CheckNoDuplicatedInOutAttrs();
}
OpProtoAndCheckerMaker::VariableBuilder OpProtoAndCheckerMaker::AddInput(
const std::string& name, const std::string& comment) {
auto* input = proto_->add_inputs();
input->set_name(name);
input->set_comment(comment);
return OpProtoAndCheckerMaker::VariableBuilder{input};
}
OpProtoAndCheckerMaker::VariableBuilder OpProtoAndCheckerMaker::AddOutput(
const std::string& name, const std::string& comment) {
auto* output = proto_->add_outputs();
output->set_name(name);
output->set_comment(comment);
return OpProtoAndCheckerMaker::VariableBuilder{output};
}
void OpProtoAndCheckerMaker::CheckNoDuplicatedInOutAttrs() {
std::unordered_set<std::string> names;
auto checker = [&](const std::string& name) {
PADDLE_ENFORCE(!names.count(name), "[%s] is duplicated", name);
names.insert(name);
};
for (auto& attr : proto_->attrs()) {
checker(attr.name());
}
for (auto& input : proto_->inputs()) {
checker(input.name());
}
for (auto& output : proto_->outputs()) {
checker(output.name());
}
}
} // namespace framework
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/attribute.h"
#include "paddle/framework/framework.pb.h"
namespace paddle {
namespace framework {
// this class not only make proto but also init attribute checkers.
class OpProtoAndCheckerMaker {
public:
OpProtoAndCheckerMaker(OpProto* proto, OpAttrChecker* op_checker)
: proto_(proto), op_checker_(op_checker) {}
virtual ~OpProtoAndCheckerMaker() {
PADDLE_ENFORCE(validated_, "should call Validate after build");
}
void Validate();
protected:
struct VariableBuilder {
OpProto::Var* var_;
VariableBuilder& AsDuplicable() {
var_->set_duplicable(true);
return *this;
}
VariableBuilder& AsIntermediate() {
var_->set_intermediate(true);
return *this;
}
VariableBuilder& NotInGradient() {
var_->set_not_in_gradient(true);
return *this;
}
};
VariableBuilder AddInput(const std::string& name, const std::string& comment);
VariableBuilder AddOutput(const std::string& name,
const std::string& comment);
template <typename T>
TypedAttrChecker<T>& AddAttr(const std::string& name,
const std::string& comment,
bool generated = false) {
auto* attr = proto_->add_attrs();
attr->set_name(name);
attr->set_comment(comment);
attr->set_generated(generated);
attr->set_type(AttrTypeID<T>());
return op_checker_->AddAttrChecker<T>(name);
}
void AddComment(const std::string& comment) { proto_->set_comment(comment); }
private:
void CheckNoDuplicatedInOutAttrs();
OpProto* proto_;
OpAttrChecker* op_checker_;
bool validated_{false};
};
class NOPMaker : public OpProtoAndCheckerMaker {
public:
NOPMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {}
};
} // namespace framework
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/framework/op_proto_maker.h"
#include "gtest/gtest.h"
class TestAttrProtoMaker : public paddle::framework::OpProtoAndCheckerMaker {
public:
TestAttrProtoMaker(paddle::framework::OpProto* proto,
paddle::framework::OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddAttr<float>("scale", "scale of test op");
AddAttr<float>("scale", "scale of test op");
}
};
TEST(ProtoMaker, DuplicatedAttr) {
paddle::framework::OpProto op_proto;
paddle::framework::OpAttrChecker op_checker;
auto proto_maker = TestAttrProtoMaker(&op_proto, &op_checker);
ASSERT_THROW(proto_maker.Validate(), paddle::platform::EnforceNotMet);
}
class TestInOutProtoMaker : public paddle::framework::OpProtoAndCheckerMaker {
public:
TestInOutProtoMaker(paddle::framework::OpProto* proto,
paddle::framework::OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("input", "input of test op");
AddInput("input", "input of test op");
}
};
TEST(ProtoMaker, DuplicatedInOut) {
paddle::framework::OpProto op_proto;
paddle::framework::OpAttrChecker op_checker;
auto proto_maker = TestInOutProtoMaker(&op_proto, &op_checker);
ASSERT_THROW(proto_maker.Validate(), paddle::platform::EnforceNotMet);
}
\ No newline at end of file
......@@ -24,6 +24,7 @@ limitations under the License. */
#include "paddle/framework/framework.pb.h"
#include "paddle/framework/grad_op_builder.h"
#include "paddle/framework/op_info.h"
#include "paddle/framework/op_proto_maker.h"
#include "paddle/framework/operator.h"
#include "paddle/framework/scope.h"
......
......@@ -22,14 +22,14 @@ namespace framework {
template <>
Eigen::DefaultDevice& ExecutionContext::GetEigenDevice<
platform::CPUPlace, Eigen::DefaultDevice>() const {
return *device_context_->get_eigen_device<Eigen::DefaultDevice>();
return *device_context_.get_eigen_device<Eigen::DefaultDevice>();
}
#ifndef PADDLE_ONLY_CPU
template <>
Eigen::GpuDevice&
ExecutionContext::GetEigenDevice<platform::GPUPlace, Eigen::GpuDevice>() const {
return *device_context_->get_eigen_device<Eigen::GpuDevice>();
return *device_context_.get_eigen_device<Eigen::GpuDevice>();
}
#endif
......@@ -228,43 +228,5 @@ std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
return res;
}
void OpProtoAndCheckerMaker::Validate() {
validated_ = true;
CheckNoDuplicatedInOutAttrs();
}
OpProtoAndCheckerMaker::VariableBuilder OpProtoAndCheckerMaker::AddInput(
const std::string& name, const std::string& comment) {
auto* input = proto_->add_inputs();
input->set_name(name);
input->set_comment(comment);
return OpProtoAndCheckerMaker::VariableBuilder{input};
}
OpProtoAndCheckerMaker::VariableBuilder OpProtoAndCheckerMaker::AddOutput(
const std::string& name, const std::string& comment) {
auto* output = proto_->add_outputs();
output->set_name(name);
output->set_comment(comment);
return OpProtoAndCheckerMaker::VariableBuilder{output};
}
void OpProtoAndCheckerMaker::CheckNoDuplicatedInOutAttrs() {
std::unordered_set<std::string> names;
auto checker = [&](const std::string& name) {
PADDLE_ENFORCE(!names.count(name), "[%s] is duplicated", name);
names.insert(name);
};
for (auto& attr : proto_->attrs()) {
checker(attr.name());
}
for (auto& input : proto_->inputs()) {
checker(input.name());
}
for (auto& output : proto_->outputs()) {
checker(output.name());
}
}
} // namespace framework
} // namespace paddle
......@@ -167,71 +167,6 @@ class NOP : public OperatorBase {
}
};
// this class not only make proto but also init attribute checkers.
class OpProtoAndCheckerMaker {
public:
OpProtoAndCheckerMaker(OpProto* proto, OpAttrChecker* op_checker)
: proto_(proto), op_checker_(op_checker) {}
~OpProtoAndCheckerMaker() {
PADDLE_ENFORCE(validated_, "should call Validate after build");
}
void Validate();
protected:
struct VariableBuilder {
OpProto::Var* var_;
VariableBuilder& AsDuplicable() {
var_->set_duplicable(true);
return *this;
}
VariableBuilder& AsIntermediate() {
var_->set_intermediate(true);
return *this;
}
VariableBuilder& NotInGradient() {
var_->set_not_in_gradient(true);
return *this;
}
};
VariableBuilder AddInput(const std::string& name, const std::string& comment);
VariableBuilder AddOutput(const std::string& name,
const std::string& comment);
template <typename T>
TypedAttrChecker<T>& AddAttr(const std::string& name,
const std::string& comment,
bool generated = false) {
auto* attr = proto_->add_attrs();
attr->set_name(name);
attr->set_comment(comment);
attr->set_generated(generated);
attr->set_type(AttrTypeID<T>());
return op_checker_->AddAttrChecker<T>(name);
}
void AddComment(const std::string& comment) { proto_->set_comment(comment); }
private:
void CheckNoDuplicatedInOutAttrs();
OpProto* proto_;
OpAttrChecker* op_checker_;
bool validated_{false};
};
class NOPMaker : public OpProtoAndCheckerMaker {
public:
NOPMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {}
};
class InferShapeContext {
public:
InferShapeContext(const OperatorBase& op, const Scope& scope)
......@@ -366,7 +301,7 @@ struct EigenDeviceConverter<platform::GPUPlace> {
class ExecutionContext : public InferShapeContext {
public:
ExecutionContext(const OperatorBase& op, const Scope& scope,
const platform::DeviceContext* device_context)
const platform::DeviceContext& device_context)
: InferShapeContext(op, scope), device_context_(device_context) {}
template <typename PlaceType,
......@@ -374,9 +309,9 @@ class ExecutionContext : public InferShapeContext {
typename EigenDeviceConverter<PlaceType>::EigenDeviceType>
DeviceType& GetEigenDevice() const;
platform::Place GetPlace() const { return device_context_->GetPlace(); }
platform::Place GetPlace() const { return device_context_.GetPlace(); }
const platform::DeviceContext* device_context() const {
const platform::DeviceContext& device_context() const {
return device_context_;
}
......@@ -401,7 +336,8 @@ class ExecutionContext : public InferShapeContext {
return res;
}
const platform::DeviceContext* device_context_;
private:
const platform::DeviceContext& device_context_;
};
template <>
......@@ -461,7 +397,7 @@ class OperatorWithKernel : public OperatorBase {
void Run(const Scope& scope,
const platform::DeviceContext& dev_ctx) const final {
auto& opKernel = AllOpKernels().at(type_).at(OpKernelKey(dev_ctx));
opKernel->Compute(ExecutionContext(*this, scope, &dev_ctx));
opKernel->Compute(ExecutionContext(*this, scope, dev_ctx));
}
static std::unordered_map<std::string /* op_type */, OpKernelMap>&
......
......@@ -264,37 +264,3 @@ TEST(Operator, Clone) {
auto b = a.Clone();
ASSERT_EQ(a.Type(), b->Type());
}
class TestAttrProtoMaker : public paddle::framework::OpProtoAndCheckerMaker {
public:
TestAttrProtoMaker(paddle::framework::OpProto* proto,
paddle::framework::OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddAttr<float>("scale", "scale of test op");
AddAttr<float>("scale", "scale of test op");
}
};
TEST(ProtoMaker, DuplicatedAttr) {
paddle::framework::OpProto op_proto;
paddle::framework::OpAttrChecker op_checker;
auto proto_maker = TestAttrProtoMaker(&op_proto, &op_checker);
ASSERT_THROW(proto_maker.Validate(), paddle::platform::EnforceNotMet);
}
class TestInOutProtoMaker : public paddle::framework::OpProtoAndCheckerMaker {
public:
TestInOutProtoMaker(paddle::framework::OpProto* proto,
paddle::framework::OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("input", "input of test op");
AddInput("input", "input of test op");
}
};
TEST(ProtoMaker, DuplicatedInOut) {
paddle::framework::OpProto op_proto;
paddle::framework::OpAttrChecker op_checker;
auto proto_maker = TestInOutProtoMaker(&op_proto, &op_checker);
ASSERT_THROW(proto_maker.Validate(), paddle::platform::EnforceNotMet);
}
\ No newline at end of file
......@@ -58,6 +58,8 @@ class Scope {
/// nullptr if cannot find.
Variable* FindVar(const std::string& name) const;
const Scope& parent() const { return *parent_; }
/// Find the scope or an ancestor scope that contains the given variable.
const Scope* FindScope(const Variable* var) const;
......
......@@ -130,15 +130,19 @@ inline Tensor Tensor::Slice(const int& begin_idx, const int& end_idx) const {
PADDLE_ENFORCE_LE(end_idx, dims_[0], "Slice end index is out of bound.");
PADDLE_ENFORCE_LT(begin_idx, end_idx,
"Begin index must be less than end index.");
PADDLE_ENFORCE_NE(dims_[0], 1, "Can not slice a tensor with dims_[0] = 1.");
size_t base = numel() / dims_[0];
Tensor dst;
dst.holder_ = holder_;
DDim dst_dims = dims_;
dst_dims[0] = end_idx - begin_idx;
dst.Resize(dst_dims);
dst.offset_ = offset_ + begin_idx * base * sizeof(T);
return dst;
if (dims_[0] == 1) {
return *this;
} else {
size_t base = numel() / dims_[0];
Tensor dst;
dst.holder_ = holder_;
DDim dst_dims = dims_;
dst_dims[0] = end_idx - begin_idx;
dst.Resize(dst_dims);
dst.offset_ = offset_ + begin_idx * base * sizeof(T);
return dst;
}
}
inline Tensor& Tensor::Resize(const DDim& dims) {
......
......@@ -52,7 +52,7 @@ public:
int outputHeight = output[2];
int outputWidth = output[3];
int filterMultiplier = outputChannels / groups_;
CHECK_EQ(inputChannels, groups_);
CHECK_EQ(static_cast<size_t>(inputChannels), groups_);
// only support strideH() == strideW() and filterHeight == filterWidth.
CHECK_EQ(strideH(), strideW());
......
......@@ -22,9 +22,12 @@ limitations under the License. */
#include <type_traits>
#include "paddle/parameter/Argument.h"
#include "paddle/utils/ClassRegistrar.h"
#include "paddle/utils/Logging.h"
#ifdef PADDLE_USE_MKLDNN
#include "MKLDNNActivation.h"
#endif
namespace paddle {
static ClassRegistrar<ActivationFunction> gActivationRegistrar;
......@@ -456,6 +459,12 @@ Error __must_check backward(Argument& act) {
END_DEFINE_ACTIVATION(log)
ActivationFunction* ActivationFunction::create(const std::string& type) {
#ifdef PADDLE_USE_MKLDNN
if (!type.empty() && type.compare(0, 7, "mkldnn_") == 0) {
return MKLDNNActivation::create(type);
}
#endif
return gActivationRegistrar.createByType(type);
}
......
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "MKLDNNActivation.h"
#include "mkldnn.hpp"
#include "paddle/utils/ClassRegistrar.h"
namespace paddle {
static ClassRegistrar<ActivationFunction> gMKLDNNActivationRegistrar;
/**
* @def MKLDNN_ACTIVATION_CLASS_NAME
* @note MKLDNN_ACTIVATION_CLASS_NAME(relu) relu_;
* means mkldnn_reluActivation relu_;
*/
#define MKLDNN_ACTIVATION_CLASS_NAME(ACT_TYPE) mkldnn_##ACT_TYPE##Activation
/**
* @def DEFINE_MKLDNN_ELTWISE_ACTIVATION
*/
#define DEFINE_MKLDNN_ELTWISE_ACTIVATION(ACT_TYPE, ALPHA, BWD_ALPHA) \
class MKLDNN_ACTIVATION_CLASS_NAME(ACT_TYPE) \
: public MKLDNNEltwiseActivation { \
private: \
static const std::string name; \
static const float alpha; \
static const float bwdAlpha; \
\
public: \
const std::string& getName() const { return name; } \
float getAlpha() const { return alpha; } \
float getBwdAlpha() const { return bwdAlpha; } \
}; \
const std::string MKLDNN_ACTIVATION_CLASS_NAME(ACT_TYPE)::name = \
"mkldnn_" #ACT_TYPE; \
const float MKLDNN_ACTIVATION_CLASS_NAME(ACT_TYPE)::alpha = ALPHA; \
const float MKLDNN_ACTIVATION_CLASS_NAME(ACT_TYPE)::bwdAlpha = BWD_ALPHA; \
static InitFunction __reg_activation__mkldnn_##ACT_TYPE([] { \
gMKLDNNActivationRegistrar \
.registerClass<MKLDNN_ACTIVATION_CLASS_NAME(ACT_TYPE)>( \
"mkldnn_" #ACT_TYPE); \
});
/**
* @brief MKLDNN Relu Activation.
* Actually mkldnn_relu is Leaky Relu.
* f(x) = x (x >= 0)
* f(x) = negative_slope * x (x < 0)
* @note the negative_slope should be -0.f in forward
*/
DEFINE_MKLDNN_ELTWISE_ACTIVATION(relu, -0.f, 0.f)
/**
* @brief MKLDNN Tanh Activation.
*/
DEFINE_MKLDNN_ELTWISE_ACTIVATION(tanh, 0.f, 0.f)
/**
* @brief MKLDNN ELU(Exponential Linear Unit) Activation.
* f(x) = x (x >= 0)
* f(x) = negative_slope * (exp(x) - 1) (x < 0)
*/
DEFINE_MKLDNN_ELTWISE_ACTIVATION(elu, 0.f, 0.f)
ActivationFunction* MKLDNNActivation::create(const std::string& type) {
return gMKLDNNActivationRegistrar.createByType(type);
}
std::vector<std::string> MKLDNNActivation::getAllRegisteredTypes() {
std::vector<std::string> types;
gMKLDNNActivationRegistrar.forEachType(
[&](const std::string& type) { types.push_back(type); });
return types;
}
} // namespace paddle
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "ActivationFunction.h"
#include "mkldnn.hpp"
#include "paddle/gserver/layers/MKLDNNBase.h"
#include "paddle/math/MKLDNNMatrix.h"
#include "paddle/parameter/Argument.h"
namespace paddle {
/**
* @brief Base class of MKLDNN Activation.
* Common activation function are provieded,
* including mkldnn_relu, mkldnn_elu, mkldnn_tanh, mkldnn_softmax
*/
class MKLDNNActivation : public ActivationFunction {
protected:
// input value element count
size_t cnt_;
// should not merge the resetBwd into resetFwd,
// because the grad data would be changing before backward.
bool needResetBwd_;
// mkldnn matrix, primitive, stream and pipeline
MKLDNNMatrixPtr val_;
MKLDNNMatrixPtr grad_;
std::shared_ptr<MKLDNNStream> stream_;
std::shared_ptr<mkldnn::primitive> fwd_;
std::shared_ptr<mkldnn::primitive> bwd_;
std::vector<mkldnn::primitive> pipelineFwd_;
std::vector<mkldnn::primitive> pipelineBwd_;
public:
MKLDNNActivation() : cnt_(0), needResetBwd_(true) {}
~MKLDNNActivation() {}
static ActivationFunction* create(const std::string& type);
static std::vector<std::string> getAllRegisteredTypes();
virtual const std::string& getName() const = 0;
virtual Error __must_check forward(Argument& act) = 0;
virtual Error __must_check backward(Argument& act) = 0;
};
/**
* @brief Base class of MKLDNN Eltwise Activation,
* includes mkldnn_relu, mkldnn_elu and mkldnn_tanh.
*/
class MKLDNNEltwiseActivation : public MKLDNNActivation {
typedef mkldnn::eltwise_forward eltwise_fwd;
typedef mkldnn::eltwise_backward eltwise_bwd;
protected:
// save the forward primitive desc, which can be used backward
std::shared_ptr<eltwise_fwd::primitive_desc> fwdPD_;
// eltwise_bwd need src input value
MKLDNNMatrixPtr inVal_;
// use for copy data
std::shared_ptr<mkldnn::reorder> copyInVal_;
public:
MKLDNNEltwiseActivation() {}
~MKLDNNEltwiseActivation() {}
virtual const std::string& getName() const = 0;
// in common, the alpha of forward and backward should be equal.
// but for relu, to avoid negative value, they should be opposite
virtual float getAlpha() const = 0;
virtual float getBwdAlpha() const = 0;
virtual float getBeta() const { return 0.f; }
virtual mkldnn::algorithm getAlgo(const std::string& type) const {
if (type == "mkldnn_relu") {
return mkldnn::algorithm::eltwise_relu;
} else if (type == "mkldnn_tanh") {
return mkldnn::algorithm::eltwise_tanh;
} else if (type == "mkldnn_elu") {
return mkldnn::algorithm::eltwise_elu;
} else {
LOG(FATAL) << "Unkown eltwise activation type: " << type;
}
return (mkldnn::algorithm)0;
}
/**
* reshape and reset the forward primitives
*/
void resetFwd(Argument& act) {
if (cnt_ == act.value->getElementCnt()) {
return;
}
cnt_ = act.value->getElementCnt();
stream_.reset(new MKLDNNStream());
auto eng = CPUEngine::Instance().getEngine();
// get algo setting
mkldnn::algorithm algo = getAlgo(this->getName());
// note: alpha represents the NegativeSlope when used in relu.
float alpha = getAlpha();
float beta = getBeta();
/// forward
pipelineFwd_.clear();
val_ = std::dynamic_pointer_cast<MKLDNNMatrix>(act.value);
if (val_ == nullptr) {
int bs = act.getBatchSize();
int ih = act.getFrameHeight() > 0 ? act.getFrameHeight() : 1;
int iw = act.getFrameWidth() > 0 ? act.getFrameWidth() : 1;
int ic = cnt_ / bs / ih / iw;
CHECK_EQ(cnt_, (size_t)bs * ic * ih * iw);
val_ = MKLDNNMatrix::create(
act.value, {bs, ic, ih, iw}, mkldnn::memory::format::nchw, eng);
CHECK(val_);
}
auto fwdDesc = eltwise_fwd::desc(mkldnn::prop_kind::forward_training,
algo,
val_->getMemoryDesc(),
alpha,
beta);
fwdPD_.reset(new eltwise_fwd::primitive_desc(fwdDesc, eng));
// use inplace for forward but save input value before submit
inVal_ = val_;
copyInVal_ = nullptr;
if (act.grad && algo == mkldnn::algorithm::eltwise_tanh) {
// tanh need save src input for backward
inVal_ = MKLDNNMatrix::create(nullptr, val_->getPrimitiveDesc());
copyInVal_ = std::make_shared<mkldnn::reorder>(*val_, *inVal_);
CHECK(copyInVal_) << "should not be emptry";
pipelineFwd_.push_back(*copyInVal_);
}
fwd_.reset(new eltwise_fwd(*fwdPD_, *val_, *val_));
pipelineFwd_.push_back(*fwd_);
needResetBwd_ = true;
}
/**
* reset the backward primitives, can not merge into resetFwd as the grad data
* would be changing before backward.
*/
void resetBwd(Argument& act) {
if (!needResetBwd_) {
return;
}
needResetBwd_ = false;
mkldnn::algorithm algo = getAlgo(this->getName());
float alpha = getBwdAlpha();
float beta = getBeta();
grad_ = MKLDNNMatrix::create(act.grad, val_->getPrimitiveDesc());
auto eng = CPUEngine::Instance().getEngine();
auto bwdDesc = eltwise_bwd::desc(
algo, grad_->getMemoryDesc(), val_->getMemoryDesc(), alpha, beta);
auto bwdPD = eltwise_bwd::primitive_desc(bwdDesc, eng, *fwdPD_);
CHECK(inVal_);
bwd_.reset(new eltwise_bwd(bwdPD, *inVal_, *grad_, *grad_));
pipelineBwd_.clear();
pipelineBwd_.push_back(*bwd_);
}
Error __must_check forward(Argument& act) {
resetFwd(act);
stream_->submit(pipelineFwd_);
return Error();
}
Error __must_check backward(Argument& act) {
resetBwd(act);
stream_->submit(pipelineBwd_);
return Error();
}
};
} // namespace paddle
......@@ -29,9 +29,9 @@ bool CudnnPoolLayer::typeCheck(const std::string &poolType,
if (mode) {
*mode = HL_POOLING_AVERAGE;
}
} else if (poolType == "cudnn-avg-excl-pad-pool") {
} else if (poolType == "cudnn-avg-incl-pad-pool") {
if (mode) {
*mode = HL_POOLING_AVERAGE_EXCLUDE_PADDING;
*mode = HL_POOLING_AVERAGE_INCLUDE_PADDING;
}
} else {
return false;
......
......@@ -143,7 +143,7 @@ void DetectionOutputLayer::forward(PassType passType) {
resetOutput(numKept, 7);
} else {
MatrixPtr outV = getOutputValue();
outV = NULL;
if (outV) outV->resize(0, 0);
return;
}
MatrixPtr outV = getOutputValue();
......
......@@ -14,26 +14,12 @@ limitations under the License. */
#include "paddle/utils/Util.h"
#include "CostLayer.h"
#include "ValidationLayer.h"
#include "paddle/math/SparseMatrix.h"
#include "paddle/utils/Error.h"
#include "paddle/utils/Logging.h"
#include "AddtoLayer.h"
#include "CRFLayer.h"
#include "CosSimLayer.h"
#include "CostLayer.h"
#include "DataLayer.h"
#include "ExpandConvLayer.h"
#include "FullyConnectedLayer.h"
#include "HierarchicalSigmoidLayer.h"
#include "MaxLayer.h"
#include "MixedLayer.h"
#include "NormLayer.h"
#include "PoolLayer.h"
#include "TensorLayer.h"
#include "TransLayer.h"
#include "ValidationLayer.h"
DEFINE_bool(log_error_clipping, false, "enable log error clipping or not");
namespace paddle {
......@@ -109,6 +95,10 @@ ClassRegistrar<Layer, LayerConfig> Layer::registrar_;
LayerPtr Layer::create(const LayerConfig& config) {
std::string type = config.type();
// NOTE: As following types have illegal character '-',
// they can not use REGISTER_LAYER to registrar.
// Besides, to fit with old training models,
// they can not use '_' instead.
if (type == "multi-class-cross-entropy")
return LayerPtr(new MultiClassCrossEntropy(config));
else if (type == "rank-cost")
......@@ -117,8 +107,6 @@ LayerPtr Layer::create(const LayerConfig& config) {
return LayerPtr(new AucValidation(config));
else if (type == "pnpair-validation")
return LayerPtr(new PnpairValidation(config));
// NOTE: stop adding "if" statements here.
// Instead, use REGISTER_LAYER to add more layer types
return LayerPtr(registrar_.createByType(config.type(), config));
}
......
......@@ -294,12 +294,9 @@ void MKLDNNConvLayer::resetOutValue(
std::shared_ptr<conv_fwd::primitive_desc>& pd, MKLDNNMatrixPtr& out) {
out = MKLDNNMatrix::create(output_.value, pd->dst_primitive_desc());
// change original output value from cpu matrix to mkldnn matrix
output_.value = std::dynamic_pointer_cast<Matrix>(out);
// create reorder if output value has cpu device and pd do not match
cpuOutVal_ = nullptr;
cpuOutVal_ = nullptr;
cvtOutVal_ = nullptr;
if (!outputIsOnlyMKLDNN()) {
const MatrixPtr& cpuOut = getOutput(CPU_DEVICE).value;
memory::dims outDims = memory::dims{bs_, oc_, oh_, ow_};
......@@ -452,13 +449,14 @@ void MKLDNNConvLayer::resetOutGrad(
cvtOutGrad_ = nullptr;
if (!outputIsOnlyMKLDNN()) {
const MatrixPtr& cpuOut = getOutput(CPU_DEVICE).grad;
outMat->setData(cpuOut->getData());
// same PrimitiveDesc with cpuInVal_
CHECK(cpuOutVal_);
cpuOutGrad_ = MKLDNNMatrix::create(cpuOut, cpuOutVal_->getPrimitiveDesc());
if (cpuOutGrad_->getPrimitiveDesc() == out->getPrimitiveDesc()) {
outMat->setData(cpuOut->getData());
out = cpuOutGrad_;
} else {
out = MKLDNNMatrix::create(nullptr, wgtPD->diff_dst_primitive_desc());
cvtOutGrad_ = MKLDNNMatrix::createReorder(cpuOutGrad_, out);
CHECK(cvtOutGrad_);
}
......
......@@ -172,12 +172,10 @@ void MKLDNNFcLayer::resetWgtBiasValue(MKLDNNMatrixPtr& wgt,
void MKLDNNFcLayer::resetOutValue(MKLDNNMatrixPtr& out) {
out = MKLDNNMatrix::create(output_.value, {bs_, oc_}, format::nc, engine_);
// change original output value to mkldnn output value
output_.value = std::dynamic_pointer_cast<Matrix>(out);
if (!outputIsOnlyMKLDNN()) {
// fc cpu output value do not need create convert
// just share point
getOutput(CPU_DEVICE).value->setData(output_.value->getData());
getOutput(CPU_DEVICE).value->setData(out->getData());
}
}
......@@ -234,6 +232,7 @@ void MKLDNNFcLayer::resetBwdBuffers(MKLDNNMatrixPtr& in,
void MKLDNNFcLayer::resetOutGrad(MKLDNNMatrixPtr& out) {
// TODO(TJ): merge outgrad
int device = outputIsOnlyMKLDNN() ? MKLDNN_DEVICE : CPU_DEVICE;
output_.grad->setData(getOutput(device).grad->getData());
// for MKLDNN device:
// can not directly cast outputgrad to mkldnnmatrix,
// since each layer can not write the inputgrad to mkldnn inputgrad.
......
......@@ -119,6 +119,10 @@ public:
inputElemenCnt_ = elemenCnt;
reshape(bs_, ic_, ih_, iw_, oc_, oh_, ow_);
resetFwd(pipelineFwd_, inVal_, wgtVal_, biasVal_, outVal_);
if (outVal_) {
// change original output value to mkldnn output value
output_.value = std::dynamic_pointer_cast<Matrix>(outVal_);
}
convertWeightsFromPaddle();
needResetBwd_ = true;
}
......@@ -137,18 +141,16 @@ public:
}
void backward(const UpdateCallback& callback) override {
/* Do derivation */ {
if (needResetBwd_) {
resetBwd(pipelineBwd_, inGrad_, wgtGrad_, biasGrad_, outGrad_);
needResetBwd_ = false;
}
{
REGISTER_TIMER_INFO("BpActTimer", getName().c_str());
backwardActivation();
}
{
REGISTER_TIMER_INFO("mkldnn_bwdTimer", getName().c_str());
if (needResetBwd_) {
resetBwd(pipelineBwd_, inGrad_, wgtGrad_, biasGrad_, outGrad_);
needResetBwd_ = false;
}
stream_->submit(pipelineBwd_);
}
......
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "MKLDNNPoolLayer.h"
#include "paddle/math/MathUtils.h"
#include "paddle/utils/Logging.h"
using namespace mkldnn; // NOLINT
typedef memory::format format;
namespace paddle {
REGISTER_LAYER(mkldnn_pool, MKLDNNPoolLayer);
bool MKLDNNPoolLayer::init(const LayerMap& layerMap,
const ParameterMap& parameterMap) {
if (!MKLDNNLayer::init(layerMap, parameterMap)) {
return false;
}
/* the size of inputs for pool-layer is 1 */
CHECK_EQ(config_.inputs_size(), 1);
const PoolConfig& conf = config_.inputs(0).pool_conf();
ic_ = conf.channels();
ih_ = conf.img_size_y();
iw_ = conf.img_size();
oc_ = ic_;
oh_ = conf.output_y();
ow_ = conf.output_x();
fh_ = conf.size_y();
fw_ = conf.size_x();
ph_ = conf.padding_y();
pw_ = conf.padding();
sh_ = conf.stride_y();
sw_ = conf.stride();
const std::string& type = conf.pool_type();
if (type == "max-projection") {
poolAlgo_ = algorithm::pooling_max;
} else if (type == "avg-projection") {
// paddle only use exclude_padding
poolAlgo_ = algorithm::pooling_avg_exclude_padding;
} else {
LOG(FATAL) << "unknow pooling type!";
}
return true;
}
void MKLDNNPoolLayer::reshape(
int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) {
reshapeInput(bs, ih, iw);
// ic_ and oc can not be changed
CHECK_EQ(inputElemenCnt_ / bs / ih / iw, (size_t)ic)
<< "Input channel can not be changed";
// cal output sizes
// paddle used false caffeMode for pooling
oh = outputSize(ih, fh_, ph_, sh_, false);
ow = outputSize(iw, fw_, pw_, sw_, false);
reshapeOutput(oh, ow);
resizeOutput(bs, oc * oh * ow);
printSizeInfo();
}
void MKLDNNPoolLayer::resetFwd(std::vector<primitive>& pipeline,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) {
resetFwdBuffers(in, out);
resetFwdPD(fwdPD_, in, out);
resetFwdPipeline(pipeline, fwdPD_, in, out);
printValueFormatFlow();
}
void MKLDNNPoolLayer::resetBwd(std::vector<primitive>& pipeline,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) {
std::shared_ptr<pool_bwd::primitive_desc> pd;
resetBwdBuffers(in, out);
resetBwdPD(pd, in, out);
resetBwdPipeline(pipeline, pd, in, out);
printGradFormatFlow();
}
void MKLDNNPoolLayer::updateInputData() {
inVal_->setData(getInputValue(0, CPU_DEVICE)->getData());
}
void MKLDNNPoolLayer::resetFwdBuffers(MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& out) {
resetInValue(in);
resetOutValue(out);
}
void MKLDNNPoolLayer::resetInValue(MKLDNNMatrixPtr& in) {
if (inputIsOnlyMKLDNN()) {
const MatrixPtr& dnnIn = getInputValue(0);
in = std::dynamic_pointer_cast<MKLDNNMatrix>(dnnIn);
CHECK(in) << "Input should be MKLDNNMatrix";
} else {
CHECK_EQ(getPrev(0)->getDeviceId(), CPU_DEVICE) << "Only support CPU yet";
const MatrixPtr& cpuIn = getInputValue(0, CPU_DEVICE);
in = MKLDNNMatrix::create(
cpuIn, {bs_, ic_, ih_, iw_}, format::nchw, engine_);
}
}
void MKLDNNPoolLayer::resetOutValue(MKLDNNMatrixPtr& out) {
CHECK(inVal_) << "Should reset input value first";
memory::dims outDims = memory::dims{bs_, oc_, oh_, ow_};
out = MKLDNNMatrix::create(
output_.value, outDims, inVal_->getFormat(), engine_);
// create reorder if output value has cpu device and pd do not match
cpuOutVal_ = nullptr;
cvtOutVal_ = nullptr;
if (!outputIsOnlyMKLDNN()) {
const MatrixPtr& cpuOut = getOutput(CPU_DEVICE).value;
cpuOutVal_ = MKLDNNMatrix::create(cpuOut, outDims, format::nchw, engine_);
if (cpuOutVal_->getPrimitiveDesc() != out->getPrimitiveDesc()) {
cvtOutVal_ = MKLDNNMatrix::createReorder(out, cpuOutVal_);
CHECK(cvtOutVal_) << "should not be emptry";
} else {
// CPU output share the same data of MKLDNN output
cpuOut->setData(out->getData());
cpuOutVal_ = out;
}
}
}
void MKLDNNPoolLayer::resetFwdPD(std::shared_ptr<pool_fwd::primitive_desc>& pd,
MKLDNNMatrixPtr in,
MKLDNNMatrixPtr out) {
memory::dims inDims = memory::dims{bs_, ic_, ih_, iw_};
memory::dims outDims = memory::dims{bs_, oc_, oh_, ow_};
memory::dims kernels = memory::dims{fh_, fw_};
memory::dims strides = memory::dims{sh_, sw_};
memory::dims padL = memory::dims{ph_, pw_};
memory::dims padR = getPaddingR();
padding_kind padKind = padding_kind::zero;
prop_kind pk = passType_ == PASS_TEST ? prop_kind::forward_scoring
: prop_kind::forward_training;
auto fwdDesc = pool_fwd::desc(pk,
poolAlgo_,
in->getMemoryDesc(),
out->getMemoryDesc(),
strides,
kernels,
padL,
padR,
padKind);
pd.reset(new pool_fwd::primitive_desc(fwdDesc, engine_));
// prepare workspace if necessary
workspace_ =
(passType_ != PASS_TEST && poolAlgo_ == algorithm::pooling_max)
? std::make_shared<memory>(memory(pd->workspace_primitive_desc()))
: nullptr;
}
void MKLDNNPoolLayer::resetFwdPipeline(
std::vector<primitive>& pipeline,
std::shared_ptr<pool_fwd::primitive_desc>& pd,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& out) {
pipeline.clear();
fwd_ = workspace_
? std::make_shared<pool_fwd>(pool_fwd(*pd, *in, *out, *workspace_))
: std::make_shared<pool_fwd>(pool_fwd(*pd, *in, *out));
pipeline.push_back(*fwd_);
if (cvtOutVal_) {
pipeline.push_back(*cvtOutVal_);
}
}
void MKLDNNPoolLayer::resetBwdBuffers(MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& out) {
resetOutGrad(out);
resetInGrad(in);
}
void MKLDNNPoolLayer::resetOutGrad(MKLDNNMatrixPtr& out) {
CHECK(outVal_) << "Should have output value";
out = MKLDNNMatrix::create(output_.grad, outVal_->getPrimitiveDesc());
// create reorder if output value has cpu device and pd do not match
cpuOutGrad_ = nullptr;
cvtOutGrad_ = nullptr;
if (!outputIsOnlyMKLDNN()) {
const MatrixPtr& cpuOut = getOutput(CPU_DEVICE).grad;
cpuOutGrad_ = MKLDNNMatrix::create(
cpuOut, memory::dims{bs_, oc_, oh_, ow_}, format::nchw, engine_);
if (cpuOutGrad_->getPrimitiveDesc() != out->getPrimitiveDesc()) {
cvtOutGrad_ = MKLDNNMatrix::createReorder(cpuOutGrad_, out);
CHECK(cvtOutGrad_) << "should not be emptry";
} else {
// share the same data of CPU output
output_.grad->setData(cpuOut->getData());
out = cpuOutGrad_;
}
}
}
void MKLDNNPoolLayer::resetInGrad(MKLDNNMatrixPtr& in) {
in = nullptr;
const MatrixPtr& inGrad = inputLayers_[0]->getOutput().grad;
if (inGrad == nullptr) {
return;
}
CHECK(inVal_);
in = MKLDNNMatrix::create(inGrad, inVal_->getPrimitiveDesc());
}
void MKLDNNPoolLayer::resetBwdPD(std::shared_ptr<pool_bwd::primitive_desc>& pd,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& out) {
memory::dims kernels = memory::dims{fh_, fw_};
memory::dims strides = memory::dims{sh_, sw_};
memory::dims padL = memory::dims{ph_, pw_};
memory::dims padR = getPaddingR();
CHECK(in);
CHECK(out);
auto bwdDesc = pool_bwd::desc(poolAlgo_,
in->getMemoryDesc(),
out->getMemoryDesc(),
strides,
kernels,
padL,
padR,
padding_kind::zero);
pd.reset(new pool_bwd::primitive_desc(bwdDesc, engine_, *fwdPD_));
}
void MKLDNNPoolLayer::resetBwdPipeline(
std::vector<primitive>& pipeline,
std::shared_ptr<pool_bwd::primitive_desc>& pd,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& out) {
pipeline.clear();
if (cvtOutGrad_) {
pipeline.push_back(*cvtOutGrad_);
}
bwdData_ =
workspace_
? std::make_shared<pool_bwd>(pool_bwd(*pd, *out, *workspace_, *in))
: std::make_shared<pool_bwd>(pool_bwd(*pd, *out, *in));
pipeline.push_back(*bwdData_);
}
} // namespace paddle
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "MKLDNNLayer.h"
#include "mkldnn.hpp"
namespace paddle {
typedef mkldnn::pooling_forward pool_fwd;
typedef mkldnn::pooling_backward pool_bwd;
/**
* @brief A subclass of MKLDNNLayer pool layer.
*
* The config file api is mkldnn_pool
*/
class MKLDNNPoolLayer : public MKLDNNLayer {
protected:
// padding height and width
int ph_, pw_;
// stride height and width
int sh_, sw_;
// filter(kenerl) height and width
int fh_, fw_;
// pooling_avg or pooling_max
mkldnn::algorithm poolAlgo_;
// MKLDNNMatrixPtr which should be created from CPU Device
MKLDNNMatrixPtr cpuOutVal_;
MKLDNNMatrixPtr cpuOutGrad_;
// convert handle between CPU device and MKLDNN device
std::shared_ptr<mkldnn::reorder> cvtOutVal_;
std::shared_ptr<mkldnn::reorder> cvtOutGrad_;
// save forward primitive_desc, which can be used backward
std::shared_ptr<pool_fwd::primitive_desc> fwdPD_;
// according to https://github.com/01org/mkl-dnn/blob/master/tests/gtests/
// test_pooling_forward.cpp, pool need workspace for backward
std::shared_ptr<mkldnn::memory> workspace_;
public:
explicit MKLDNNPoolLayer(const LayerConfig& config) : MKLDNNLayer(config) {}
~MKLDNNPoolLayer() {}
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void reshape(
int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) override;
void resetFwd(std::vector<mkldnn::primitive>& pipeline,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) override;
void resetBwd(std::vector<mkldnn::primitive>& pipeline,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) override;
void updateInputData() override;
void printSizeInfo() override {
MKLDNNLayer::printSizeInfo();
VLOG(MKLDNN_SIZES) << getName() << ": fh: " << fh_ << ", fw: " << fw_
<< ": ph: " << ph_ << ", pw: " << pw_ << ", sh: " << sh_
<< ", sw: " << sw_;
}
protected:
/**
* Forward functions: reset buffers(input, output),
* reset primitive descriptor,
* reset pipeline.
*/
void resetFwdBuffers(MKLDNNMatrixPtr& in, MKLDNNMatrixPtr& out);
void resetInValue(MKLDNNMatrixPtr& in);
void resetOutValue(MKLDNNMatrixPtr& out);
void resetFwdPD(std::shared_ptr<pool_fwd::primitive_desc>& pd,
MKLDNNMatrixPtr in,
MKLDNNMatrixPtr out);
void resetFwdPipeline(std::vector<mkldnn::primitive>& pipeline,
std::shared_ptr<pool_fwd::primitive_desc>& pd,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& out);
/**
* Backward functions: reset buffers(input, output),
* reset primitive descriptor,
* reset pipeline.
*/
void resetBwdBuffers(MKLDNNMatrixPtr& in, MKLDNNMatrixPtr& out);
void resetOutGrad(MKLDNNMatrixPtr& out);
void resetInGrad(MKLDNNMatrixPtr& in);
void resetBwdPD(std::shared_ptr<pool_bwd::primitive_desc>& pd,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& out);
void resetBwdPipeline(std::vector<mkldnn::primitive>& pipeline,
std::shared_ptr<pool_bwd::primitive_desc>& pd,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& out);
/**
* get padding_r according to
* https://github.com/01org/mkl-dnn/blob/master/tests/gtests/
* test_pooling_forward.cpp
*/
mkldnn::memory::dims getPaddingR() const {
mkldnn::memory::dims padR = {ph_, pw_};
for (int i = 0; i < 2; ++i) {
if ((ih_ + ph_ + padR[0] - fh_) / sh_ + 1 < oh_) {
++padR[0];
}
if ((iw_ + pw_ + padR[1] - fw_) / sw_ + 1 < ow_) {
++padR[1];
}
}
return padR;
}
};
} // namespace paddle
......@@ -73,9 +73,10 @@ void SequenceSliceLayer::checkInputs() {
CHECK(inputSeq.hasSeq()) << "The first input of sequence slice layer "
<< "must be a sequence.";
const MatrixPtr indices1 = getInputValue(1);
CHECK_EQ(static_cast<size_t>(indices1->getHeight()),
inputSeq.hasSubseq() ? inputSeq.getNumSubSequences()
: inputSeq.getNumSequences())
CHECK_EQ(
indices1->getHeight(),
static_cast<size_t>(inputSeq.hasSubseq() ? inputSeq.getNumSubSequences()
: inputSeq.getNumSequences()))
<< "Height of the second input should be equal to number of sequence "
<< "in the first input.";
if (inputLayers_.size() == 3) {
......@@ -151,7 +152,7 @@ void SequenceSliceLayer::calSelectedRows(const MatrixPtr starts,
if (ends) endPos = inputSeqInfoVec_[i][j] + ends->getElement(rowIdx, k);
int seqLen = endPos - begPos + 1;
CHECK_GT(seqLen, 0U);
CHECK_GT(seqLen, 0);
for (int m = begPos; m <= endPos; ++m) selectedRows_.push_back(m);
hasSubseq
? outSubSeqStartPos_.push_back(outSubSeqStartPos_.back() + seqLen)
......
......@@ -64,15 +64,17 @@ void MKLDNNTester::reset(const TestConfig& dnn,
configs_[i], &(layerMaps_[i]), &(parameters_[i]), &(testLayers_[i]));
}
refLayer_ = testLayers_[REF];
dnnLayer_ = std::dynamic_pointer_cast<MKLDNNLayer>(testLayers_[DNN]);
CHECK(dnnLayer_);
// for comparison with Paddle reference results,
// need manually add cpu device output for test
dnnLayer_->addOutputArgument(CPU_DEVICE);
dnnLayer_ = testLayers_[DNN];
EXPECT_EQ(dataLayers_[DNN].size(), dataLayers_[REF].size());
EXPECT_EQ(parameters_[DNN].size(), parameters_[REF].size());
setInputImgSize();
// for comparison with Paddle reference results,
// need manually add cpu device output for test
MKLDNNLayerPtr dnnLayer = std::dynamic_pointer_cast<MKLDNNLayer>(dnnLayer_);
if (dnnLayer) {
dnnLayer->addOutputArgument(CPU_DEVICE);
}
}
void MKLDNNTester::setInputImgSize() {
......@@ -122,7 +124,7 @@ void MKLDNNTester::randomTopDiffs() {
void MKLDNNTester::checkForward() {
VLOG(MKLDNN_ALL) << "Check Forward";
printTopDatas();
double delta = compareMatrix(dnnLayer_->getOutput(-1).value,
double delta = compareMatrix(dnnLayer_->getOutput(CPU_DEVICE).value,
refLayer_->getOutputValue());
EXPECT_LE(fabs(delta), eps_);
}
......@@ -155,7 +157,10 @@ void MKLDNNTester::checkBackwardWgts() {
vector<VectorPtr> dnnWgts; // used to temply save mkldnn weights
saveWgt(parameters_[DNN], dnnWgts);
dnnLayer_->convertWeightsToPaddle();
MKLDNNLayerPtr dnnLayer = std::dynamic_pointer_cast<MKLDNNLayer>(dnnLayer_);
if (dnnLayer) {
dnnLayer->convertWeightsToPaddle();
}
for (size_t i = 0; i < parameters_[DNN].size(); ++i) {
const VectorPtr& dnn = parameters_[DNN][i]->getBuf(PARAMETER_VALUE);
const VectorPtr& ref = parameters_[REF][i]->getBuf(PARAMETER_VALUE);
......@@ -322,6 +327,10 @@ void MKLDNNTester::runOnce() {
// and clearTopDatas(REF) should be coverd by ref layers
clearBotDiffs(REF);
clearWgtDiffs(REF);
// it is necessary to clear bottom diffs when only activation is dnn type
if (configs_[DNN].layerConfig.active_type().compare(0, 7, "mkldnn_") == 0) {
clearBotDiffs(DNN);
}
}
void MKLDNNTester::run(const TestConfig& dnn,
......@@ -333,8 +342,19 @@ void MKLDNNTester::run(const TestConfig& dnn,
float epsilon,
bool log,
int level) {
VLOG(MKLDNN_TESTS) << "Test MKLDNN functionality: " << dnn.layerConfig.type()
<< " vs " << ref.layerConfig.type();
CHECK(dnn.layerConfig.type().compare(0, 7, "mkldnn_") == 0 ||
dnn.layerConfig.active_type().compare(0, 7, "mkldnn_") == 0)
<< "should be MKLDNN layer or MKLDNN activation";
if (dnn.layerConfig.type() == ref.layerConfig.type()) {
VLOG(MKLDNN_TESTS) << "Test MKLDNN functionality: "
<< dnn.layerConfig.active_type() << " vs "
<< ref.layerConfig.active_type();
} else {
VLOG(MKLDNN_TESTS) << "Test MKLDNN functionality: "
<< dnn.layerConfig.type() << " vs "
<< ref.layerConfig.type();
}
ih_ = inputImgH;
iw_ = inputImgW;
iter_ = iter;
......
......@@ -41,8 +41,7 @@ protected:
vector<LayerMap> layerMaps_;
vector<vector<ParameterPtr>> parameters_;
vector<LayerPtr> testLayers_;
LayerPtr refLayer_;
MKLDNNLayerPtr dnnLayer_;
LayerPtr refLayer_, dnnLayer_;
/// run some iterations, all the result should pass
size_t iter_;
......
......@@ -17,6 +17,7 @@ limitations under the License. */
#include <vector>
#include "MKLDNNTester.h"
#include "ModelConfig.pb.h"
#include "paddle/gserver/activations/MKLDNNActivation.h"
#include "paddle/math/MathUtils.h"
using namespace paddle; // NOLINT
......@@ -25,17 +26,26 @@ DECLARE_bool(thread_local_rand_use_global_seed);
DECLARE_bool(use_gpu);
DECLARE_bool(use_mkldnn);
struct testFCDesc {
#define RUN_MKLDNN_TEST(DNN_CONFIG, REF_CONFIG, DESC) \
MKLDNNTester tester; \
for (auto bs : {DESC.bs, 1}) { \
tester.run(DNN_CONFIG, REF_CONFIG, bs, DESC.ih, DESC.iw); \
}
#define RUN_MKLDNN_TEST_LAYER(DNN_CONFIG, REF_TYPE, DESC) \
TestConfig ref = DNN_CONFIG; \
ref.layerConfig.set_type(REF_TYPE); \
RUN_MKLDNN_TEST(DNN_CONFIG, ref, DESC)
struct testFcDesc {
int bs;
int ic;
int oc;
int ih, iw; // oh == ow == 1
};
void testFcLayer(const testFCDesc& pm) {
const std::string compareTypes[] = {"mkldnn_fc", "fc"};
TestConfig cfg;
cfg.layerConfig.set_type(compareTypes[0]);
static void getMKLDNNFcConfig(TestConfig& cfg, const testFcDesc& pm) {
cfg.layerConfig.set_type("mkldnn_fc");
cfg.layerConfig.set_size(pm.oc);
cfg.inputDefs.push_back(
{INPUT_DATA,
......@@ -43,25 +53,25 @@ void testFcLayer(const testFCDesc& pm) {
/* size of input layer= */ size_t(pm.ic * pm.ih * pm.iw),
/* size of weight= */ size_t(pm.oc * pm.ic * pm.ih * pm.iw)});
cfg.layerConfig.add_inputs();
}
MKLDNNTester tester;
void testFcLayer(const testFcDesc& pm) {
TestConfig dnnConfig;
getMKLDNNFcConfig(dnnConfig, pm);
for (auto biasSize : {pm.oc, 0}) {
cfg.biasSize = biasSize;
TestConfig ref = cfg;
ref.layerConfig.set_type(compareTypes[1]);
for (auto bs : {pm.bs, 1}) {
tester.run(cfg, ref, bs, pm.ih, pm.iw);
}
dnnConfig.biasSize = biasSize;
RUN_MKLDNN_TEST_LAYER(dnnConfig, "fc", pm)
}
}
TEST(MKLDNNLayer, FcLayer) {
testFcLayer({/*bs*/ 2, /*ic*/ 2, /*oc*/ 3, /*ih*/ 1, /*iw*/ 1});
testFcLayer({/*bs*/ 3, /*ic*/ 7, /*oc*/ 19, /*ih*/ 1, /*iw*/ 1});
testFcLayer({/*bs*/ 8, /*ic*/ 16, /*oc*/ 32, /*ih*/ 13, /*iw*/ 13});
testFcLayer({/*bs*/ 4, /*ic*/ 12, /*oc*/ 18, /*ih*/ 13, /*iw*/ 11});
testFcLayer({/*bs*/ 2, /*ic*/ 64, /*oc*/ 32, /*ih*/ 16, /*iw*/ 16});
testFcLayer({/*bs*/ 15, /*ic*/ 3, /*oc*/ 6, /*ih*/ 16, /*iw*/ 16});
/* bs, ic, ih, iw, oc */
testFcLayer({2, 2, 1, 1, 3});
testFcLayer({3, 7, 1, 1, 19});
testFcLayer({8, 16, 13, 13, 32});
testFcLayer({4, 12, 13, 13, 18});
testFcLayer({2, 64, 16, 16, 32});
testFcLayer({15, 3, 16, 16, 6});
}
struct testConvDesc {
......@@ -74,13 +84,10 @@ struct testConvDesc {
int dh, dw;
};
void testConvLayer(const testConvDesc& pm) {
const std::string compareTypes[] = {"mkldnn_conv", "exconv"};
TestConfig cfg;
cfg.layerConfig.set_type(compareTypes[0]);
static void getMKLDNNConvConfig(TestConfig& cfg, const testConvDesc& pm) {
cfg.layerConfig.set_type("mkldnn_conv");
cfg.layerConfig.set_num_filters(pm.oc);
cfg.layerConfig.set_size(pm.oc * pm.oh * pm.ow);
// cfg.layerConfig.set_partial_sum(1); // TODO: check it
cfg.layerConfig.set_shared_biases(true);
cfg.inputDefs.push_back(
{INPUT_DATA,
......@@ -114,15 +121,14 @@ void testConvLayer(const testConvDesc& pm) {
int oh = outputSize(pm.ih, fh, pm.ph, pm.sh, true);
CHECK_EQ(ow, pm.ow) << "output size check failed";
CHECK_EQ(oh, pm.oh) << "output size check failed";
}
MKLDNNTester tester;
void testConvLayer(const testConvDesc& pm) {
TestConfig dnnConfig;
getMKLDNNConvConfig(dnnConfig, pm);
for (auto biasSize : {pm.oc, 0}) {
cfg.biasSize = biasSize;
TestConfig ref = cfg;
ref.layerConfig.set_type(compareTypes[1]);
for (auto bs : {pm.bs, 1}) {
tester.run(cfg, ref, bs, pm.ih, pm.iw);
}
dnnConfig.biasSize = biasSize;
RUN_MKLDNN_TEST_LAYER(dnnConfig, "exconv", pm)
}
}
......@@ -141,6 +147,102 @@ TEST(MKLDNNLayer, ConvLayer) {
testConvLayer({4, 4, 16, 3, 3, 16, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1});
}
struct testPoolDesc {
int bs, ic; // input channel and output channel are the same
int ih, iw;
int oh, ow;
int fh, fw;
int ph, pw;
int sh, sw;
};
static void getMKLDNNPoolConfig(TestConfig& cfg, const testPoolDesc& pm) {
cfg.layerConfig.set_type("mkldnn_pool");
cfg.layerConfig.set_size(pm.ic * pm.oh * pm.ow);
cfg.inputDefs.push_back(
{INPUT_DATA,
"layer_0",
/* size of input layer= */ size_t(pm.ic * pm.ih * pm.iw),
0});
LayerInputConfig* input = cfg.layerConfig.add_inputs();
PoolConfig* pool = input->mutable_pool_conf();
pool->set_pool_type("avg-projection");
pool->set_channels(pm.ic);
pool->set_img_size(pm.iw);
pool->set_img_size_y(pm.ih);
pool->set_output_x(pm.ow);
pool->set_output_y(pm.oh);
pool->set_size_x(pm.fw);
pool->set_size_y(pm.fh);
pool->set_padding(pm.pw);
pool->set_padding_y(pm.ph);
pool->set_stride(pm.sw);
pool->set_stride_y(pm.sh);
int oh = outputSize(pm.ih, pm.fh, pm.ph, pm.sh, false);
int ow = outputSize(pm.iw, pm.fw, pm.pw, pm.sw, false);
CHECK_EQ(ow, pm.ow) << "output size check failed";
CHECK_EQ(oh, pm.oh) << "output size check failed";
}
void testPoolLayer(const testPoolDesc& pm) {
TestConfig dnnConfig;
getMKLDNNPoolConfig(dnnConfig, pm);
LayerInputConfig* input = dnnConfig.layerConfig.mutable_inputs(0);
PoolConfig* pool = input->mutable_pool_conf();
for (auto type : {"max-projection", "avg-projection"}) {
pool->set_pool_type(type);
RUN_MKLDNN_TEST_LAYER(dnnConfig, "pool", pm)
}
}
TEST(MKLDNNLayer, PoolLayer) {
/* bs, ch, ih, iw, oh, ow, fh, fw, ph, pw, sh, sw */
testPoolLayer({2, 1, 4, 4, 2, 2, 3, 3, 0, 0, 2, 2});
testPoolLayer({10, 8, 16, 16, 8, 8, 2, 2, 0, 0, 2, 2});
testPoolLayer({4, 2, 5, 5, 3, 3, 3, 3, 1, 1, 2, 2});
testPoolLayer({8, 16, 56, 56, 28, 28, 3, 3, 0, 0, 2, 2});
testPoolLayer({8, 16, 14, 14, 7, 7, 3, 3, 0, 0, 2, 2});
testPoolLayer({4, 16, 7, 7, 1, 1, 7, 7, 0, 0, 1, 1});
testPoolLayer({4, 2, 5, 5, 3, 3, 5, 5, 1, 1, 1, 1});
testPoolLayer({2, 8, 56, 56, 29, 29, 3, 3, 1, 1, 2, 2});
}
struct testActDesc {
int bs, ic, ih, iw;
};
static void getAddtoConfig(TestConfig& cfg, const testActDesc& pm) {
cfg.biasSize = 0;
cfg.layerConfig.set_type("addto");
size_t layerSize = pm.ih * pm.ih * pm.iw;
cfg.layerConfig.set_size(layerSize);
cfg.inputDefs.push_back({INPUT_DATA, "layer_0", layerSize, 0});
cfg.layerConfig.add_inputs();
}
void testActivation(std::string& actType, const testActDesc& pm) {
// TODO(TJ): mkldnn_softmax not implemented, paddle do not have elu activation
if (actType == "mkldnn_softmax" || actType == "mkldnn_elu") {
return;
}
const std::string compareTypes[] = {actType, actType.erase(0, 7)};
TestConfig cfg;
getAddtoConfig(cfg, pm);
TestConfig ref = cfg;
cfg.layerConfig.set_active_type(compareTypes[0]);
ref.layerConfig.set_active_type(compareTypes[1]);
RUN_MKLDNN_TEST(cfg, ref, pm)
}
TEST(MKLDNNActivation, Activations) {
auto types = MKLDNNActivation::getAllRegisteredTypes();
for (auto type : types) {
/* bs, c, h, w*/
testActivation(type, {16, 64, 32, 32});
}
}
// TODO(TJ): add branch test
int main(int argc, char** argv) {
......
......@@ -17,6 +17,7 @@ limitations under the License. */
#include <cmath>
#include "BaseMatrix.h"
#include "MathFunctions.h"
#include "NEONFunctions.h"
#include "SIMDFunctions.h"
#include "hl_matrix_apply.cuh"
#include "hl_matrix_base.cuh"
......@@ -666,6 +667,13 @@ void BaseMatrixT<T>::relu(BaseMatrixT& b) {
applyBinary(binary::Relu<T>(), b);
}
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
template <>
void BaseMatrixT<float>::relu(BaseMatrixT& b) {
neon::relu(data_, b.data_, height_ * width_);
}
#endif
DEFINE_MATRIX_BINARY_OP(ReluDerivative, a *= (b > 0.0f ? 1.0f : 0.0f));
template <class T>
void BaseMatrixT<T>::reluDerivative(BaseMatrixT& b) {
......
......@@ -26,7 +26,7 @@ limitations under the License. */
#include <mkl_lapacke.h>
#endif
#ifdef PADDLE_USE_ATLAS
#if defined(PADDLE_USE_ATLAS) || defined(PADDLE_USE_VECLIB)
extern "C" {
#include <cblas.h>
#include <clapack.h>
......
此差异已折叠。
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
#include "NEONFunctions.h"
#include <arm_neon.h>
namespace paddle {
namespace neon {
// b[i] = a[i] > 0.0f ? a[i] : 0.0f
void relu(const float* a, float* b, int len) {
int offset = len % 16;
float32x4_t ma0, ma1, ma2, ma3;
float32x4_t mb0, mb1, mb2, mb3;
float32x4_t zero = vdupq_n_f32(0.f);
for (int k = 0; k < len / 16; k++, a += 16, b += 16) {
ma0 = vld1q_f32(a);
ma1 = vld1q_f32(a + 4);
ma2 = vld1q_f32(a + 8);
ma3 = vld1q_f32(a + 12);
mb0 = vmaxq_f32(ma0, zero);
mb1 = vmaxq_f32(ma1, zero);
mb2 = vmaxq_f32(ma2, zero);
mb3 = vmaxq_f32(ma3, zero);
vst1q_f32(b, mb0);
vst1q_f32(b + 4, mb1);
vst1q_f32(b + 8, mb2);
vst1q_f32(b + 12, mb3);
}
for (int i = 0; i < offset; i++) {
b[i] = a[i] > 0.0f ? a[i] : 0.0f;
}
}
} // namespace neon
} // namespace paddle
#endif
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
namespace paddle {
namespace neon {
void relu(const float* a, float* b, int len);
} // namespace neon
} // namespace paddle
......@@ -825,9 +825,8 @@ void testMaxPoolFwdBwd(int numSamples,
int strideW,
int padH,
int padW) {
int outH = 0, outW = 0;
outH = (imgSizeH - ksizeH + 2 * padH + strideH - 1) / strideH + 1;
outW = (imgSizeW - ksizeW + 2 * padW + strideW - 1) / strideW + 1;
int outH = outputSize(imgSizeH, ksizeH, padH, strideH, true);
int outW = outputSize(imgSizeW, ksizeW, padW, strideW, true);
int inWidth = imgSizeH * imgSizeW * channels;
MatrixPtr input = CpuMatrix::create(numSamples, inWidth, false, false);
......@@ -927,9 +926,8 @@ void testAvgPoolFwdBwd(int numSamples,
int strideW,
int padH,
int padW) {
int outH = 0, outW = 0;
outH = (imgSizeH - ksizeH + 2 * padH + strideH - 1) / strideH + 1;
outW = (imgSizeW - ksizeW + 2 * padW + strideW - 1) / strideW + 1;
int outH = outputSize(imgSizeH, ksizeH, padH, strideH, true);
int outW = outputSize(imgSizeW, ksizeW, padW, strideW, true);
int inWidth = imgSizeH * imgSizeW * channels;
MatrixPtr input = CpuMatrix::create(numSamples, inWidth, false, false);
......
......@@ -55,13 +55,19 @@ function(op_library TARGET)
set(pybind_flag 1)
endif()
# activation_op contains several operators
if ("${TARGET}" STREQUAL "pool_op")
set(pybind_flag 1)
# It's enough to just adding one operator to pybind
file(APPEND ${pybind_file} "USE_OP(pool2d);\n")
endif()
# activation_op contains several operators
if ("${TARGET}" STREQUAL "activation_op")
set(pybind_flag 1)
# It's enough to just adding one operator to pybind
file(APPEND ${pybind_file} "USE_OP(sigmoid);\n")
endif()
# pybind USE_NO_KERNEL_OP
file(READ ${TARGET}.cc TARGET_CONTENT)
string(REGEX MATCH "OperatorWithKernel" regex_result "${TARGET_CONTENT}")
......@@ -103,3 +109,4 @@ set(GLOB_OP_LIB ${OP_LIBRARY} CACHE INTERNAL "Global OP library")
cc_test(gather_test SRCS gather_test.cc DEPS tensor)
cc_test(net_op_test SRCS net_op_test.cc DEPS net_op)
cc_test(scatter_test SRCS scatter_test.cc DEPS tensor)
cc_test(strided_memcpy_test SRCS strided_memcpy_test.cc DEPS tensor paddle_memory)
......@@ -12,26 +12,38 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <thrust/execution_policy.h>
#include <thrust/reduce.h>
#include "paddle/operators/accuracy_op.h"
#include "paddle/platform/cuda_helper.h"
namespace paddle {
namespace operators {
using platform::PADDLE_CUDA_NUM_THREADS;
__global__ void AccuracySingleKernel(const int N, const int D, const int top_k,
const int* Xdata, const int* labelData,
float* accuracy) {
int correct = 0;
for (int row = 0; row < N; row++) {
const int label = labelData[row];
for (int col = 0; col < D; col++) {
const int pred = Xdata[row * D + col];
if (pred == label) {
++correct;
template <int BlockSize>
__global__ void AccuracyCudaKernel(const int N, const int D, const int* Xdata,
const int* labeldata, float* accuracy) {
int count = 0;
__shared__ int total[BlockSize];
// support only 1 block
for (int i = threadIdx.x; i < (N); i += BlockSize) {
for (int j = 0; j < D; ++j) {
if (Xdata[i * D + j] == labeldata[i]) {
++count;
break;
}
}
}
*accuracy = static_cast<float>(correct) / static_cast<float>(N);
total[threadIdx.x] = count;
__syncthreads();
// reduce the count with init value 0, and output accuracy.
int result = thrust::reduce(thrust::device, total, total + BlockSize, 0);
if (threadIdx.x == 0) {
*accuracy = static_cast<float>(result) / static_cast<float>(N);
}
}
template <typename T>
......@@ -57,8 +69,8 @@ class AccuracyOpCUDAKernel : public framework::OpKernel {
return;
}
AccuracySingleKernel<<<1, 1>>>(num_samples, infer_width, 1, inference_data,
label_data, accuracy_data);
AccuracyCudaKernel<PADDLE_CUDA_NUM_THREADS><<<1, PADDLE_CUDA_NUM_THREADS>>>(
num_samples, infer_width, inference_data, label_data, accuracy_data);
}
};
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/activation_op.h"
namespace paddle {
namespace operators {
class ActivationOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
ctx.Output<framework::LoDTensor>("Y")->Resize(
ctx.Input<framework::Tensor>("X")->dims());
}
};
class ActivationOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
ctx.Output<framework::LoDTensor>(framework::GradVarName("X"))
->Resize(ctx.Input<framework::Tensor>("Y")->dims());
}
};
class SigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
public:
SigmoidOpMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "Input of Sigmoid operator");
AddOutput("Y", "Output of Sigmoid operator");
AddComment("Sigmoid activation operator, sigmoid = 1 / (1 + exp(-x))");
}
};
class ExpOpMaker : public framework::OpProtoAndCheckerMaker {
public:
ExpOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "Input of Exp operator");
AddOutput("Y", "Output of Exp operator");
AddComment("Exp activation operator, exp(x) = e^x");
}
};
class ReluOpMaker : public framework::OpProtoAndCheckerMaker {
public:
ReluOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "Input of Relu operator");
AddOutput("Y", "Output of Relu operator");
AddComment("Relu activation operator, relu(x) = max(x, 0)");
}
};
class TanhOpMaker : public framework::OpProtoAndCheckerMaker {
public:
TanhOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "Input of Tanh operator");
AddOutput("Y", "Output of Tanh operator");
AddComment(
"Tanh activation operator, tanh = (exp(x) - exp(-x)) / (exp(x) + "
"exp(-x))");
}
};
class SqrtOpMaker : public framework::OpProtoAndCheckerMaker {
public:
SqrtOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "Input of Sqrt operator");
AddOutput("Y", "Output of Sqrt operator");
AddComment("Sqrt activation operator, sqrt(x) = x^(1/2)");
}
};
class AbsOpMaker : public framework::OpProtoAndCheckerMaker {
public:
AbsOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "Input of Abs operator");
AddOutput("Y", "Output of Abs operator");
AddComment("Abs activation operator, abs(x) = |x|");
}
};
class ReciprocalOpMaker : public framework::OpProtoAndCheckerMaker {
public:
ReciprocalOpMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "Input of Reciprocal operator");
AddOutput("Y", "Output of Reciprocal operator");
AddComment("Reciprocal activation operator, reciprocal(x) = 1 / x");
}
};
class LogOpMaker : public framework::OpProtoAndCheckerMaker {
public:
LogOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "Input of Log operator");
AddOutput("Y", "Output of Log operator");
AddComment("Log activation operator, log(x) = natural logarithm of x");
}
};
class SquareOpMaker : public framework::OpProtoAndCheckerMaker {
public:
SquareOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "Input of Square operator");
AddOutput("Y", "Output of Square operator");
AddComment("Square activation operator, square(x) = x^2");
}
};
template <typename AttrType>
class BReluOpMaker : public framework::OpProtoAndCheckerMaker {
public:
BReluOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "Input of BRelu operator");
AddOutput("Y", "Output of BRelu operator");
AddComment("BRelu activation operator, brelu = max(min(x, t_min), t_max)");
AddAttr<AttrType>("t_min", "The min marginal value of BRelu")
.SetDefault(static_cast<AttrType>(0));
AddAttr<AttrType>("t_max", "The max marginal value of BRelu")
.SetDefault(static_cast<AttrType>(24));
}
};
template <typename AttrType>
class SoftReluOpMaker : public framework::OpProtoAndCheckerMaker {
public:
SoftReluOpMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "Input of SoftRelu operator");
AddOutput("Y", "Output of SoftRelu operator");
AddComment(
"SoftRelu activation operator, soft_relu = log(1 + exp(max(min(x, "
"threshold), threshold)))");
AddAttr<AttrType>("threshold", "The threshold value of SoftRelu")
.SetDefault(static_cast<AttrType>(40));
}
};
template <typename AttrType>
class PowOpMaker : public framework::OpProtoAndCheckerMaker {
public:
PowOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "Input of Pow operator");
AddOutput("Y", "Output of Pow operator");
AddComment("Pow activation operator, pow(x, factor) = x^factor");
AddAttr<AttrType>("factor", "The exponential factor of Pow")
.SetDefault(static_cast<AttrType>(1));
}
};
template <typename AttrType>
class STanhOpMaker : public framework::OpProtoAndCheckerMaker {
public:
STanhOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "Input of STanh operator");
AddOutput("Y", "Output of STanh operator");
AddComment("STanh activation operator, stanh = b * tanh(a * x)");
AddAttr<AttrType>("scale_a", "The scale parameter of a for the input")
.SetDefault(static_cast<AttrType>(2 / 3));
AddAttr<AttrType>("scale_b", "The scale parameter of b for the input")
.SetDefault(static_cast<AttrType>(1.7159));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(sigmoid, ops::ActivationOp, ops::SigmoidOpMaker, sigmoid_grad,
ops::ActivationOpGrad);
REGISTER_OP_CPU_KERNEL(sigmoid,
ops::ActivationKernel<paddle::platform::CPUPlace, float,
ops::SigmoidFunctor<float>>);
REGISTER_OP_CPU_KERNEL(
sigmoid_grad, ops::ActivationGradKernel<paddle::platform::CPUPlace, float,
ops::SigmoidGradFunctor<float>>);
REGISTER_OP(exp, ops::ActivationOp, ops::ExpOpMaker, exp_grad,
ops::ActivationOpGrad);
REGISTER_OP_CPU_KERNEL(
exp,
ops::ActivationKernel<paddle::platform::CPUPlace, float, ops::ExpFunctor>);
REGISTER_OP_CPU_KERNEL(exp_grad,
ops::ActivationGradKernel<paddle::platform::CPUPlace,
float, ops::ExpGradFunctor>);
REGISTER_OP(relu, ops::ActivationOp, ops::ReluOpMaker, relu_grad,
ops::ActivationOpGrad);
REGISTER_OP_CPU_KERNEL(relu,
ops::ActivationKernel<paddle::platform::CPUPlace, float,
ops::ReluFunctor<float>>);
REGISTER_OP_CPU_KERNEL(
relu_grad, ops::ActivationGradKernel<paddle::platform::CPUPlace, float,
ops::ReluGradFunctor<float>>);
REGISTER_OP(tanh, ops::ActivationOp, ops::TanhOpMaker, tanh_grad,
ops::ActivationOpGrad);
REGISTER_OP_CPU_KERNEL(
tanh,
ops::ActivationKernel<paddle::platform::CPUPlace, float, ops::TanhFunctor>);
REGISTER_OP_CPU_KERNEL(
tanh_grad, ops::ActivationGradKernel<paddle::platform::CPUPlace, float,
ops::TanhGradFunctor<float>>);
REGISTER_OP(sqrt, ops::ActivationOp, ops::SqrtOpMaker, sqrt_grad,
ops::ActivationOpGrad);
REGISTER_OP_CPU_KERNEL(
sqrt,
ops::ActivationKernel<paddle::platform::CPUPlace, float, ops::SqrtFunctor>);
REGISTER_OP_CPU_KERNEL(
sqrt_grad, ops::ActivationGradKernel<paddle::platform::CPUPlace, float,
ops::SqrtGradFunctor<float>>);
REGISTER_OP(abs, ops::ActivationOp, ops::AbsOpMaker, abs_grad,
ops::ActivationOpGrad);
REGISTER_OP_CPU_KERNEL(
abs,
ops::ActivationKernel<paddle::platform::CPUPlace, float, ops::AbsFunctor>);
REGISTER_OP_CPU_KERNEL(abs_grad,
ops::ActivationGradKernel<paddle::platform::CPUPlace,
float, ops::AbsGradFunctor>);
REGISTER_OP(reciprocal, ops::ActivationOp, ops::ReciprocalOpMaker,
reciprocal_grad, ops::ActivationOpGrad);
REGISTER_OP_CPU_KERNEL(reciprocal,
ops::ActivationKernel<paddle::platform::CPUPlace, float,
ops::ReciprocalFunctor<float>>);
REGISTER_OP_CPU_KERNEL(
reciprocal_grad,
ops::ActivationGradKernel<paddle::platform::CPUPlace, float,
ops::ReciprocalGradFunctor<float>>);
REGISTER_OP(log, ops::ActivationOp, ops::LogOpMaker, log_grad,
ops::ActivationOpGrad);
REGISTER_OP_CPU_KERNEL(
log,
ops::ActivationKernel<paddle::platform::CPUPlace, float, ops::LogFunctor>);
REGISTER_OP_CPU_KERNEL(
log_grad, ops::ActivationGradKernel<paddle::platform::CPUPlace, float,
ops::LogGradFunctor<float>>);
REGISTER_OP(square, ops::ActivationOp, ops::SquareOpMaker, square_grad,
ops::ActivationOpGrad);
REGISTER_OP_CPU_KERNEL(square,
ops::ActivationKernel<paddle::platform::CPUPlace, float,
ops::SquareFunctor>);
REGISTER_OP_CPU_KERNEL(
square_grad, ops::ActivationGradKernel<paddle::platform::CPUPlace, float,
ops::SquareGradFunctor<float>>);
REGISTER_OP(brelu, ops::ActivationOp, ops::BReluOpMaker<float>, brelu_grad,
ops::ActivationOpGrad);
REGISTER_OP_CPU_KERNEL(brelu,
ops::BReluKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(brelu_grad,
ops::BReluGradKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP(soft_relu, ops::ActivationOp, ops::SoftReluOpMaker<float>,
soft_relu_grad, ops::ActivationOpGrad);
REGISTER_OP_CPU_KERNEL(soft_relu,
ops::SoftReluKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
soft_relu_grad, ops::SoftReluGradKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP(pow, ops::ActivationOp, ops::PowOpMaker<float>, pow_grad,
ops::ActivationOpGrad);
REGISTER_OP_CPU_KERNEL(pow, ops::PowKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(pow_grad,
ops::PowGradKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP(stanh, ops::ActivationOp, ops::STanhOpMaker<float>, stanh_grad,
ops::ActivationOpGrad);
REGISTER_OP_CPU_KERNEL(stanh,
ops::STanhKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(stanh_grad,
ops::STanhGradKernel<paddle::platform::CPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/operators/activation_op.h"
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(sigmoid,
ops::ActivationKernel<paddle::platform::GPUPlace, float,
ops::SigmoidFunctor<float>>);
REGISTER_OP_GPU_KERNEL(
sigmoid_grad, ops::ActivationGradKernel<paddle::platform::GPUPlace, float,
ops::SigmoidGradFunctor<float>>);
REGISTER_OP_GPU_KERNEL(
exp,
ops::ActivationKernel<paddle::platform::GPUPlace, float, ops::ExpFunctor>);
REGISTER_OP_GPU_KERNEL(exp_grad,
ops::ActivationGradKernel<paddle::platform::GPUPlace,
float, ops::ExpGradFunctor>);
REGISTER_OP_GPU_KERNEL(relu,
ops::ActivationKernel<paddle::platform::GPUPlace, float,
ops::ReluFunctor<float>>);
REGISTER_OP_GPU_KERNEL(
relu_grad, ops::ActivationGradKernel<paddle::platform::GPUPlace, float,
ops::ReluGradFunctor<float>>);
REGISTER_OP_GPU_KERNEL(
tanh,
ops::ActivationKernel<paddle::platform::GPUPlace, float, ops::TanhFunctor>);
REGISTER_OP_GPU_KERNEL(
tanh_grad, ops::ActivationGradKernel<paddle::platform::GPUPlace, float,
ops::TanhGradFunctor<float>>);
REGISTER_OP_GPU_KERNEL(
sqrt,
ops::ActivationKernel<paddle::platform::GPUPlace, float, ops::SqrtFunctor>);
REGISTER_OP_GPU_KERNEL(
sqrt_grad, ops::ActivationGradKernel<paddle::platform::GPUPlace, float,
ops::SqrtGradFunctor<float>>);
REGISTER_OP_GPU_KERNEL(
abs,
ops::ActivationKernel<paddle::platform::GPUPlace, float, ops::AbsFunctor>);
REGISTER_OP_GPU_KERNEL(abs_grad,
ops::ActivationGradKernel<paddle::platform::GPUPlace,
float, ops::AbsGradFunctor>);
REGISTER_OP_GPU_KERNEL(reciprocal,
ops::ActivationKernel<paddle::platform::GPUPlace, float,
ops::ReciprocalFunctor<float>>);
REGISTER_OP_GPU_KERNEL(
reciprocal_grad,
ops::ActivationGradKernel<paddle::platform::GPUPlace, float,
ops::ReciprocalGradFunctor<float>>);
REGISTER_OP_GPU_KERNEL(
log,
ops::ActivationKernel<paddle::platform::GPUPlace, float, ops::LogFunctor>);
REGISTER_OP_GPU_KERNEL(
log_grad, ops::ActivationGradKernel<paddle::platform::GPUPlace, float,
ops::LogGradFunctor<float>>);
REGISTER_OP_GPU_KERNEL(square,
ops::ActivationKernel<paddle::platform::GPUPlace, float,
ops::SquareFunctor>);
REGISTER_OP_GPU_KERNEL(
square_grad, ops::ActivationGradKernel<paddle::platform::GPUPlace, float,
ops::SquareGradFunctor<float>>);
REGISTER_OP_GPU_KERNEL(brelu,
ops::BReluKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(brelu_grad,
ops::BReluGradKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(soft_relu,
ops::SoftReluKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(
soft_relu_grad, ops::SoftReluGradKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(pow, ops::PowKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(pow_grad,
ops::PowGradKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(stanh,
ops::STanhKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(stanh_grad,
ops::STanhGradKernel<paddle::platform::GPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
namespace paddle {
namespace operators {
template <typename Place, typename T, typename Functor>
class ActivationKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* X = context.Input<framework::Tensor>("X");
auto* Y = context.Output<framework::Tensor>("Y");
Y->mutable_data<T>(context.GetPlace());
auto x = framework::EigenVector<T>::Flatten(*X);
auto y = framework::EigenVector<T>::Flatten(*Y);
auto place = context.GetEigenDevice<Place>();
Functor functor;
functor(place, x, y);
}
};
template <typename Place, typename T, typename Functor>
class ActivationGradKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* X = context.Input<framework::Tensor>("X");
auto* Y = context.Input<framework::Tensor>("Y");
auto* dY = context.Input<framework::Tensor>(framework::GradVarName("Y"));
auto* dX = context.Output<framework::Tensor>(framework::GradVarName("X"));
dX->mutable_data<T>(context.GetPlace());
auto dy = framework::EigenVector<T>::Flatten(*dY);
auto x = framework::EigenVector<T>::Flatten(*X);
auto y = framework::EigenVector<T>::Flatten(*Y);
auto dx = framework::EigenVector<T>::Flatten(*dX);
auto place = context.GetEigenDevice<Place>();
Functor functor;
functor(place, x, y, dy, dx);
}
};
// sigmoid(x) = 1 / (1 + exp(-x))
template <typename T>
struct SigmoidFunctor {
template <typename Device, typename X, typename Y>
void operator()(Device d, X x, Y y) {
y.device(d) = static_cast<T>(1) / (static_cast<T>(1) + (-x).exp());
}
};
template <typename T>
struct SigmoidGradFunctor {
template <typename Device, typename X, typename Y, typename dY, typename dX>
void operator()(Device d, X x, Y y, dY dy, dX dx) {
dx.device(d) = dy * y * (static_cast<T>(1) - y);
}
};
// exp(x) = e^x
struct ExpFunctor {
template <typename Device, typename X, typename Y>
void operator()(Device d, X x, Y y) {
y.device(d) = x.exp();
}
};
struct ExpGradFunctor {
template <typename Device, typename X, typename Y, typename dY, typename dX>
void operator()(Device d, X x, Y y, dY dy, dX dx) {
dx.device(d) = dy * y;
}
};
// relu(x) = max(x, 0)
template <typename T>
struct ReluFunctor {
template <typename Device, typename X, typename Y>
void operator()(Device d, X x, Y y) {
y.device(d) = x.cwiseMax(static_cast<T>(0));
}
};
template <typename T>
struct ReluGradFunctor {
template <typename Device, typename X, typename Y, typename dY, typename dX>
void operator()(Device d, X x, Y y, dY dy, dX dx) {
dx.device(d) = dy * (x > static_cast<T>(0)).template cast<T>();
}
};
// tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
struct TanhFunctor {
template <typename Device, typename X, typename Y>
void operator()(Device d, X x, Y y) {
y.device(d) = x.tanh();
}
};
template <typename T>
struct TanhGradFunctor {
template <typename Device, typename X, typename Y, typename dY, typename dX>
void operator()(Device d, X x, Y y, dY dy, dX dx) {
dx.device(d) = dy * (static_cast<T>(1) - y * y);
}
};
// sqrt(x) = x^(1/2)
struct SqrtFunctor {
template <typename Device, typename X, typename Y>
void operator()(Device d, X x, Y y) {
y.device(d) = x.sqrt();
}
};
template <typename T>
struct SqrtGradFunctor {
template <typename Device, typename X, typename Y, typename dY, typename dX>
void operator()(Device d, X x, Y y, dY dy, dX dx) {
const Y y_conj = Eigen::numext::conj(y);
dx.device(d) = static_cast<T>(0.5) * dy / y_conj;
}
};
// abs(x) = |x|
struct AbsFunctor {
template <typename Device, typename X, typename Y>
void operator()(Device d, X x, Y y) {
y.device(d) = x.abs();
}
};
struct AbsGradFunctor {
template <typename Device, typename X, typename Y, typename dY, typename dX>
void operator()(Device d, X x, Y y, dY dy, dX dx) {
dx.device(d) = dy * x.sign();
}
};
// reciprocal(x) = 1 / x
template <typename T>
struct ReciprocalFunctor {
template <typename Device, typename X, typename Y>
void operator()(Device d, X x, Y y) {
y.device(d) = static_cast<T>(1) / x;
}
};
template <typename T>
struct ReciprocalGradFunctor {
template <typename Device, typename X, typename Y, typename dY, typename dX>
void operator()(Device d, X x, Y y, dY dy, dX dx) {
dx.device(d) = dy * static_cast<T>(-1) * y * y;
}
};
// log(x) = natural logarithm of x
struct LogFunctor {
template <typename Device, typename X, typename Y>
void operator()(Device d, X x, Y y) {
y.device(d) = x.log();
}
};
template <typename T>
struct LogGradFunctor {
template <typename Device, typename X, typename Y, typename dY, typename dX>
void operator()(Device d, X x, Y y, dY dy, dX dx) {
dx.device(d) = dy * (static_cast<T>(1) / x);
}
};
// square(x) = x^2
struct SquareFunctor {
template <typename Device, typename X, typename Y>
void operator()(Device d, X x, Y y) {
y.device(d) = x.square();
}
};
template <typename T>
struct SquareGradFunctor {
template <typename Device, typename X, typename Y, typename dY, typename dX>
void operator()(Device d, X x, Y y, dY dy, dX dx) {
dx.device(d) = dy * static_cast<T>(2) * x;
}
};
template <typename Place, typename T, typename AttrType = T>
class BReluKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* X = context.Input<framework::Tensor>("X");
auto* Y = context.Output<framework::Tensor>("Y");
auto t_min = static_cast<T>(context.Attr<AttrType>("t_min"));
auto t_max = static_cast<T>(context.Attr<AttrType>("t_max"));
Y->mutable_data<T>(context.GetPlace());
auto x = framework::EigenVector<T>::Flatten(*X);
auto y = framework::EigenVector<T>::Flatten(*Y);
auto place = context.GetEigenDevice<Place>();
y.device(place) = x.cwiseMax(t_min).cwiseMin(t_max);
}
};
template <typename Place, typename T, typename AttrType = T>
class BReluGradKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* X = context.Input<framework::Tensor>("X");
auto* dY = context.Input<framework::Tensor>(framework::GradVarName("Y"));
auto* dX = context.Output<framework::Tensor>(framework::GradVarName("X"));
auto t_min = static_cast<T>(context.Attr<AttrType>("t_min"));
auto t_max = static_cast<T>(context.Attr<AttrType>("t_max"));
dX->mutable_data<T>(context.GetPlace());
auto dy = framework::EigenVector<T>::Flatten(*dY);
auto x = framework::EigenVector<T>::Flatten(*X);
auto dx = framework::EigenVector<T>::Flatten(*dX);
auto place = context.GetEigenDevice<Place>();
dx.device(place) = dy * ((x > t_min) * (x < t_max)).template cast<T>();
}
};
template <typename Place, typename T, typename AttrType = T>
class SoftReluKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* X = context.Input<framework::Tensor>("X");
auto* Y = context.Output<framework::Tensor>("Y");
auto threshold = static_cast<T>(context.Attr<AttrType>("threshold"));
Y->mutable_data<T>(context.GetPlace());
auto x = framework::EigenVector<T>::Flatten(*X);
auto y = framework::EigenVector<T>::Flatten(*Y);
auto place = context.GetEigenDevice<Place>();
auto temp = x.cwiseMax(-threshold).cwiseMin(threshold).eval();
y.device(place) = (static_cast<T>(1) + temp.exp()).log();
}
};
template <typename Place, typename T, typename AttrType = T>
class SoftReluGradKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* X = context.Input<framework::Tensor>("X");
auto* Y = context.Input<framework::Tensor>("Y");
auto* dY = context.Input<framework::Tensor>(framework::GradVarName("Y"));
auto* dX = context.Output<framework::Tensor>(framework::GradVarName("X"));
auto threshold = static_cast<T>(context.Attr<AttrType>("threshold"));
dX->mutable_data<T>(context.GetPlace());
auto x = framework::EigenVector<T>::Flatten(*X);
auto y = framework::EigenVector<T>::Flatten(*Y);
auto dy = framework::EigenVector<T>::Flatten(*dY);
auto dx = framework::EigenVector<T>::Flatten(*dX);
auto place = context.GetEigenDevice<Place>();
auto temp = ((x > -threshold) * (x < threshold)).template cast<T>().eval();
dx.device(place) = dy * (static_cast<T>(1) - (-y).exp()) * temp;
}
};
template <typename Place, typename T, typename AttrType = T>
class PowKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* X = context.Input<framework::Tensor>("X");
auto* Y = context.Output<framework::Tensor>("Y");
auto factor = static_cast<T>(context.Attr<AttrType>("factor"));
Y->mutable_data<T>(context.GetPlace());
auto x = framework::EigenVector<T>::Flatten(*X);
auto y = framework::EigenVector<T>::Flatten(*Y);
auto place = context.GetEigenDevice<Place>();
y.device(place) = x.pow(factor);
}
};
template <typename Place, typename T, typename AttrType = T>
class PowGradKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* X = context.Input<framework::Tensor>("X");
auto* dY = context.Input<framework::Tensor>(framework::GradVarName("Y"));
auto* dX = context.Output<framework::Tensor>(framework::GradVarName("X"));
auto factor = static_cast<T>(context.Attr<AttrType>("factor"));
dX->mutable_data<T>(context.GetPlace());
auto dy = framework::EigenVector<T>::Flatten(*dY);
auto x = framework::EigenVector<T>::Flatten(*X);
auto dx = framework::EigenVector<T>::Flatten(*dX);
auto place = context.GetEigenDevice<Place>();
dx.device(place) = dy * factor * x.pow(factor - static_cast<T>(1));
}
};
template <typename Place, typename T, typename AttrType = T>
class STanhKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* X = context.Input<framework::Tensor>("X");
auto* Y = context.Output<framework::Tensor>("Y");
auto scale_a = static_cast<T>(context.Attr<AttrType>("scale_a"));
auto scale_b = static_cast<T>(context.Attr<AttrType>("scale_b"));
Y->mutable_data<T>(context.GetPlace());
auto x = framework::EigenVector<T>::Flatten(*X);
auto y = framework::EigenVector<T>::Flatten(*Y);
auto place = context.GetEigenDevice<Place>();
y.device(place) = scale_b * (scale_a * x).tanh();
}
};
template <typename Place, typename T, typename AttrType = T>
class STanhGradKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* X = context.Input<framework::Tensor>("X");
auto* dY = context.Input<framework::Tensor>(framework::GradVarName("Y"));
auto* dX = context.Output<framework::Tensor>(framework::GradVarName("X"));
auto scale_a = static_cast<T>(context.Attr<AttrType>("scale_a"));
auto scale_b = static_cast<T>(context.Attr<AttrType>("scale_b"));
dX->mutable_data<T>(context.GetPlace());
auto dy = framework::EigenVector<T>::Flatten(*dY);
auto x = framework::EigenVector<T>::Flatten(*X);
auto dx = framework::EigenVector<T>::Flatten(*dX);
auto place = context.GetEigenDevice<Place>();
auto temp = (scale_a * x).tanh() * (scale_a * x).tanh();
dx.device(place) = dy * scale_a * scale_b * (static_cast<T>(1) - temp);
}
};
} // namespace operators
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/clip_op.h"
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(clip,
ops::ClipKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(clip_grad,
ops::ClipGradKernel<paddle::platform::GPUPlace, float>);
此差异已折叠。
此差异已折叠。
/* Copyright (c) 2016 PaddlePaddle Authors All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/gemm_conv2d_op.h"
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(
conv2d, ops::GemmConv2DKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(
conv2d_grad, ops::GemmConvGrad2DKernel<paddle::platform::GPUPlace, float>);
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册