conv_cudnn_helper.h 24.9 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include <algorithm>
18
#include <array>
19
#include <memory>
20
#include <string>
Q
qingqing01 已提交
21
#include <vector>
22

23
#include "paddle/fluid/framework/conv_search_cache.h"
Q
qingqing01 已提交
24 25
#include "paddle/fluid/framework/operator_kernel_configs.h"
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
26
#include "paddle/fluid/operators/eigen/eigen_function.h"
27
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
28 29
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"

Q
qingqing01 已提交
30 31 32
namespace paddle {
namespace operators {

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
using Tensor = framework::Tensor;
using DataLayout = platform::DataLayout;
template <typename T>
using ScalingParamType = typename platform::CudnnDataType<T>::ScalingParamType;
using framework::AlgorithmsCache;
static inline void GetNCDHW(const framework::DDim& dims,
                            const DataLayout& layout, int* N, int* C, int* D,
                            int* H, int* W) {
  *N = dims[0];
  *C = layout == DataLayout::kNCHW ? dims[1] : dims[dims.size() - 1];
  int i = layout == DataLayout::kNCHW ? 0 : 1;
  if (dims.size() == 5) {
    *D = dims[2 - i];
    *H = dims[3 - i];
    *W = dims[4 - i];
  } else {
    *D = 1;
    *H = dims[2 - i];
    *W = dims[3 - i];
  }
}

template <typename DeviceContext, typename T, size_t D>
static void RemovePaddingSlice(const framework::ExecutionContext& context,
                               const Tensor* input, Tensor* out,
                               const std::vector<int>& starts,
                               const std::vector<int>& axes) {
  auto& place =
      *context.template device_context<DeviceContext>().eigen_device();
  auto in_dims = input->dims();
  auto new_out_dims = out->dims();
64 65
  auto offsets = Eigen::DSizes<Eigen::DenseIndex, D>();
  auto extents = Eigen::DSizes<Eigen::DenseIndex, D>();
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
  for (size_t i = 0; i < D; ++i) {
    offsets[i] = 0;
    extents[i] = new_out_dims[i];
  }

  int start;
  for (size_t i = 0; i < axes.size(); ++i) {
    start = starts[i];
    if (start < 0) {
      start = (start + in_dims[axes[i]]);
    }
    start = std::max(start, 0);
    offsets[axes[i]] = start;
  }
  auto in_t =
      framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
          *input);

  auto out_t =
      framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
          *out, new_out_dims);
87 88
  EigenSlice<std::decay_t<decltype(place)>, T, D>::Eval(place, out_t, in_t,
                                                        offsets, extents);
89 90
}

91 92 93 94 95 96 97 98
template <typename T>
std::ostream& operator<<(std::ostream& out, const std::vector<T>& v) {
  out << "[";
  for (auto const& tmp : v) out << tmp << ",";
  out << "]";
  return out;
}

99 100 101
inline int MaxBwdFilterAlgos(cudnnHandle_t cudnn_handle) {
  int max_algos = 0;
#if CUDNN_VERSION_MIN(7, 0, 1)
102
  PADDLE_ENFORCE_GPU_SUCCESS(
103 104 105 106 107 108
      platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithmMaxCount(
          cudnn_handle, &max_algos));
#endif
  return max_algos;
}

109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
template <typename PerfType, typename AlgoType>
void ChooseAlgoByWorkspace(PerfType* perf_results, size_t perf_num,
                           size_t workspace_byte, AlgoType* algo) {
  for (size_t i = 0; i < perf_num; ++i) {
    auto result = perf_results[i];
    if (result.status == CUDNN_STATUS_SUCCESS &&
        result.memory < workspace_byte) {
      *algo = result.algo;
      VLOG(3) << "    algo: " << result.algo << ", time: " << result.time
              << " ms, wksp = " << result.memory
              << ", status = " << result.status;
      return;
    }
  }
  VLOG(3) << "Can not find alog that requires memory < "
          << static_cast<double>(workspace_byte) / (1 << 20) << " MB";
}

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
template <typename PerfType, typename AlgoType>
void ChooseAlgo(const std::vector<PerfType>& perf_results,
                size_t workspace_byte, AlgoType* algo) {
  VLOG(3) << "=========BwdFilterAlgo Perf result=========";
  for (const auto& result : perf_results) {
    auto math_type_str = "False";
    if (result.mathType == CUDNN_TENSOR_OP_MATH) {
      math_type_str = "True";
    }
    VLOG(3) << "    algo: " << result.algo << ", TensorCore: " << math_type_str
            << ", time: " << result.time << " ms"
            << ", wksp = " << result.memory << ", status = " << result.status;
  }

  for (size_t i = 0; i != perf_results.size(); ++i) {
    const auto& result = perf_results[i];
    if (result.status == CUDNN_STATUS_SUCCESS &&
        (result.memory <= workspace_byte)) {
      if ((result.mathType == CUDNN_TENSOR_OP_MATH) &&
          (i != perf_results.size() - 1)) {
        const auto& next_result = perf_results[i + 1];
        if (next_result.status == CUDNN_STATUS_SUCCESS &&
            next_result.algo == result.algo &&
            next_result.memory == result.memory &&
            next_result.mathType != CUDNN_TENSOR_OP_MATH &&
            next_result.time < 1.01 * result.time) {
          // Skip over this result- it's not really a Tensor Core algo.
          // Because it is only 1% performance difference.
          // Prefer to choose the next equivalent non-Tensor Core algo.
          continue;
        }
      }
      *algo = result.algo;
      auto math_type_str = "0";
      if (result.mathType == CUDNN_TENSOR_OP_MATH) {
        math_type_str = "1";
      }
      VLOG(3) << "    choose algo: " << result.algo << ", TC: " << math_type_str
              << ", time: " << result.time << " ms"
              << ", wksp = " << result.memory << ", status = " << result.status;
L
limingshu 已提交
167
      break;
168 169 170 171
    }
  }
}

172
using framework::ConvSearchCache;
Q
qingqing01 已提交
173

174 175 176 177 178 179
static void SetConvMathType(const framework::ExecutionContext& ctx,
                            cudnnDataType_t dtype,
                            const platform::ConvolutionDescriptor& cdesc) {
#if CUDA_VERSION >= 9000 && CUDNN_VERSION_MIN(7, 0, 1)
  auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
  if (dev_ctx.GetComputeCapability() >= 70 && dtype == CUDNN_DATA_HALF) {
180
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
181 182 183 184 185 186
        cdesc.desc(), CUDNN_TENSOR_OP_MATH));
    VLOG(5) << "use cudnn_tensor_op_math";
#if CUDA_VERSION >= 11000
#if CUDNN_VERSION_MIN(8, 1, 0)
  } else if (dev_ctx.GetComputeCapability() >= 80 &&
             dtype == CUDNN_DATA_BFLOAT16) {
187
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
188 189 190
        cdesc.desc(), CUDNN_TENSOR_OP_MATH));
#endif  // CUDNN_VERSION_MIN(8, 1, 0)
  } else if (dtype == CUDNN_DATA_FLOAT && !cdesc.allow_tf32_) {
191
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
192 193 194
        cdesc.desc(), CUDNN_FMA_MATH));
#endif  // CUDA_VERSION >= 11000
  } else {
195
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
196 197 198 199 200 201
        cdesc.desc(), CUDNN_DEFAULT_MATH));
    VLOG(5) << "NOT use cudnn_tensor_op_math";
  }
#endif
}

Q
qingqing01 已提交
202 203 204 205 206 207
struct ConvArgs {
  cudnnHandle_t handle;
  platform::TensorDescriptor idesc, odesc;
  platform::FilterDescriptor wdesc;
  platform::ConvolutionDescriptor cdesc;
  const framework::Tensor *x, *w, *o;
208
  cudnnDataType_t cudnn_dtype;
Q
qingqing01 已提交
209 210 211 212 213 214 215 216 217 218

  // strides
  std::vector<int> s;
  // paddings
  std::vector<int> p;
  // dilations
  std::vector<int> d;

  ConvArgs(const framework::Tensor* x, const framework::Tensor* w,
           const framework::Tensor* o, const std::vector<int> s,
219 220 221
           const std::vector<int> p, const std::vector<int> d,
           cudnnDataType_t dtype)
      : x(x), w(w), o(o), s(s), p(p), d(d), cudnn_dtype(dtype) {}
Q
qingqing01 已提交
222 223 224 225 226 227 228 229 230 231 232 233
};

template <typename perf_t>
struct SearchAlgorithm {};

template <>
struct SearchAlgorithm<cudnnConvolutionFwdAlgoPerf_t> {
  using perf_t = cudnnConvolutionFwdAlgoPerf_t;
  using algo_t = cudnnConvolutionFwdAlgo_t;

  template <typename T>
  static algo_t Find(const ConvArgs& args, bool exhaustive_search,
234
                     bool deterministic,
Q
qingqing01 已提交
235 236
                     const framework::ExecutionContext& ctx) {
    auto dtype = platform::CudnnDataType<T>::type;
237
    bool has_got_workspace_size = true;
Q
qingqing01 已提交
238
    size_t workspace_size_limit = FLAGS_conv_workspace_size_limit * 1024 * 1024;
239
    size_t workspace_size = 0;
Q
qingqing01 已提交
240
    algo_t algo;
241
    SetConvMathType(ctx, dtype, args.cdesc);
242

243
    if (!exhaustive_search && !deterministic) {
244 245 246 247
#if CUDNN_VERSION >= 7001
      int perf_count;
      int best_algo_idx = 0;
      std::unique_ptr<perf_t[]> perf_results(new perf_t[kNUM_CUDNN_FWD_ALGS]);
248
      PADDLE_ENFORCE_GPU_SUCCESS(
249 250 251 252
          platform::dynload::cudnnGetConvolutionForwardAlgorithm_v7(
              args.handle, args.idesc.desc(), args.wdesc.desc(),
              args.cdesc.desc(), args.odesc.desc(), kNUM_CUDNN_FWD_ALGS,
              &perf_count, perf_results.get()));
253
      algo = (perf_results.get())[best_algo_idx].algo;
254
      workspace_size = (perf_results.get())[best_algo_idx].memory;
255 256

      if (workspace_size > workspace_size_limit) {
257
#if CUDNN_VERSION >= 8000
258 259 260 261
        // cudnnGetConvolutionForwardAlgorithm is removed in CUDNN-8
        ChooseAlgoByWorkspace<perf_t, algo_t>(perf_results.get(),
                                              kNUM_CUDNN_FWD_ALGS,
                                              workspace_size_limit, &algo);
262 263 264 265 266
#else
        VLOG(1) << "Fallback to non-v7 method to find conv algorithm becasue "
                   "the workspace size request("
                << workspace_size << ") exceeds the limit("
                << workspace_size_limit << ")";
267
        PADDLE_ENFORCE_GPU_SUCCESS(
268 269 270 271 272 273
            platform::dynload::cudnnGetConvolutionForwardAlgorithm(
                args.handle, args.idesc.desc(), args.wdesc.desc(),
                args.cdesc.desc(), args.odesc.desc(),
                CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
                workspace_size_limit, &algo));
#endif
274 275
      }
#else
276
      PADDLE_ENFORCE_GPU_SUCCESS(
277 278 279 280 281
          platform::dynload::cudnnGetConvolutionForwardAlgorithm(
              args.handle, args.idesc.desc(), args.wdesc.desc(),
              args.cdesc.desc(), args.odesc.desc(),
              CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
              workspace_size_limit, &algo));
282
#endif
Q
qingqing01 已提交
283
      VLOG(3) << "choose algo " << algo;
284 285
    } else if (deterministic) {
      algo = static_cast<cudnnConvolutionFwdAlgo_t>(1);
Q
qingqing01 已提交
286 287 288 289 290
    } else {
      auto& dev_ctx =
          ctx.template device_context<platform::CUDADeviceContext>();
      auto workspace_handle = dev_ctx.cudnn_workspace_handle();

291
      AlgorithmsCache<algo_t>& algo_cache =
292
          *(framework::ConvSearchCache::Instance().GetForward());
293

294 295
      auto x_dims = pten::vectorize(args.x->dims());
      auto w_dims = pten::vectorize(args.w->dims());
Q
qingqing01 已提交
296

297 298 299
      VLOG(10) << "cudnnConvolutionFwdAlgoPerf_t:"
               << ", x_dims:" << x_dims << ", w_dims:" << w_dims << ", args.s"
               << args.s << ", args.p" << args.p << ", args.d" << args.d;
300

Q
qingqing01 已提交
301
      algo = algo_cache.GetAlgorithm(
302 303
          x_dims, w_dims, args.s, args.p, args.d, 0,
          static_cast<int64_t>(args.cudnn_dtype), [&]() {
Q
qingqing01 已提交
304 305 306 307
            int returned_algo_count;
            std::array<perf_t, kNUM_CUDNN_FWD_ALGS> perf_stat;

            auto cudnn_find_func = [&](void* cudnn_workspace_ptr) {
308
              PADDLE_ENFORCE_GPU_SUCCESS(
Q
qingqing01 已提交
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
                  platform::dynload::cudnnFindConvolutionForwardAlgorithmEx(
                      args.handle, args.idesc.desc(), args.x->data<T>(),
                      args.wdesc.desc(), args.w->data<T>(), args.cdesc.desc(),
                      args.odesc.desc(), const_cast<T*>(args.o->data<T>()),
                      kNUM_CUDNN_FWD_ALGS, &returned_algo_count,
                      perf_stat.data(), cudnn_workspace_ptr,
                      workspace_size_limit));
            };
            workspace_handle.RunFuncSync(cudnn_find_func, workspace_size_limit);

            VLOG(3) << "FwdAlgo Perf result: (algo: stat, time, memory)";
            for (int i = 0; i < returned_algo_count; ++i) {
              const auto& stat = perf_stat[i];
              VLOG(3) << stat.algo << ": " << stat.status << " " << stat.time
                      << " " << stat.memory;
            }
            return perf_stat[0].algo;
          });
    }
    VLOG(3) << "choose algo " << algo;
    return algo;
  }

  static size_t GetWorkspaceSize(const ConvArgs& args, algo_t algo) {
    size_t workspace_size = 0;
334
    PADDLE_ENFORCE_GPU_SUCCESS(
335 336 337
        platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
            args.handle, args.idesc.desc(), args.wdesc.desc(),
            args.cdesc.desc(), args.odesc.desc(), algo, &workspace_size));
Q
qingqing01 已提交
338 339 340 341 342 343 344 345 346 347 348
    return workspace_size;
  }
};

template <>
struct SearchAlgorithm<cudnnConvolutionBwdDataAlgoPerf_t> {
  using perf_t = cudnnConvolutionBwdDataAlgoPerf_t;
  using algo_t = cudnnConvolutionBwdDataAlgo_t;

  template <typename T>
  static algo_t Find(const ConvArgs& args, bool exhaustive_search,
349
                     bool deterministic,
Q
qingqing01 已提交
350 351 352
                     const framework::ExecutionContext& ctx) {
    auto dtype = platform::CudnnDataType<T>::type;
    size_t workspace_size_limit = FLAGS_conv_workspace_size_limit * 1024 * 1024;
353 354
    size_t workspace_size = 0;
    bool has_got_workspace_size = true;
Q
qingqing01 已提交
355
    algo_t algo;
356
    SetConvMathType(ctx, dtype, args.cdesc);
357

358
    if (!exhaustive_search && !deterministic) {
359 360 361 362 363
#if CUDNN_VERSION >= 7001
      int perf_count;
      int best_algo_idx = 0;
      std::unique_ptr<perf_t[]> perf_results(
          new perf_t[kNUM_CUDNN_BWD_DATA_ALGS]);
364
      PADDLE_ENFORCE_GPU_SUCCESS(
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
          platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm_v7(
              args.handle, args.wdesc.desc(), args.odesc.desc(),
              args.cdesc.desc(), args.idesc.desc(), kNUM_CUDNN_BWD_DATA_ALGS,
              &perf_count, perf_results.get()));
      algo = (perf_results.get())[best_algo_idx].algo;

#if CUDNN_VERSION < 7500
      int stride_dim = args.x->dims().size() - 2;
      bool blacklist = std::any_of(args.s.begin(), args.s.begin() + stride_dim,
                                   [=](int n) { return n != 1; });
      if (blacklist && (static_cast<cudnnConvolutionBwdDataAlgo_t>(
                            perf_results[best_algo_idx].algo) ==
                            CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING ||
                        static_cast<cudnnConvolutionBwdDataAlgo_t>(
                            perf_results[best_algo_idx].algo) ==
                            CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT)) {
        algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1;
      }
#endif
      workspace_size = GetWorkspaceSize(args, algo);
      if (workspace_size > workspace_size_limit) {
        has_got_workspace_size = false;
387
#if CUDNN_VERSION >= 8000
388 389 390 391
        // cudnnGetConvolutionBackwardDataAlgorithm is removed in CUDNN-8
        ChooseAlgoByWorkspace<perf_t, algo_t>(perf_results.get(),
                                              kNUM_CUDNN_BWD_DATA_ALGS,
                                              workspace_size_limit, &algo);
392 393 394 395 396
#else
        VLOG(1) << "Fallback to non-v7 method to find conv algorithm becasue "
                   "the workspace size request("
                << workspace_size << ") exceeds the limit("
                << workspace_size_limit << ")";
397
        PADDLE_ENFORCE_GPU_SUCCESS(
398 399 400 401 402 403
            platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm(
                args.handle, args.wdesc.desc(), args.odesc.desc(),
                args.cdesc.desc(), args.idesc.desc(),
                CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
                workspace_size_limit, &algo));
#endif
404 405
      }
#else
406
      PADDLE_ENFORCE_GPU_SUCCESS(
407 408 409 410 411
          platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm(
              args.handle, args.wdesc.desc(), args.odesc.desc(),
              args.cdesc.desc(), args.idesc.desc(),
              CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
              workspace_size_limit, &algo));
412
#endif
Q
qingqing01 已提交
413 414 415 416 417 418 419
    } else if (deterministic) {
      return CUDNN_CONVOLUTION_BWD_DATA_ALGO_1;
    } else {
      auto& dev_ctx =
          ctx.template device_context<platform::CUDADeviceContext>();
      auto workspace_handle = dev_ctx.cudnn_workspace_handle();

420
      AlgorithmsCache<algo_t>& algo_cache =
421
          *(framework::ConvSearchCache::Instance().GetBackwardData());
422

423 424
      auto x_dims = pten::vectorize(args.x->dims());
      auto w_dims = pten::vectorize(args.w->dims());
Q
qingqing01 已提交
425

426 427 428
      VLOG(10) << "cudnnConvolutionFwdAlgoPerf_t"
               << ", x_dims:" << x_dims << ", w_dims:" << w_dims << ", args.s"
               << args.s << ", args.p" << args.p << ", args.d" << args.d;
429

Q
qingqing01 已提交
430
      algo = algo_cache.GetAlgorithm(
431 432
          x_dims, w_dims, args.s, args.p, args.d, 0,
          static_cast<int64_t>(args.cudnn_dtype), [&]() {
Q
qingqing01 已提交
433
            int returned_algo_count;
434
            std::array<perf_t, kNUM_CUDNN_BWD_DATA_ALGS> perf_stat;
Q
qingqing01 已提交
435 436

            auto cudnn_find_func = [&](void* cudnn_workspace_ptr) {
437
              PADDLE_ENFORCE_GPU_SUCCESS(
Q
qingqing01 已提交
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
                  platform::dynload::
                      cudnnFindConvolutionBackwardDataAlgorithmEx(
                          args.handle, args.wdesc.desc(), args.w->data<T>(),
                          args.odesc.desc(), args.o->data<T>(),
                          args.cdesc.desc(), args.idesc.desc(),
                          const_cast<T*>(args.x->data<T>()),
                          kNUM_CUDNN_BWD_DATA_ALGS, &returned_algo_count,
                          perf_stat.data(), cudnn_workspace_ptr,
                          workspace_size_limit));
            };
            workspace_handle.RunFuncSync(cudnn_find_func, workspace_size_limit);

            VLOG(3) << "BwdDataAlgo Perf result: (algo: stat, time, memory)";
            for (int i = 0; i < returned_algo_count; ++i) {
              const auto& stat = perf_stat[i];
              VLOG(3) << stat.algo << ": " << stat.status << " " << stat.time
                      << " " << stat.memory;
            }

            return perf_stat[0].algo;
          });
    }
    VLOG(3) << "choose algo " << algo;
    return algo;
  }

  static size_t GetWorkspaceSize(const ConvArgs& args, algo_t algo) {
    size_t workspace_size = 0;
466
    PADDLE_ENFORCE_GPU_SUCCESS(
Q
qingqing01 已提交
467
        platform::dynload::cudnnGetConvolutionBackwardDataWorkspaceSize(
468 469
            args.handle, args.wdesc.desc(), args.odesc.desc(),
            args.cdesc.desc(), args.idesc.desc(), algo, &workspace_size));
Q
qingqing01 已提交
470 471 472 473 474 475 476 477 478 479 480
    return workspace_size;
  }
};

template <>
struct SearchAlgorithm<cudnnConvolutionBwdFilterAlgoPerf_t> {
  using perf_t = cudnnConvolutionBwdFilterAlgoPerf_t;
  using algo_t = cudnnConvolutionBwdFilterAlgo_t;

  template <typename T>
  static algo_t Find(const ConvArgs& args, bool exhaustive_search,
481
                     bool deterministic,
Q
qingqing01 已提交
482
                     const framework::ExecutionContext& ctx) {
483
    platform::CUDAGraphCaptureModeGuard guard;
Q
qingqing01 已提交
484 485
    auto dtype = platform::CudnnDataType<T>::type;
    size_t workspace_size_limit = FLAGS_conv_workspace_size_limit * 1024 * 1024;
486 487
    size_t workspace_size = 0;
    bool has_got_workspace_size = true;
488
    SetConvMathType(ctx, dtype, args.cdesc);
Q
qingqing01 已提交
489 490

    algo_t algo;
491
    if (!exhaustive_search && !deterministic) {
492 493 494 495 496 497
#if CUDNN_VERSION >= 7001
      using perf_t = cudnnConvolutionBwdFilterAlgoPerf_t;
      int perf_count;
      int best_algo_idx = 0;
      std::unique_ptr<perf_t[]> perf_results(
          new perf_t[kNUM_CUDNN_BWD_FILTER_ALGS]);
498
      PADDLE_ENFORCE_GPU_SUCCESS(
499 500 501 502 503
          platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm_v7(
              args.handle, args.idesc.desc(), args.odesc.desc(),
              args.cdesc.desc(), args.wdesc.desc(), kNUM_CUDNN_BWD_FILTER_ALGS,
              &perf_count, perf_results.get()));
      algo = (perf_results.get())[best_algo_idx].algo;
504 505
      workspace_size = (perf_results.get())[best_algo_idx].memory;

506
      if (workspace_size > workspace_size_limit) {
507
        workspace_size = workspace_size_limit;
508 509 510 511 512 513 514 515 516 517
#if CUDNN_VERSION >= 8000
        // cudnnGetConvolutionBackwardFilterAlgorithm is removed in CUDNN-8
        ChooseAlgoByWorkspace<perf_t, algo_t>(perf_results.get(),
                                              kNUM_CUDNN_BWD_FILTER_ALGS,
                                              workspace_size_limit, &algo);
#else
        VLOG(1) << "Fallback to non-v7 method to find conv algorithm becasue "
                   "the workspace size request("
                << workspace_size << ") exceeds the limit("
                << workspace_size_limit << ")";
518
        PADDLE_ENFORCE_GPU_SUCCESS(
519 520 521 522 523 524
            platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm(
                args.handle, args.idesc.desc(), args.odesc.desc(),
                args.cdesc.desc(), args.wdesc.desc(),
                CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,
                workspace_size_limit, &algo));
#endif
525 526
      }
#else
527
      PADDLE_ENFORCE_GPU_SUCCESS(
Q
qingqing01 已提交
528 529 530 531 532
          platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm(
              args.handle, args.idesc.desc(), args.odesc.desc(),
              args.cdesc.desc(), args.wdesc.desc(),
              CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,
              workspace_size_limit, &algo));
533
#endif
Q
qingqing01 已提交
534 535 536 537 538 539
    } else if (deterministic) {
      return CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1;
    } else {
      auto& dev_ctx =
          ctx.template device_context<platform::CUDADeviceContext>();
      auto workspace_handle = dev_ctx.cudnn_workspace_handle();
540
      AlgorithmsCache<algo_t>& algo_cache =
541
          *(framework::ConvSearchCache::Instance().GetBackwardFilter());
Q
qingqing01 已提交
542

543 544
      auto x_dims = pten::vectorize(args.x->dims());
      auto w_dims = pten::vectorize(args.w->dims());
Q
qingqing01 已提交
545

546 547 548
      VLOG(10) << "cudnnConvolutionFwdAlgoPerf_t:"
               << ", x_dims:" << x_dims << ", w_dims:" << w_dims << ", args.s"
               << args.s << ", args.p" << args.p << ", args.d" << args.d;
549 550 551 552 553
      if (dtype != CUDNN_DATA_HALF) {
        algo = algo_cache.GetAlgorithm(
            x_dims, w_dims, args.s, args.p, args.d, 0,
            static_cast<int64_t>(args.cudnn_dtype), [&]() {
              int returned_algo_count;
554
              std::array<perf_t, kNUM_CUDNN_BWD_FILTER_ALGS> perf_stat;
555
              auto cudnn_find_func = [&](void* cudnn_workspace_ptr) {
556
                PADDLE_ENFORCE_GPU_SUCCESS(
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
                    platform::dynload::
                        cudnnFindConvolutionBackwardFilterAlgorithmEx(
                            args.handle, args.idesc.desc(), args.x->data<T>(),
                            args.odesc.desc(), args.o->data<T>(),
                            args.cdesc.desc(), args.wdesc.desc(),
                            const_cast<T*>(args.w->data<T>()),
                            kNUM_CUDNN_BWD_FILTER_ALGS, &returned_algo_count,
                            perf_stat.data(), cudnn_workspace_ptr,
                            workspace_size_limit));
              };
              workspace_handle.RunFuncSync(cudnn_find_func,
                                           workspace_size_limit);

              VLOG(3)
                  << "BwdFilterAlgo Perf result: (algo: stat, time, memory)";
              for (int i = 0; i < returned_algo_count; ++i) {
                const auto& stat = perf_stat[i];
                VLOG(3) << stat.algo << ": " << stat.status << " " << stat.time
                        << " " << stat.memory;
              }
              return perf_stat[0].algo;
            });
      } else {
        auto max_algos = MaxBwdFilterAlgos(args.handle);
        algo = algo_cache.GetAlgorithm(
            x_dims, w_dims, args.s, args.p, args.d, 0,
            static_cast<int64_t>(args.cudnn_dtype), [&]() {
              algo_t chosen_algo;
              std::vector<perf_t> perf_results(max_algos);
              int actual_algos = 0;
587
              PADDLE_ENFORCE_GPU_SUCCESS(
Q
qingqing01 已提交
588
                  platform::dynload::
589 590
                      cudnnFindConvolutionBackwardFilterAlgorithm(
                          args.handle, args.idesc.desc(), args.odesc.desc(),
Q
qingqing01 已提交
591
                          args.cdesc.desc(), args.wdesc.desc(),
592 593 594 595 596 597 598 599
                          perf_results.size(), &actual_algos,
                          perf_results.data()));
              perf_results.resize(actual_algos);
              ChooseAlgo<perf_t, algo_t>(perf_results, workspace_size_limit,
                                         &chosen_algo);
              return chosen_algo;
            });
      }
Q
qingqing01 已提交
600 601 602 603 604 605
    }
    VLOG(3) << "choose algo " << algo;
    return algo;
  }

  static size_t GetWorkspaceSize(const ConvArgs& args, algo_t algo) {
606
    platform::CUDAGraphCaptureModeGuard guard;
Q
qingqing01 已提交
607
    size_t workspace_size = 0;
608
    PADDLE_ENFORCE_GPU_SUCCESS(
Q
qingqing01 已提交
609 610 611 612 613 614 615 616 617
        platform::dynload::cudnnGetConvolutionBackwardFilterWorkspaceSize(
            args.handle, args.idesc.desc(), args.odesc.desc(),
            args.cdesc.desc(), args.wdesc.desc(), algo, &workspace_size));
    return workspace_size;
  }
};

}  // namespace operators
}  // namespace paddle