control_flow.py 62.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
D
dzhwinter 已提交
14
import contextlib
D
dzhwinter 已提交
15

Y
yuyang18 已提交
16
from layer_function_generator import autodoc, templatedoc
Y
Yu Yang 已提交
17
from tensor import assign, fill_constant
18
from .. import core
19
from ..framework import Program, Variable, Operator
20
from ..layer_helper import LayerHelper, unique_name
J
JiayiFeng 已提交
21
from ..initializer import force_init_on_cpu
22
from ops import logical_and, logical_not, logical_or
Y
yuyang18 已提交
23
import numpy
D
dzhwinter 已提交
24

Q
QI JUN 已提交
25
__all__ = [
Y
ying 已提交
26 27 28 29 30 31 32
    'split_lod_tensor',
    'merge_lod_tensor',
    'BlockGuard',
    'BlockGuardWithCompletion',
    'StaticRNNMemoryLink',
    'WhileGuard',
    'While',
33
    'Switch',
Y
ying 已提交
34 35 36 37 38 39 40 41
    'lod_rank_table',
    'max_sequence_len',
    'lod_tensor_to_array',
    'array_to_lod_tensor',
    'increment',
    'array_write',
    'create_array',
    'less_than',
42
    'equal',
Y
ying 已提交
43 44 45 46 47 48 49 50 51 52
    'array_read',
    'shrink_memory',
    'array_length',
    'IfElse',
    'DynamicRNN',
    'ConditionalBlock',
    'StaticRNN',
    'reorder_lod_tensor_by_rank',
    'ParallelDo',
    'Print',
53
    'is_empty',
D
dzhwinter 已提交
54 55
]

Y
Yu Yang 已提交
56

57
def split_lod_tensor(input, mask, level=0):
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
    """
    **split_lod_tensor**

    This function takes in an input that contains the complete lod information,
    and takes in a mask which is used to mask certain parts of the input.
    The output is the true branch and the false branch with the mask applied to
    the input at a certain level in the tensor.

    Args:
        input(tuple|list|None): The input tensor that contains complete
                                lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
        level(int): The specific lod level to rank.

    Returns:
        Variable: The true branch of tensor as per the mask applied to input.
        Variable: The false branch of tensor as per the mask applied to input.

    Examples:
        .. code-block:: python

          x = layers.data(name='x', shape=[1])
          x.persistable = True

          y = layers.data(name='y', shape=[1])
          y.persistable = True

          out_true, out_false = layers.split_lod_tensor(
                input=x, mask=y, level=level)
    """
88
    helper = LayerHelper('split_lod_tensor', **locals())
F
fengjiayi 已提交
89 90
    out_true = helper.create_tmp_variable(dtype=input.dtype)
    out_false = helper.create_tmp_variable(dtype=input.dtype)
91 92 93 94 95 96 97 98 99 100 101 102
    helper.append_op(
        type='split_lod_tensor',
        inputs={
            'X': input,
            'Mask': mask,
        },
        outputs={'OutTrue': out_true,
                 'OutFalse': out_false},
        attrs={'level': level})
    return out_true, out_false


103
def merge_lod_tensor(in_true, in_false, x, mask, level=0):
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
    """
    **merge_lod_tensor**

    This function takes in an input :math:`x`, the True branch, the False
    branch and a binary :math:`mask`. Using this information, this function
    merges the True and False branches of the tensor into a single Output
    at a certain lod level indiacted by :math:`level`.

    Args:
        in_true(tuple|list|None): The True branch to be merged.
        in_false(tuple|list|None): The False branch to be merged.
        x(tuple|list|None): The input tensor that contains complete
                            lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
        level(int): The specific lod level to rank.

    Returns:
        Variable: The merged output tensor.

    Examples:
        .. code-block:: python

          x = layers.data(
                      name='x', shape=[1], dtype='float32', stop_gradient=False)
          y = layers.data(
                name='y', shape=[1], dtype='bool', stop_gradient=False)

          level = 0

          out_true, out_false = layers.split_lod_tensor(
                input=x, mask=y, level=level)
          out = layers.merge_lod_tensor(
                in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
    """
138
    helper = LayerHelper('merge_lod_tensor', **locals())
F
fengjiayi 已提交
139
    out = helper.create_tmp_variable(dtype=in_true.dtype)
140 141 142 143 144 145 146 147 148 149 150
    helper.append_op(
        type='merge_lod_tensor',
        inputs={'X': x,
                'Mask': mask,
                'InTrue': in_true,
                'InFalse': in_false},
        outputs={'Out': out},
        attrs={'level': level})
    return out


Y
Yan Chunwei 已提交
151 152 153 154 155 156 157
def Print(input,
          first_n=-1,
          message=None,
          summarize=-1,
          print_tensor_name=True,
          print_tensor_type=True,
          print_tensor_shape=True,
Y
yangyaming 已提交
158 159
          print_tensor_lod=True,
          print_phase='both'):
Y
Yan Chunwei 已提交
160 161 162 163 164 165 166 167 168 169
    '''
    **Print operator**

    This creates a print op that will print when a tensor is accessed.

    Wraps the tensor passed in so that whenever that a tensor is accessed,
    the message `message` is printed, along with the current value of the
    tensor `t`.

    Args:
Y
yangyaming 已提交
170 171 172 173 174 175 176 177 178
        input (Variable): A Tensor to print.
        summarize (int): Print this number of elements in the tensor, will print
                all if left is negative.
        message (str): A string message to print as a prefix.
        first_n (int): Only log `first_n` number of times.
        print_tensor_name (bool): Print the tensor name.
        print_tensor_type (bool): Print the tensor type.
        print_tensor_shape (bool): Print the tensor shape.
        print_tensor_lod (bool): Print the tensor lod.
179
        print_phase (str): Which phase to displace, including 'forward',
Y
yangyaming 已提交
180 181
                'backward' and 'both'. If set to 'backward' or 'both', will
                print the gradients of input tensor.
Y
Yan Chunwei 已提交
182 183

    Returns:
Y
yangyaming 已提交
184
        Variable: Output tensor, same data with input tensor.
Y
Yan Chunwei 已提交
185 186 187 188 189 190 191 192 193

    Examples:
        .. code-block:: python

        value = some_layer(...)
        Print(value, summarize=10,
              message="The content of some_layer: ")
    '''
    helper = LayerHelper('print', **locals())
Y
yangyaming 已提交
194
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
Y
Yan Chunwei 已提交
195 196
    helper.append_op(
        type='print',
Y
yangyaming 已提交
197
        inputs={'In': input},
Y
Yan Chunwei 已提交
198 199 200 201 202 203 204 205
        attrs={
            'first_n': first_n,
            'summarize': summarize,
            'message': message or "",
            'print_tensor_name': print_tensor_name,
            'print_tensor_type': print_tensor_type,
            'print_tensor_shape': print_tensor_shape,
            'print_tensor_lod': print_tensor_lod,
Y
yangyaming 已提交
206 207 208
            'print_phase': print_phase.upper()
        },
        outputs={'Out': out})
Y
Yan Chunwei 已提交
209 210 211
    return out


Y
Yu Yang 已提交
212 213
class BlockGuard(object):
    """
214 215 216 217
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
Y
Yu Yang 已提交
218 219
    """

220 221
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
222
            raise TypeError("BlockGuard takes a program")
223
        self.main_program = main_program
Y
Yu Yang 已提交
224 225

    def __enter__(self):
226
        self.main_program.create_block()
Y
Yu Yang 已提交
227 228

    def __exit__(self, exc_type, exc_val, exc_tb):
229
        self.main_program.rollback()
Y
Yu Yang 已提交
230 231 232 233 234
        if exc_type is not None:
            return False  # re-raise exception
        return True


Y
Yang Yang 已提交
235
class ParallelDo(object):
236
    """
L
Luo Tao 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
    ParallelDo is used to represent multi-thread data parallel processing.

    Its vanilla implementation can be shown as the following (:math:`|` means 
    single thread and :math:`||||` means multiple threads)

    .. code-block:: text

      In the forward pass
        |      Split input onto different devices
        |      Copy parameter onto different devices
        ||||   Compute forward pass in parallel
        |      Merge output from different devices

      In the backward pass
        |      Split output@grad onto different devices
        ||||   Compute backward pass in parallel
        |      accumulate param@grad from different devices to the first device
        |      Merge input@grad from different devices
        |      Copy param@grad to the place of parallel_do_op

    Examples:

    .. code-block:: python

      images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE)
      label = fluid.layers.data(name='label', shape=[1], dtype='int64')

      # ParallelDo version & Single-thread version
      if thread_num > 1:
          places = fluid.layers.get_places(thread_num)
          pd = fluid.layers.ParallelDo(places)
          with pd.do():
              images = pd.read_input(images)
              label = pd.read_input(label)
              predict = cnn_model(images)
              cost = fluid.layers.cross_entropy(input=predict, label=label)

              avg_cost = fluid.layers.mean(x=cost)
              pd.write_output(avg_cost)

          avg_cost = pd()
          avg_cost = fluid.layers.mean(avg_cost)
      else:
          predict = cnn_model(images)
          cost = fluid.layers.cross_entropy(input=predict, label=label)
          avg_cost = fluid.layers.mean(x=cost)

    .. warning::
    
       It will be soon deprecated, please use ParallelExecutor instead.
Y
Yang Yang 已提交
287 288
    """

Y
Yang Yang 已提交
289
    def __init__(self, places, use_nccl=False, name=None):
Y
Yang Yang 已提交
290 291 292 293 294
        self.helper = LayerHelper("parallel_do", name=name)
        self.inputs = []
        self.places = places
        self.outputs = []
        self.status = StaticRNN.BEFORE_RNN_BLOCK
Y
Yang Yang 已提交
295
        self.use_nccl = use_nccl
Y
Yang Yang 已提交
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318

    def do(self):
        return BlockGuardWithCompletion(self)

    def parent_block(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

    def read_input(self, var):
        self.inputs.append(var)
Y
Yang Yang 已提交
319
        return var
Y
Yang Yang 已提交
320 321 322 323 324 325 326 327 328 329

    def write_output(self, var):
        self.outputs.append(var)

    def get_parameters(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()

        local_inputs = set()
Y
Yang Yang(Tony) 已提交
330
        params = list()
Y
Yang Yang 已提交
331 332 333 334 335 336 337 338
        for var in self.inputs:
            local_inputs.add(var.name)

        for op in current_block.ops:
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)
Y
Yang Yang(Tony) 已提交
339 340 341 342 343

            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

Y
Yang Yang 已提交
344
        params = list(set(params))
Y
Yang Yang 已提交
345 346 347 348 349 350 351 352 353 354 355

        return [parent_block.var(name) for name in params]

    def complete_op(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

Y
Yang Yang 已提交
356 357 358 359 360 361 362 363 364 365
        self.outputs = [
            parent_block.create_var(
                name=o.name,
                shape=o.shape,
                dtype=o.dtype,
                lod_level=o.lod_level,
                persistable=o.persistable,
                stop_gradient=o.stop_gradient) for o in self.outputs
        ]

Y
Yang Yang 已提交
366
        inputs = [parent_block.var(i.name) for i in self.inputs]
Y
Yang Yang 已提交
367
        outputs = [parent_block.var(o.name) for o in self.outputs]
Y
Yang Yang 已提交
368 369 370 371 372 373 374 375

        parent_block.append_op(
            type='parallel_do',
            inputs={
                'inputs': inputs,
                'parameters': self.get_parameters(),
                'places': self.places
            },
Y
Yang Yang 已提交
376
            outputs={'outputs': outputs,
Y
Yang Yang 已提交
377
                     'parallel_scopes': [step_scope]},
Y
Yang Yang 已提交
378 379
            attrs={'sub_block': current_block,
                   'use_nccl': self.use_nccl})
Y
Yang Yang 已提交
380 381 382 383 384 385 386


class BlockGuardWithCompletion(BlockGuard):
    """
    BlockGuardWithCompletion class.

    BlockGuardWithCompletion class is used to create an op with a block in a program.
387 388
    """

Y
Yu Yang 已提交
389
    def __init__(self, rnn):
Y
Yang Yang 已提交
390 391 392 393
        if not (isinstance(rnn, StaticRNN) or isinstance(rnn, ParallelDo)):
            raise TypeError(
                "BlockGuardWithCompletion takes a StaticRNN or ParallelDo")
        super(BlockGuardWithCompletion, self).__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
394 395 396 397
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
Y
Yang Yang 已提交
398
        return super(BlockGuardWithCompletion, self).__enter__()
Y
Yu Yang 已提交
399 400

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
401 402
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
403
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
Y
Yang Yang 已提交
404 405 406
        self.rnn.complete_op()
        return super(BlockGuardWithCompletion, self).__exit__(exc_type, exc_val,
                                                              exc_tb)
Y
Yu Yang 已提交
407 408 409 410


class StaticRNNMemoryLink(object):
    """
411 412 413 414 415 416 417 418 419 420 421 422
    StaticRNNMemoryLink class.

    Args:
        init: the initial variable for Memory
        init: Variable
        pre_mem: the memory variable in previous time step
        pre_mem: Variable
        mem: the memory variable in current time step
        mem: Variable

    StaticRNNMemoryLink class is used to create a link between two
    memory cells of a StaticRNN.
Y
Yu Yang 已提交
423 424 425 426 427 428 429 430 431
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


class StaticRNN(object):
432 433 434 435 436 437
    """
    StaticRNN class.

    StaticRNN class is used to create a StaticRNN. The RNN will have its
    own parameters like inputs, outputs, memories, status and length.
    """
Y
Yu Yang 已提交
438 439 440 441
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

442 443
    def __init__(self, name=None):
        self.helper = LayerHelper("static_rnn", name=name)
Y
Yu Yang 已提交
444 445 446 447 448 449 450 451
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
Y
Yang Yang 已提交
452
        return BlockGuardWithCompletion(self)
Y
Yu Yang 已提交
453 454 455 456 457

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

458 459 460 461 462 463 464
    def memory(self,
               init=None,
               shape=None,
               batch_ref=None,
               init_value=0.0,
               init_batch_dim_idx=0,
               ref_batch_dim_idx=1):
465 466 467 468 469 470 471 472 473
        """
        Args:
            init: boot memory, if not set, a shape, batch_ref must be provided
            shape: shape of the boot memory
            batch_ref: batch size reference variable
            init_value: the init value of boot memory
            init_batch_dim_idx: the index of batch size in init's dimension
            ref_batch_dim_idx: the index of batch size in batch_ref's dimension
        """
Y
Yu Yang 已提交
474 475
        self._assert_in_rnn_block_('memory')
        if init is None:
476
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
477
                raise ValueError(
478
                    "if init is None, memory at least need shape and batch_ref")
Y
Yu Yang 已提交
479
            parent_block = self.parent_block()
Y
Yu Yang 已提交
480 481
            var_name = unique_name.generate("@".join(
                [self.helper.name, "memory_boot"]))
Y
Yu Yang 已提交
482
            boot_var = parent_block.create_var(
483 484
                name=var_name,
                shape=shape,
F
fengjiayi 已提交
485
                dtype=batch_ref.dtype,
486
                persistable=False)
Y
Yu Yang 已提交
487 488

            parent_block.append_op(
489 490
                type="fill_constant_batch_size_like",
                inputs={'Input': [batch_ref]},
Y
Yu Yang 已提交
491 492 493
                outputs={'Out': [boot_var]},
                attrs={
                    'value': init_value,
494
                    'shape': boot_var.shape,
F
fengjiayi 已提交
495
                    'dtype': boot_var.dtype,
496 497
                    'input_dim_idx': ref_batch_dim_idx,
                    'output_dim_idx': init_batch_dim_idx
Y
Yu Yang 已提交
498 499 500 501 502
                })

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
Y
Yu Yang 已提交
503
                name=unique_name.generate("@".join([self.helper.name, "mem"])),
F
fengjiayi 已提交
504
                dtype=init.dtype,
Y
Yu Yang 已提交
505 506 507 508 509 510 511 512 513 514
                shape=init.shape)
            self.memories[pre_mem.name] = StaticRNNMemoryLink(
                init=init, pre_mem=pre_mem)
            return pre_mem

    def step_input(self, x):
        self._assert_in_rnn_block_('step_input')
        if not isinstance(x, Variable):
            raise TypeError("step input takes a Variable")
        if self.seq_len is None:
Y
Yu Yang 已提交
515 516
            self.seq_len = x.shape[0]
        elif self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
517 518 519
            raise ValueError("Static RNN only take fix seq_len input")

        ipt = self.helper.create_variable(
F
fengjiayi 已提交
520
            name=x.name, dtype=x.dtype, shape=list(x.shape[1:]), type=x.type)
Y
Yu Yang 已提交
521 522 523 524 525 526 527 528
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
        self._assert_in_rnn_block_('step_output')
        if not isinstance(o, Variable):
            raise TypeError("step output takes a Variable")

F
fengjiayi 已提交
529
        tmp_o = self.helper.create_tmp_variable(dtype=o.dtype)
Y
Yu Yang 已提交
530 531 532 533
        self.helper.append_op(
            type='rnn_memory_helper',
            inputs={'X': [o]},
            outputs={'Out': tmp_o},
F
fengjiayi 已提交
534
            attrs={'dtype': o.dtype})
Y
Yu Yang 已提交
535

Y
Yu Yang 已提交
536
        out_var = self.parent_block().create_var(
Y
Yu Yang 已提交
537 538
            name=tmp_o.name,
            shape=[self.seq_len] + list(tmp_o.shape),
F
fengjiayi 已提交
539
            dtype=tmp_o.dtype)
Y
Yu Yang 已提交
540 541 542 543 544 545 546 547 548 549 550 551 552

        self.outputs.append(out_var)

    def output(self, *outputs):
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
        if not isinstance(mem, Variable) or not isinstance(var, Variable):
            raise TypeError("update memory should take variables")
        self.memories[mem.name].mem = var

    def parent_block(self):
553
        prog = self.helper.main_program
Y
Yu Yang 已提交
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

Y
Yang Yang 已提交
569
    def complete_op(self):
570 571
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
Y
Yu Yang 已提交
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
        parent_block = self.parent_block()

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

        parameters = [parent_block.var(name) for name in params]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

        boot_memories = []
        pre_memories = []
        memories = []
        for _, mem in self.memories.iteritems():
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
F
fengjiayi 已提交
611
            new_mem = self.helper.create_tmp_variable(dtype=mem_var.dtype)
Y
Yu Yang 已提交
612 613 614 615 616

            rnn_block.append_op(
                type='rnn_memory_helper',
                inputs={'X': [mem_var]},
                outputs={'Out': [new_mem]},
F
fengjiayi 已提交
617
                attrs={'dtype': mem_var.dtype})
Y
Yu Yang 已提交
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632

            memories.append(new_mem.name)

        parent_block.append_op(
            type='recurrent',
            inputs={
                'inputs': inlinks,
                'initial_states': boot_memories,
                'parameters': parameters
            },
            outputs={'outputs': outlinks,
                     'step_scopes': [step_scope]},
            attrs={
                'ex_states': pre_memories,
                'states': memories,
633
                'sub_block': rnn_block
Y
Yu Yang 已提交
634
            })
Y
Yu Yang 已提交
635 636


Y
Yang Yang(Tony) 已提交
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
class WhileGuard(BlockGuard):
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
        super(WhileGuard, self).__init__(while_op.helper.main_program)
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
        return super(WhileGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
        self.while_op.complete()
        return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb)


class While(object):
    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

661 662
    def __init__(self, cond, name=None):
        self.helper = LayerHelper("while", name=name)
Y
Yang Yang(Tony) 已提交
663 664 665 666
        self.status = While.BEFORE_WHILE_BLOCK
        if not isinstance(cond, Variable):
            raise TypeError("condition should be a variable")
        assert isinstance(cond, Variable)
667
        if cond.dtype != core.VarDesc.VarType.BOOL:
Y
Yang Yang(Tony) 已提交
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
            raise TypeError("condition should be a bool variable")
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
            raise TypeError("condition should be a bool scalar")
        self.cond_var = cond

    def block(self):
        return WhileGuard(self)

    def complete(self):
        main_program = self.helper.main_program
        while_block = main_program.current_block()
        parent_block = main_program.block(main_program.current_block()
                                          .parent_idx)

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
        for op in while_block.ops:
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in inner_outputs:
                        x_name_list.add(in_var_name)

            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    inner_outputs.add(out_var_name)

        out_vars = []
        for inner_out_name in inner_outputs:
            if inner_out_name in parent_block.vars:
                out_vars.append(parent_block.var(inner_out_name))

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        parent_block.append_op(
            type='while',
            inputs={
Y
Yu Yang 已提交
705 706
                'X':
                [parent_block.var_recursive(x_name) for x_name in x_name_list],
Y
Yang Yang(Tony) 已提交
707 708 709 710
                'Condition': [self.cond_var]
            },
            outputs={'Out': out_vars,
                     'StepScopes': [step_scope]},
711
            attrs={'sub_block': while_block})
Y
Yang Yang(Tony) 已提交
712 713


714
def lod_rank_table(x, level=0):
Y
yangyaming 已提交
715 716 717
    """LoD Rank Table Operator. Given an input variable **x** and a level number
    of LoD, this layer creates a LodRankTable object. A LoDRankTable object
    contains a list of bi-element tuples. Each tuple consists of an index and
718
    a length, both of which are int type. Refering to specified level of LoD,
Y
yangyaming 已提交
719 720 721
    the index is the sequence index number and the length representes the
    sequence length. Please note that the list is ranked in descending order by
    the length. The following is an example:
Y
yangyaming 已提交
722 723 724 725

        .. code-block:: text

            x is a LoDTensor:
Y
yangyaming 已提交
726
                x.lod = [[0,                2, 3],
Y
yangyaming 已提交
727 728 729
                         [0,             5, 6, 7]]
                x.data = [a, b, c, d, e, f, g]

Y
yangyaming 已提交
730 731 732
            1. set level to 0:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=0)
Y
yangyaming 已提交
733

Y
yangyaming 已提交
734 735 736 737 738 739 740 741 742
                Get:
                    lod_rank_table_obj.items() = [(0, 2), (1, 1)]

            2. set level to 1:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=1)

                Get:
                    lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)]
Y
yangyaming 已提交
743 744 745 746

    Args:
        x (Variable): Input variable, a LoDTensor based which to create the lod
            rank table.
Y
yangyaming 已提交
747 748
        level (int): Specify the LoD level, on which to create the lod rank
            table.
Y
yangyaming 已提交
749 750 751 752 753 754 755 756

    Returns:
        Variable: The created LoDRankTable object.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10],
757
                                  dtype='float32', lod_level=1)
Y
yangyaming 已提交
758
            out = layers.lod_rank_table(x=x, level=0)
759
    """
Y
Yu Yang 已提交
760 761 762
    helper = LayerHelper("lod_rank_table", **locals())
    table = helper.create_variable(
        type=core.VarDesc.VarType.LOD_RANK_TABLE,
Y
Yu Yang 已提交
763
        name=unique_name.generate("lod_rank_table"))
Y
Yu Yang 已提交
764 765 766 767 768 769
    helper.append_op(
        type='lod_rank_table',
        inputs={'X': x},
        outputs={'Out': table},
        attrs={'level': level})
    return table
Y
Yu Yang 已提交
770 771


Y
yuyang18 已提交
772
@templatedoc()
773
def max_sequence_len(rank_table):
Y
yuyang18 已提交
774 775 776 777 778 779 780 781
    """
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x = fluid.layers.data(name='x', shape=[10], dtype='float32',
    >>>                       lod_level=1)
    >>> rank_table = layers.lod_rank_table(x=x, level=0)
    >>> max_seq_len = layers.max_sequence_len(rank_table)
Y
yangyaming 已提交
782 783

    Args:
Y
yuyang18 已提交
784
        rank_table(${rank_table_type}): ${rank_table_comment}.
Y
yangyaming 已提交
785 786

    Returns:
Y
yuyang18 已提交
787
        ${out_comment}.
F
fengjiayi 已提交
788 789 790 791 792 793 794 795 796 797
    """
    helper = LayerHelper("max_seqence_len", **locals())
    res = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="max_sequence_len",
        inputs={"RankTable": rank_table},
        outputs={"Out": res})
    return res


798
def lod_tensor_to_array(x, table):
799
    """ Convert a LOD_TENSOR to an LOD_TENSOR_ARRAY.
800 801

    Args:
802
        x (Variable|list): The LOD tensor to be converted to a LOD tensor array.
803 804 805 806 807 808 809 810 811 812 813 814 815 816
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
                                descending order.

    Returns:
        Variable: The variable of type array that has been converted from a
                  tensor.

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
817
    """
818 819
    helper = LayerHelper("lod_tensor_to_array", **locals())
    array = helper.create_variable(
Y
Yu Yang 已提交
820
        name=unique_name.generate("lod_tensor_to_array"),
821
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
822
        dtype=x.dtype)
823 824 825 826 827 828 829 830
    helper.append_op(
        type='lod_tensor_to_array',
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': array})
    return array


831
def array_to_lod_tensor(x, table):
832
    """Convert a LoD_Tensor_Aarry to an LoDTensor.
833 834

    Args:
835
        x (Variable|list): The lod tensor array to be converted to a tensor.
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
                                descending order.

    Returns:
        Variable: The variable of type tensor that has been converted
                  from an array.

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
          lod_tensor = fluid.layers.array_to_lod_tensor(array, table)
851
    """
852
    helper = LayerHelper("array_to_lod_tensor", **locals())
F
fengjiayi 已提交
853
    tmp = helper.create_tmp_variable(dtype=x.dtype)
854 855 856 857 858 859 860 861
    helper.append_op(
        type="array_to_lod_tensor",
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': tmp})
    return tmp


862
def increment(x, value=1.0, in_place=True):
863 864
    """
    This function performs an operation that increments each value in the
865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
    input :math:`x` by an amount: :math:`value` as mentioned in the input
    parameter. This operation is performed in-place by default.

    Args:
        x (Variable|list): The tensor that has the input values.
        value (float): The amount by which the values should be incremented.
        in_place (bool): If the increment should be performed in-place.

    Returns:
        Variable: The tensor variable storing the transformation of
                  element-wise increment of each value in the input.

    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[32, 32], dtype='float32')
          data = fluid.layers.increment(x=data, value=3.0, in_place=True)
882
    """
Y
Yu Yang 已提交
883
    helper = LayerHelper("increment", **locals())
Y
Yang Yang(Tony) 已提交
884
    if not in_place:
F
fengjiayi 已提交
885
        out = helper.create_tmp_variable(dtype=x.dtype)
Y
Yang Yang(Tony) 已提交
886 887
    else:
        out = x
Y
Yu Yang 已提交
888 889 890
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
Y
Yang Yu 已提交
891
        outputs={'Out': [out]},
892
        attrs={'step': float(value)})
Y
Yang Yu 已提交
893
    return out
Y
Yu Yang 已提交
894 895


896
def array_write(x, i, array=None):
897 898 899 900 901
    """
    This function writes the given input variable to the specified position
    indicating by the arrary index to an output LOD_TENSOR_ARRAY. If the
    output LOD_TENSOR_ARRAY is not given(None), a new one will be created and
    returned.
902 903 904

    Args:
        x (Variable|list): The input tensor from which the data will be read.
905 906 907 908 909 910 911 912
        i (Variable|list): The index of the output LOD_TENSOR_ARRAY, pointing to
                           the position to which the input tensor will be
                           written.
        array (Variable|list): The output LOD_TENSOR_ARRAY to which the input
                               tensor will be written. If this parameter is
                               NONE, a new LOD_TENSOR_ARRAY will be created and
                               returned.

913
    Returns:
914
        Variable: The output LOD_TENSOR_ARRAY where the input tensor is written.
915 916 917 918 919 920 921

    Examples:
        .. code-block::python

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = layers.array_write(tmp, i=i)
922
    """
Y
Yu Yang 已提交
923 924 925 926 927
    helper = LayerHelper('array_write', **locals())
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
928
            dtype=x.dtype)
Y
Yu Yang 已提交
929 930 931 932 933 934 935 936
    helper.append_op(
        type='write_to_array',
        inputs={'X': [x],
                'I': [i]},
        outputs={'Out': [array]})
    return array


937
def create_array(dtype):
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
    """This function creates an array of type :math:`LOD_TENSOR_ARRAY` using the
    LayerHelper.

    Args:
        dtype (int|float): The data type of the elements in the array.

    Returns:
        Variable: The tensor variable storing the elements of data type.

    Examples:
        .. code-block:: python

          data = fluid.layers.create_array(dtype='float32')

    """
Y
Yang Yang(Tony) 已提交
953 954 955 956 957 958 959
    helper = LayerHelper("array", **locals())
    return helper.create_variable(
        name="{0}.out".format(helper.name),
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
        dtype=dtype)


Y
yuyang18 已提交
960 961
@templatedoc()
def less_than(x, y, force_cpu=None, cond=None, **ignored):
962
    """
Y
yuyang18 已提交
963
    ${comment}
964

Y
yuyang18 已提交
965 966
    >>> import paddle.fluid as fluid
    >>> less = fluid.layers.less_than(x=label, y=limit)
967 968

    Args:
Y
yuyang18 已提交
969 970 971
        x(${x_type}): ${x_comment}.
        y(${y_type}): ${y_comment}.
        force_cpu(${force_cpu_type}): ${force_cpu_comment}.
972 973 974
        cond(Variable|None): Optional output variable to store the result of *less_than*

    Returns:
Y
yuyang18 已提交
975
        ${out_comment}.
976
    """
Y
Yang Yang(Tony) 已提交
977 978 979 980 981
    helper = LayerHelper("less_than", **locals())
    if cond is None:
        cond = helper.create_tmp_variable(dtype='bool')
        cond.stop_gradient = True

Y
yuyang18 已提交
982 983 984 985 986 987
    attrs = dict()
    if force_cpu is not None:
        attrs['force_cpu'] = force_cpu
    elif force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

Y
Yang Yang(Tony) 已提交
988
    helper.append_op(
J
JiayiFeng 已提交
989 990 991 992
        type='less_than',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
Y
yuyang18 已提交
993
        attrs=attrs)
Y
Yang Yang(Tony) 已提交
994 995 996
    return cond


997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
def equal(x, y, cond=None, **ignored):
    """
    **equal**

    This layer returns the truth value of :math:`x == y` elementwise.

    Args:
        x(Variable): First operand of *equal*
        y(Variable): Second operand of *equal*
        cond(Variable|None): Optional output variable to store the result of *equal*

    Returns:
        Variable: The tensor variable storing the output of *equal*.

    Examples:
        .. code-block:: python

          less = fluid.layers.equal(x=label, y=limit)
    """
    helper = LayerHelper("equal", **locals())
    if cond is None:
        cond = helper.create_tmp_variable(dtype='bool')
        cond.stop_gradient = True

    helper.append_op(
        type='equal', inputs={'X': [x],
                              'Y': [y]}, outputs={'Out': [cond]})
    return cond


1027
def array_read(array, i):
K
kavyasrinet 已提交
1028
    """This function performs the operation to read the data in as an
1029
    LOD_TENSOR_ARRAY.
K
kavyasrinet 已提交
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
    Args:
        array (Variable|list): The input tensor that will be written to an array.
        i (Variable|list): The subscript index in tensor array, that points the
                           place where data will be written to.
    Returns:
        Variable: The tensor type variable that has the data written to it.
    Examples:
        .. code-block::python
          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = layers.array_read(tmp, i=i)
1041
    """
Y
Yu Yang 已提交
1042 1043 1044 1045 1046
    helper = LayerHelper('array_read', **locals())
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError("array should be tensor array vairable")
F
fengjiayi 已提交
1047
    out = helper.create_tmp_variable(dtype=array.dtype)
Y
Yu Yang 已提交
1048 1049 1050 1051 1052 1053
    helper.append_op(
        type='read_from_array',
        inputs={'X': [array],
                'I': [i]},
        outputs={'Out': [out]})
    return out
Y
Yang Yu 已提交
1054 1055


1056
def shrink_memory(x, i, table):
1057
    """
Y
yuyang18 已提交
1058
    This function creates an operator to shrink rnn memory using the RankTable
1059
    as mentioned in the input parameter.
Y
yuyang18 已提交
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079

    NOTE: This API is very low-level API. It is used by DynamicRNN only.

    Since the Dynamic RNN uses no-padding way to implement RNN. The sequence
    will be sorted by order, and the length of valid memory will be shrink after
    each time step.

    Args:
        x(Variable): The memory object in the previous time step.
        i(Variable): The step count variable. A int scalar as LoDTensor.
        table(Variable): The RNNRankTable object.

    Returns:
        the memory variable after shrink.

    Examples:

        Since this API is very low level API. The example is not provided.
        Please reference the implementation of class DynamicRNN for detail
        usage.
1080
    """
Y
Yang Yu 已提交
1081
    helper = LayerHelper('shrink_memory', **locals())
F
fengjiayi 已提交
1082
    out = helper.create_tmp_variable(dtype=x.dtype)
Y
Yang Yu 已提交
1083
    helper.append_op(
Y
Yang Yu 已提交
1084
        type='shrink_rnn_memory',
Y
Yang Yu 已提交
1085 1086 1087 1088 1089 1090
        inputs={'X': [x],
                'I': [i],
                'RankTable': [table]},
        outputs={'Out': [out]},
        attrs={})
    return out
Y
Yang Yu 已提交
1091 1092


1093
def array_length(array):
K
kavyasrinet 已提交
1094
    """This function performs the operation to find the length of the input
1095
    LOD_TENSOR_ARRAY.
K
kavyasrinet 已提交
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110

    Args:
        array (LOD_TENSOR_ARRAY): The input array that will be used
                                  to compute the length.

    Returns:
        Variable: The length of the input LoDTensorArray.

    Examples:
        .. code-block::python

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = fluid.layers.array_write(tmp, i=i)
          arr_len = fluid.layers.array_length(arr)
1111
    """
Y
Yang Yu 已提交
1112 1113 1114 1115 1116 1117
    helper = LayerHelper('array_length', **locals())
    tmp = helper.create_tmp_variable(dtype='int64')
    tmp.stop_gradient = True
    helper.append_op(
        type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]})
    return tmp
Y
Yu Yang 已提交
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136


class ConditionalBlockGuard(BlockGuard):
    def __init__(self, block):
        if not isinstance(block, ConditionalBlock):
            raise TypeError("block should be conditional block")
        super(ConditionalBlockGuard, self).__init__(block.helper.main_program)
        self.block = block

    def __enter__(self):
        return super(ConditionalBlockGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.block.complete()
        return super(ConditionalBlockGuard, self).__exit__(exc_type, exc_val,
                                                           exc_tb)


class ConditionalBlock(object):
1137
    def __init__(self, inputs, is_scalar_condition=False, name=None):
Y
Yu Yang 已提交
1138 1139 1140 1141
        for each_input in inputs:
            if not isinstance(each_input, Variable):
                raise TypeError("Each input should be variable")
        self.inputs = inputs
1142
        self.is_scalar_condition = is_scalar_condition
1143
        self.helper = LayerHelper('conditional_block', name=name)
Y
Yu Yang 已提交
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167

    def block(self):
        return ConditionalBlockGuard(self)

    def complete(self):
        inside_block = self.helper.main_program.current_block()
        parent_block = self.helper.main_program.block(inside_block.parent_idx)

        intermediate = set()
        params = set()

        for each_op in inside_block.ops:
            assert isinstance(each_op, Operator)
            for iname in each_op.input_names:
                for in_var_name in each_op.input(iname):
                    if in_var_name not in intermediate:
                        params.add(in_var_name)

            for oname in each_op.output_names:
                for out_var_name in each_op.output(oname):
                    intermediate.add(out_var_name)
        input_set = set([ipt.name for ipt in self.inputs])

        param_list = [
Q
Qingsheng Li 已提交
1168
            parent_block.var_recursive(each_name) for each_name in params
Y
Yu Yang 已提交
1169 1170 1171 1172 1173
            if each_name not in input_set
        ]

        out_list = [
            parent_block.var(var_name) for var_name in parent_block.vars
X
xuwei06 已提交
1174
            if var_name in intermediate
Y
Yu Yang 已提交
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
        ]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)
        parent_block.append_op(
            type='conditional_block',
            inputs={
                'X': self.inputs,
                'Params': param_list,
            },
            outputs={'Out': out_list,
                     'Scope': [step_scope]},
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
            attrs={
                'sub_block': inside_block,
                'is_scalar_condition': self.is_scalar_condition
            })


class Switch(object):
    def __init__(self, name=None):
        self.helper = LayerHelper('switch', name=name)
        self.inside_scope = False
        self.pre_not_conditions = []

    def case(self, condition):
        """create a new block for this condition
        """
        if not self.inside_scope:
            raise ValueError("case should be called inside with")

        if len(self.pre_not_conditions) == 0:
            cond_block = ConditionalBlock([condition], is_scalar_condition=True)
            not_cond = logical_not(x=condition)
            self.pre_not_conditions.append(not_cond)
        else:
            pre_cond_num = len(self.pre_not_conditions)
            pre_not_cond = self.pre_not_conditions[pre_cond_num - 1]
            new_not_cond = logical_and(
                x=pre_not_cond, y=logical_not(x=condition))
            self.pre_not_conditions.append(new_not_cond)
            cond_block = ConditionalBlock(
                [logical_and(
                    x=pre_not_cond, y=condition)],
                is_scalar_condition=True)

        return ConditionalBlockGuard(cond_block)

    def default(self):
        """create a default case for this switch
        """
        pre_cond_num = len(self.pre_not_conditions)
        if pre_cond_num == 0:
            raise ValueError("there should be at least one condition")
        cond_block = ConditionalBlock(
            [self.pre_not_conditions[pre_cond_num - 1]],
            is_scalar_condition=True)
        return ConditionalBlockGuard(cond_block)

    def __enter__(self):
        """
        set flag that now is inside switch.block {}
        :return:
        """
        self.inside_scope = True
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.inside_scope = False
        if exc_type is not None:
            return False  # re-raise exception

        return True
Y
Yu Yang 已提交
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282


class IfElseBlockGuard(object):
    def __init__(self, is_true, ifelse):
        if not isinstance(ifelse, IfElse):
            raise TypeError("ifelse must be an instance of IfElse class")

        if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("You cannot invoke IfElse.block() inside a block")

        self.is_true = is_true
        self.ie = ifelse
        if is_true:
            self.cond_block = ifelse.conditional_true_block
        else:
            self.cond_block = ifelse.conditional_false_block

        if not isinstance(self.cond_block, ConditionalBlock):
            raise TypeError("Unexpected situation")

        self.cond_block = self.cond_block.block()

    def __enter__(self):
        self.ie.status = IfElse.IN_IF_ELSE_TRUE_BLOCKS if self.is_true else IfElse.IN_IF_ELSE_FALSE_BLOCKS
        self.cond_block.__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.cond_block.__exit__(exc_type, exc_val, exc_tb):
            # re-raise inside exception
            return False
        if len(self.ie.output_table[1 if self.is_true else 0]) == 0:
            raise ValueError("Must set output inside block")
        self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS


class IfElse(object):
X
Xin Pan 已提交
1283 1284 1285 1286 1287 1288 1289 1290 1291
    """
    if-else control flow.

    Args:
        cond (Variable): condition used to compare.
        name (str, default None): The name of this layer.

    Examples:
          .. code-block:: python
X
Xin Pan 已提交
1292

X
improve  
Xin Pan 已提交
1293
            limit = fluid.layers.fill_constant_batch_size_like(
X
Xin Pan 已提交
1294
                input=label, dtype='int64', shape=[1], value=5.0)
X
improve  
Xin Pan 已提交
1295 1296
            cond = fluid.layers.less_than(x=label, y=limit)
            ie = fluid.layers.IfElse(cond)
X
Xin Pan 已提交
1297 1298
            with ie.true_block():
                true_image = ie.input(image)
X
improve  
Xin Pan 已提交
1299 1300
                hidden = fluid.layers.fc(input=true_image, size=100, act='tanh')
                prob = fluid.layers.fc(input=hidden, size=10, act='softmax')
X
Xin Pan 已提交
1301 1302 1303 1304
                ie.output(prob)

            with ie.false_block():
                false_image = ie.input(image)
X
improve  
Xin Pan 已提交
1305 1306 1307
                hidden = fluid.layers.fc(
                    input=false_image, size=200, act='tanh')
                prob = fluid.layers.fc(input=hidden, size=10, act='softmax')
X
Xin Pan 已提交
1308 1309 1310
                ie.output(prob)
            prob = ie()
    """
Y
Yu Yang 已提交
1311 1312 1313 1314
    OUT_IF_ELSE_BLOCKS = 0
    IN_IF_ELSE_TRUE_BLOCKS = 1
    IN_IF_ELSE_FALSE_BLOCKS = 2

1315
    def __init__(self, cond, name=None):
Y
Yu Yang 已提交
1316 1317
        if not isinstance(cond, Variable):
            raise TypeError("cond must be a Variable")
1318
        self.helper = LayerHelper('ifelse', name=name)
Y
Yu Yang 已提交
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
        self.cond = cond
        self.input_table = {}
        self.status = IfElse.OUT_IF_ELSE_BLOCKS
        self.conditional_true_block = ConditionalBlock(inputs=[self.cond])
        self.conditional_false_block = ConditionalBlock(inputs=[self.cond])
        self.output_table = ([], [])  # (true_outs, false_outs)

    def input(self, x):
        if self.status == IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("input must in true/false blocks")
        if id(x) not in self.input_table:
            parent_block = self.parent_block()
            out_true = parent_block.create_var(
Y
Yu Yang 已提交
1332
                name=unique_name.generate('ifelse_input' + self.helper.name),
F
fengjiayi 已提交
1333
                dtype=x.dtype)
Y
Yu Yang 已提交
1334 1335

            out_false = parent_block.create_var(
Y
Yu Yang 已提交
1336
                name=unique_name.generate('ifelse_input' + self.helper.name),
F
fengjiayi 已提交
1337
                dtype=x.dtype)
Y
Yu Yang 已提交
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
            parent_block.append_op(
                type='split_lod_tensor',
                inputs={
                    'X': x,
                    'Mask': self.cond,
                },
                outputs={'OutTrue': out_true,
                         'OutFalse': out_false},
                attrs={'level': 0})
            self.input_table[id(x)] = (out_true, out_false)
        else:
            out_true, out_false = self.input_table[id(x)]

        if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS:
            return out_true
        else:
            return out_false

    def parent_block(self):
        current_block = self.helper.main_program.current_block()
        return self.helper.main_program.block(current_block.parent_idx)

    def true_block(self):
        return IfElseBlockGuard(True, self)

    def false_block(self):
        return IfElseBlockGuard(False, self)

    def output(self, *outs):
        if self.status == self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("output can only be invoked in the sub-block")

        out_table = self.output_table[1 if self.status ==
                                      self.IN_IF_ELSE_TRUE_BLOCKS else 0]
        parent_block = self.parent_block()
        for each_out in outs:
            if not isinstance(each_out, Variable):
                raise TypeError("Each output should be a variable")
            # create outside tensor
            outside_out = parent_block.create_var(
Y
Yu Yang 已提交
1378 1379
                name=unique_name.generate("_".join(
                    [self.helper.name, 'output'])),
F
fengjiayi 已提交
1380
                dtype=each_out.dtype)
Y
Yu Yang 已提交
1381 1382 1383
            out_table.append(outside_out)

            # assign local var to outside
1384
            assign(input=each_out, output=outside_out)
Y
Yu Yang 已提交
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407

    def __call__(self):
        if self.status != self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("IfElse::__call__ must be out of sub-block")
        false_len, true_len = map(len, self.output_table)
        if false_len == 0 and true_len == 0:
            raise ValueError("Must invoke true_block/false_block before "
                             "__call__")
        elif false_len != true_len and false_len != 0 and true_len != 0:
            raise ValueError("The output side must be same")
        elif false_len == 0 or true_len == 0:
            return self.output_table[0 if false_len != 0 else 1]

        # else none of false_len/true_len is zero
        # merge together
        rlist = []
        for false_var, true_var in zip(*self.output_table):
            rlist.append(
                merge_lod_tensor(
                    in_true=true_var,
                    in_false=false_var,
                    mask=self.cond,
                    x=self.cond,
1408
                    level=0))
Y
Yu Yang 已提交
1409
        return rlist
1410 1411 1412


class DynamicRNN(object):
Y
yuyang18 已提交
1413
    """
Y
yuyang18 已提交
1414 1415 1416
    The dynamic RNN can process a batch of sequence data. The length of each
    sample sequence can be different. This API automatically process them in
    batch.
Y
yuyang18 已提交
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444

    The input lod must be set. Please reference `lod_tensor`

    >>> import paddle.fluid as fluid
    >>> data = fluid.layers.data(name='sentence', dtype='int64', lod_level=1)
    >>> embedding = fluid.layers.embedding(input=data, size=[65535, 32],
    >>>                                    is_sparse=True)
    >>>
    >>> drnn = fluid.layers.DynamicRNN()
    >>> with drnn.block():
    >>>     word = drnn.step_input(embedding)
    >>>     prev = drnn.memory(shape=[200])
    >>>     hidden = fluid.layers.fc(input=[word, prev], size=200, act='relu')
    >>>     drnn.update_memory(prev, hidden)  # set prev to hidden
    >>>     drnn.output(hidden)
    >>>
    >>> # last is the last time step of rnn. It is the encoding result.
    >>> last = fluid.layers.sequence_last_step(drnn())

    The dynamic RNN will unfold sequence into timesteps. Users need to define
    how to process each time step during the :code:`with` block.

    The `memory` is used staging data cross time step. The initial value of
    memory can be zero or another variable.

    The dynamic RNN can mark multiple variables as its output. Use `drnn()` to
    get the output sequence.
    """
1445 1446 1447 1448
    BEFORE_RNN = 0
    IN_RNN = 1
    AFTER_RNN = 2

1449 1450
    def __init__(self, name=None):
        self.helper = LayerHelper('dynamic_rnn', name=name)
1451 1452 1453 1454
        self.status = DynamicRNN.BEFORE_RNN
        self.lod_rank_table = None
        self.max_seq_len = None
        self.step_idx = None
1455 1456
        self.zero_idx = fill_constant(
            shape=[1], value=0, dtype='int64', force_cpu=True)
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
        self.mem_dict = dict()
        self.output_array = []
        self.outputs = []
        self.cond = self.helper.create_tmp_variable(dtype='bool')
        self.cond.stop_gradient = False
        self.while_op = While(self.cond)
        self.input_array = []
        self.mem_link = []

    def step_input(self, x):
Y
yuyang18 已提交
1467 1468 1469 1470 1471 1472 1473 1474 1475
        """
        Mark a sequence as a dynamic RNN input.
        Args:
            x(Variable): The input sequence.

        Returns:
            The current timestep in the input sequence.

        """
1476 1477 1478
        self._assert_in_rnn_block_("step_input")
        if not isinstance(x, Variable):
            raise TypeError(
1479
                "step_input() can only take a Variable as its input.")
1480 1481 1482
        parent_block = self._parent_block_()
        if self.lod_rank_table is None:
            self.lod_rank_table = parent_block.create_var(
Y
Yu Yang 已提交
1483
                name=unique_name.generate('lod_rank_table'),
1484 1485 1486 1487 1488 1489 1490
                type=core.VarDesc.VarType.LOD_RANK_TABLE)
            self.lod_rank_table.stop_gradient = True
            parent_block.append_op(
                type='lod_rank_table',
                inputs={"X": x},
                outputs={"Out": self.lod_rank_table})
            self.max_seq_len = parent_block.create_var(
Y
Yu Yang 已提交
1491 1492
                name=unique_name.generate('dynamic_rnn_max_seq_len'),
                dtype='int64')
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
            self.max_seq_len.stop_gradient = False
            parent_block.append_op(
                type='max_sequence_len',
                inputs={'RankTable': self.lod_rank_table},
                outputs={"Out": self.max_seq_len})
            self.cond.stop_gradient = True
            parent_block.append_op(
                type='less_than',
                inputs={'X': self.step_idx,
                        'Y': self.max_seq_len},
J
JiayiFeng 已提交
1503 1504
                outputs={'Out': self.cond},
                attrs={'force_cpu': True})
1505 1506

        input_array = parent_block.create_var(
Y
Yu Yang 已提交
1507
            name=unique_name.generate('dynamic_rnn_input_array'),
1508 1509 1510 1511 1512 1513 1514 1515
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
            dtype=x.dtype)
        self.input_array.append((input_array, x.dtype))
        parent_block.append_op(
            type='lod_tensor_to_array',
            inputs={'X': x,
                    'RankTable': self.lod_rank_table},
            outputs={'Out': input_array})
1516
        return array_read(array=input_array, i=self.step_idx)
1517

Y
yangyaming 已提交
1518
    def static_input(self, x):
Y
yuyang18 已提交
1519 1520 1521 1522 1523 1524 1525 1526 1527
        """
        Mark a variable as a RNN input. The input will not be scattered into
        time steps.
        Args:
            x(Variable): The input variable.

        Returns:
            The input variable that can access in RNN.
        """
Y
yangyaming 已提交
1528 1529 1530 1531 1532 1533 1534 1535 1536
        self._assert_in_rnn_block_("static_input")
        if not isinstance(x, Variable):
            raise TypeError(
                "static_input() can only take a Variable as its input")
        if self.lod_rank_table is None:
            raise RuntimeError(
                "static_input() must be called after step_input().")
        parent_block = self._parent_block_()
        x_reordered = parent_block.create_var(
Y
Yu Yang 已提交
1537
            name=unique_name.generate("dynamic_rnn_static_input_reordered"),
Y
yangyaming 已提交
1538 1539 1540 1541 1542 1543 1544 1545 1546
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=x.dtype)
        parent_block.append_op(
            type='reorder_lod_tensor_by_rank',
            inputs={'X': [x],
                    'RankTable': [self.lod_rank_table]},
            outputs={'Out': [x_reordered]})
        return shrink_memory(x_reordered, self.step_idx, self.lod_rank_table)

1547 1548
    @contextlib.contextmanager
    def block(self):
Y
yuyang18 已提交
1549 1550 1551 1552
        """
        The block for user to define operators in RNN. See the class docstring
        for more details.
        """
1553 1554
        if self.status != DynamicRNN.BEFORE_RNN:
            raise ValueError("rnn.block() can only be invoke once")
1555 1556
        self.step_idx = fill_constant(
            shape=[1], dtype='int64', value=0, force_cpu=True)
1557 1558 1559 1560
        self.step_idx.stop_gradient = False
        self.status = DynamicRNN.IN_RNN
        with self.while_op.block():
            yield
1561
            increment(x=self.step_idx, value=1.0, in_place=True)
1562 1563

            for new_mem, mem_array in self.mem_link:
1564 1565
                array_write(x=new_mem, i=self.step_idx, array=mem_array)

J
JiayiFeng 已提交
1566 1567 1568 1569 1570
            less_than(
                x=self.step_idx,
                y=self.max_seq_len,
                force_cpu=True,
                cond=self.cond)
1571 1572 1573 1574 1575

        self.status = DynamicRNN.AFTER_RNN
        for each_array in self.output_array:
            self.outputs.append(
                array_to_lod_tensor(
1576
                    x=each_array, table=self.lod_rank_table))
1577 1578

    def __call__(self, *args, **kwargs):
Y
yuyang18 已提交
1579 1580 1581
        """
        Get the output of RNN. This API should only be invoked after RNN.block()
        """
1582
        if self.status != DynamicRNN.AFTER_RNN:
1583 1584
            raise ValueError(("Output of the dynamic RNN can only be visited "
                              "outside the rnn block."))
1585 1586 1587 1588 1589
        if len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

1590 1591 1592 1593 1594 1595
    def memory(self,
               init=None,
               shape=None,
               value=0.0,
               need_reorder=False,
               dtype='float32'):
Y
yuyang18 已提交
1596
        """
Y
yuyang18 已提交
1597
        Create a memory variable for dynamic rnn.
Y
yuyang18 已提交
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659

        If the :code:`init` is not None, :code:`memory` will be initialized by
        this variable. The :code:`need_reorder` is used to reorder the memory as
        the input variable. It should be set to true when the initialized memory
        depends on the input sample.

        For example,

        >>> import paddle.fluid as fluid
        >>> sentence = fluid.layers.data(
        >>>                 name='sentence', dtype='float32', shape=[32])
        >>> boot_memory = fluid.layers.data(
        >>>                 name='boot', dtype='float32', shape=[10])
        >>>
        >>> drnn = fluid.layers.DynamicRNN()
        >>> with drnn.block():
        >>>     word = drnn.step_input(sentence)
        >>>     memory = drnn.memory(init=boot_memory, need_reorder=True)
        >>>     hidden = fluid.layers.fc(
        >>>                 input=[word, memory], size=10, act='tanh')
        >>>     drnn.update_memory(ex_mem=memory, new_mem=hidden)
        >>>     drnn.output(hidden)
        >>> rnn_output = drnn()


        Otherwise, if :code:`shape`, :code:`value`, :code:`dtype` are set, the
        :code:`memory` will be initialized by this :code:`value`.

        For example,

        >>> import paddle.fluid as fluid
        >>> sentence = fluid.layers.data(
        >>>                 name='sentence', dtype='float32', shape=[32])
        >>>
        >>> drnn = fluid.layers.DynamicRNN()
        >>> with drnn.block():
        >>>     word = drnn.step_input(sentence)
        >>>     memory = drnn.memory(shape=[10], dtype='float32', value=0)
        >>>     hidden = fluid.layers.fc(
        >>>             input=[word, memory], size=10, act='tanh')
        >>>     drnn.update_memory(ex_mem=memory, new_mem=hidden)
        >>>     drnn.output(hidden)
        >>> rnn_output = drnn()


        Args:
            init(Variable|None): The initialized variable.

            shape(list|tuple): The memory shape. NOTE the shape does not contain
            batch_size.

            value(float): the initalized value.

            need_reorder(bool): True if the initialized memory depends on the
            input sample.

            dtype(str|numpy.dtype): The data type of the initialized memory.

        Returns:
            the memory variable.

        """
1660 1661 1662 1663 1664 1665
        self._assert_in_rnn_block_('memory')
        if init is not None:
            if not isinstance(init, Variable):
                raise TypeError(
                    "The input arg `init` of memory() must be a Variable")
            parent_block = self._parent_block_()
1666 1667 1668 1669 1670 1671 1672 1673
            init_tensor = init
            if need_reorder == True:
                if self.lod_rank_table is None:
                    raise ValueError(
                        'If set need_reorder to True, make sure step_input be '
                        'invoked before '
                        'memory(init=init, need_reordered=True, ...).')
                init_reordered = parent_block.create_var(
Y
Yu Yang 已提交
1674
                    name=unique_name.generate('dynamic_rnn_mem_init_reordered'),
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    dtype=init.dtype)
                parent_block.append_op(
                    type='reorder_lod_tensor_by_rank',
                    inputs={
                        'X': [init_tensor],
                        'RankTable': [self.lod_rank_table]
                    },
                    outputs={'Out': [init_reordered]})
                init_tensor = init_reordered
1685
            mem_array = parent_block.create_var(
Y
Yu Yang 已提交
1686
                name=unique_name.generate('dynamic_rnn_mem_array'),
1687 1688 1689 1690
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=init.dtype)
            parent_block.append_op(
                type='write_to_array',
1691
                inputs={'X': init_tensor,
1692 1693
                        'I': self.zero_idx},
                outputs={'Out': mem_array})
1694
            retv = array_read(array=mem_array, i=self.step_idx)
1695
            retv = shrink_memory(
1696
                x=retv, i=self.step_idx, table=self.lod_rank_table)
1697 1698 1699 1700 1701 1702 1703 1704 1705
            self.mem_dict[retv.name] = mem_array
            return retv
        else:
            if len(self.input_array) == 0:
                raise ValueError(
                    "step_input should be invoked before memory(shape=..., value=...)"
                )
            parent_block = self._parent_block_()
            init = parent_block.create_var(
Y
Yu Yang 已提交
1706
                name=unique_name.generate('mem_init'), dtype=dtype)
1707
            arr, dtype = self.input_array[0]
Y
Yu Yang 已提交
1708 1709
            in0 = parent_block.create_var(
                name=unique_name.generate('in0'), dtype=dtype)
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
            parent_block.append_op(
                type='read_from_array',
                inputs={'X': [arr],
                        'I': [self.zero_idx]},
                outputs={'Out': [in0]})
            parent_block.append_op(
                type='fill_constant_batch_size_like',
                inputs={'Input': [in0]},
                outputs={'Out': [init]},
                attrs={
                    'shape': [-1] + shape,
                    'value': float(value),
                    'dtype': init.dtype
                })
            return self.memory(init=init)

    def update_memory(self, ex_mem, new_mem):
Y
yuyang18 已提交
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
        """
        Update the memory from ex_mem to new_mem. NOTE that the shape and data
        type of :code:`ex_mem` and :code:`new_mem` must be same.
        Args:
            ex_mem(Variable): the memory variable.
            new_mem(Variable): the plain variable generated in RNN block.

        Returns:
            None
        """
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
        self._assert_in_rnn_block_('update_memory')
        if not isinstance(ex_mem, Variable):
            raise TypeError("The input arg `ex_mem` of update_memory() must "
                            "be a Variable")
        if not isinstance(new_mem, Variable):
            raise TypeError("The input arg `new_mem` of update_memory() must "
                            "be a Variable")

        mem_array = self.mem_dict.get(ex_mem.name, None)
        if mem_array is None:
            raise ValueError("Please invoke memory before update_memory")
        if self.lod_rank_table is None:
            raise ValueError("Please invoke step_input before update_memory")

        self.mem_link.append((new_mem, mem_array))

    def output(self, *outputs):
Y
yuyang18 已提交
1754 1755 1756 1757 1758 1759 1760 1761 1762
        """
        mark the RNN output variables.

        Args:
            outputs: The output variables.

        Returns:
            None
        """
1763 1764 1765 1766
        self._assert_in_rnn_block_('output')
        parent_block = self._parent_block_()
        for each in outputs:
            outside_array = parent_block.create_var(
Y
Yu Yang 已提交
1767
                name=unique_name.generate("_".join(
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
                    [self.helper.name, "output_array", each.name])),
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=each.dtype)
            array_write(x=each, i=self.step_idx, array=outside_array)
            self.output_array.append(outside_array)

    def _parent_block_(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)

        return parent_block

    def _assert_in_rnn_block_(self, method):
        if self.status != DynamicRNN.IN_RNN:
            raise ValueError("{0} can only be invoked inside rnn block.".format(
                method))
Y
Yang Yu 已提交
1786 1787


1788
@autodoc()
Y
Yang Yu 已提交
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
def reorder_lod_tensor_by_rank(x, rank_table):
    helper = LayerHelper('reorder_lod_tensor_by_rank', **locals())
    helper.is_instance('x', Variable)
    helper.is_instance('rank_table', Variable)

    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='reorder_lod_tensor_by_rank',
        inputs={'X': [x],
                'RankTable': [rank_table]},
        outputs={'Out': [out]})
    return out
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837


def is_empty(x, cond=None, **ignored):
    """
    **Is Empty**

    This layer returns the truth value of whether the variable is empty.

    Args:
        x(Variable): Operand of *is_empty*
        cond(Variable|None): Optional output variable to store the result
                             of *is_empty*

    Returns:
        Variable: The tensor variable storing the output of *is_empty*.

    Raises:
        TypeError: If input cond is not a variable, or cond's dtype is
                   not bool

    Examples:
        .. code-block:: python

          less = fluid.layers.is_empty(x=input)
    """
    helper = LayerHelper("is_empty", **locals())
    if cond is None:
        cond = helper.create_tmp_variable(dtype='bool')
        cond.stop_gradient = True
    elif not isinstance(cond, Variable):
        raise TypeError("cond takes a variable")
    elif cond.dtype != 'bool':
        raise TypeError("The data type of cond must be bool")

    helper.append_op(
        type='is_empty', inputs={'X': [x]}, outputs={'Out': [cond]})
    return cond