conv_cudnn_helper.h 17.9 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include <array>
18
#include <memory>
Q
qingqing01 已提交
19 20 21 22 23 24 25
#include <vector>
#include "paddle/fluid/framework/operator_kernel_configs.h"
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
#include "paddle/fluid/platform/cudnn_desc.h"
namespace paddle {
namespace operators {

26 27 28 29 30 31 32 33
template <typename T>
std::ostream& operator<<(std::ostream& out, const std::vector<T>& v) {
  out << "[";
  for (auto const& tmp : v) out << tmp << ",";
  out << "]";
  return out;
}

Q
qingqing01 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
using framework::AlgorithmsCache;

struct ConvArgs {
  cudnnHandle_t handle;
  platform::TensorDescriptor idesc, odesc;
  platform::FilterDescriptor wdesc;
  platform::ConvolutionDescriptor cdesc;
  const framework::Tensor *x, *w, *o;

  // strides
  std::vector<int> s;
  // paddings
  std::vector<int> p;
  // dilations
  std::vector<int> d;

  ConvArgs(const framework::Tensor* x, const framework::Tensor* w,
           const framework::Tensor* o, const std::vector<int> s,
           const std::vector<int> p, const std::vector<int> d)
      : x(x), w(w), o(o), s(s), p(p), d(d) {}
};

template <typename perf_t>
struct SearchAlgorithm {};

template <>
struct SearchAlgorithm<cudnnConvolutionFwdAlgoPerf_t> {
  using perf_t = cudnnConvolutionFwdAlgoPerf_t;
  using algo_t = cudnnConvolutionFwdAlgo_t;

  template <typename T>
  static algo_t Find(const ConvArgs& args, bool exhaustive_search,
                     bool deterministic, int algo_cache_id,
                     const framework::ExecutionContext& ctx) {
    auto dtype = platform::CudnnDataType<T>::type;
69
    bool has_got_workspace_size = true;
Q
qingqing01 已提交
70 71
    bool exhaustive = (exhaustive_search) & (dtype != CUDNN_DATA_HALF);
    size_t workspace_size_limit = FLAGS_conv_workspace_size_limit * 1024 * 1024;
72
    size_t workspace_size = 0;
Q
qingqing01 已提交
73
    algo_t algo;
74 75 76 77 78 79 80 81 82 83 84 85 86 87

#if CUDA_VERSION >= 9000 && CUDNN_VERSION_MIN(7, 0, 1)
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    if (dev_ctx.GetComputeCapability() >= 70 && dtype == CUDNN_DATA_HALF) {
      CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionMathType(
          args.cdesc.desc(), CUDNN_TENSOR_OP_MATH));
      VLOG(5) << "use cudnn_tensor_op_math";
    } else {
      CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionMathType(
          args.cdesc.desc(), CUDNN_DEFAULT_MATH));
      VLOG(5) << "NOT use cudnn_tensor_op_math";
    }
#endif

Q
qingqing01 已提交
88
    if (!exhaustive) {
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
#if CUDNN_VERSION >= 7001
      int perf_count;
      int best_algo_idx = 0;
      std::unique_ptr<perf_t[]> perf_results(new perf_t[kNUM_CUDNN_FWD_ALGS]);
      CUDNN_ENFORCE(platform::dynload::cudnnGetConvolutionForwardAlgorithm_v7(
          args.handle, args.idesc.desc(), args.wdesc.desc(), args.cdesc.desc(),
          args.odesc.desc(), kNUM_CUDNN_FWD_ALGS, &perf_count,
          perf_results.get()));
      algo = (perf_results.get())[best_algo_idx].algo;
      workspace_size = GetWorkspaceSize(args, algo);

      if (workspace_size > workspace_size_limit) {
        has_got_workspace_size = false;
        VLOG(1) << "Fallback to non-v7 method to find conv algorithm becasue "
                   "the workspace size request("
                << workspace_size << ") exceeds the limit("
                << workspace_size_limit << ")";
      }
      if (!has_got_workspace_size) {
        CUDNN_ENFORCE(platform::dynload::cudnnGetConvolutionForwardAlgorithm(
            args.handle, args.idesc.desc(), args.wdesc.desc(),
            args.cdesc.desc(), args.odesc.desc(),
            CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT, workspace_size_limit,
            &algo));
      }
#else
Q
qingqing01 已提交
115 116 117 118
      CUDNN_ENFORCE(platform::dynload::cudnnGetConvolutionForwardAlgorithm(
          args.handle, args.idesc.desc(), args.wdesc.desc(), args.cdesc.desc(),
          args.odesc.desc(), CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
          workspace_size_limit, &algo));
119
#endif
Q
qingqing01 已提交
120 121 122 123 124 125 126 127 128 129 130
      VLOG(3) << "choose algo " << algo;
    } else {
      AlgorithmsCache<algo_t>& algo_cache =
          ctx.GetKernelConfig<AlgorithmsCache<algo_t>>(algo_cache_id);
      auto& dev_ctx =
          ctx.template device_context<platform::CUDADeviceContext>();
      auto workspace_handle = dev_ctx.cudnn_workspace_handle();

      auto x_dims = framework::vectorize(args.x->dims());
      auto w_dims = framework::vectorize(args.w->dims());

131 132 133 134 135
      VLOG(10) << "cudnnConvolutionFwdAlgoPerf_t algo_cache_id:"
               << algo_cache_id << ", x_dims:" << x_dims
               << ", w_dims:" << w_dims << ", args.s" << args.s << ", args.p"
               << args.p << ", args.d" << args.d;

Q
qingqing01 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
      algo = algo_cache.GetAlgorithm(
          x_dims, w_dims, args.s, args.p, args.d, 0, [&]() {
            int returned_algo_count;
            std::array<perf_t, kNUM_CUDNN_FWD_ALGS> perf_stat;

            auto cudnn_find_func = [&](void* cudnn_workspace_ptr) {
              CUDNN_ENFORCE(
                  platform::dynload::cudnnFindConvolutionForwardAlgorithmEx(
                      args.handle, args.idesc.desc(), args.x->data<T>(),
                      args.wdesc.desc(), args.w->data<T>(), args.cdesc.desc(),
                      args.odesc.desc(), const_cast<T*>(args.o->data<T>()),
                      kNUM_CUDNN_FWD_ALGS, &returned_algo_count,
                      perf_stat.data(), cudnn_workspace_ptr,
                      workspace_size_limit));
            };
            workspace_handle.RunFuncSync(cudnn_find_func, workspace_size_limit);

            VLOG(3) << "FwdAlgo Perf result: (algo: stat, time, memory)";
            for (int i = 0; i < returned_algo_count; ++i) {
              const auto& stat = perf_stat[i];
              VLOG(3) << stat.algo << ": " << stat.status << " " << stat.time
                      << " " << stat.memory;
            }
            return perf_stat[0].algo;
          });
    }
    VLOG(3) << "choose algo " << algo;
    return algo;
  }

  static size_t GetWorkspaceSize(const ConvArgs& args, algo_t algo) {
    size_t workspace_size = 0;
    CUDNN_ENFORCE(platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
        args.handle, args.idesc.desc(), args.wdesc.desc(), args.cdesc.desc(),
        args.odesc.desc(), algo, &workspace_size));
    return workspace_size;
  }
};

template <>
struct SearchAlgorithm<cudnnConvolutionBwdDataAlgoPerf_t> {
  using perf_t = cudnnConvolutionBwdDataAlgoPerf_t;
  using algo_t = cudnnConvolutionBwdDataAlgo_t;

  template <typename T>
  static algo_t Find(const ConvArgs& args, bool exhaustive_search,
                     bool deterministic, int algo_cache_id,
                     const framework::ExecutionContext& ctx) {
    auto dtype = platform::CudnnDataType<T>::type;
    bool exhaustive = (exhaustive_search) & (dtype != CUDNN_DATA_HALF);
    size_t workspace_size_limit = FLAGS_conv_workspace_size_limit * 1024 * 1024;
187 188
    size_t workspace_size = 0;
    bool has_got_workspace_size = true;
Q
qingqing01 已提交
189
    algo_t algo;
190 191 192 193 194 195 196 197 198 199 200 201 202 203

#if CUDA_VERSION >= 9000 && CUDNN_VERSION_MIN(7, 0, 1)
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    if (dev_ctx.GetComputeCapability() >= 70 && dtype == CUDNN_DATA_HALF) {
      CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionMathType(
          args.cdesc.desc(), CUDNN_TENSOR_OP_MATH));
      VLOG(5) << "use cudnn_tensor_op_math";
    } else {
      CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionMathType(
          args.cdesc.desc(), CUDNN_DEFAULT_MATH));
      VLOG(5) << "NOT use cudnn_tensor_op_math";
    }
#endif

Q
qingqing01 已提交
204
    if (!exhaustive && !deterministic) {
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
#if CUDNN_VERSION >= 7001
      int perf_count;
      int best_algo_idx = 0;
      std::unique_ptr<perf_t[]> perf_results(
          new perf_t[kNUM_CUDNN_BWD_DATA_ALGS]);
      CUDNN_ENFORCE(
          platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm_v7(
              args.handle, args.wdesc.desc(), args.odesc.desc(),
              args.cdesc.desc(), args.idesc.desc(), kNUM_CUDNN_BWD_DATA_ALGS,
              &perf_count, perf_results.get()));
      algo = (perf_results.get())[best_algo_idx].algo;

#if CUDNN_VERSION < 7500
      int stride_dim = args.x->dims().size() - 2;
      bool blacklist = std::any_of(args.s.begin(), args.s.begin() + stride_dim,
                                   [=](int n) { return n != 1; });
      if (blacklist && (static_cast<cudnnConvolutionBwdDataAlgo_t>(
                            perf_results[best_algo_idx].algo) ==
                            CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING ||
                        static_cast<cudnnConvolutionBwdDataAlgo_t>(
                            perf_results[best_algo_idx].algo) ==
                            CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT)) {
        algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1;
      }
#endif
      workspace_size = GetWorkspaceSize(args, algo);
      if (workspace_size > workspace_size_limit) {
        has_got_workspace_size = false;
        VLOG(1) << "Fallback to non-v7 method to find conv algorithm becasue "
                   "the workspace size request("
                << workspace_size << ") exceeds the limit("
                << workspace_size_limit << ")";
      }
      if (!has_got_workspace_size) {
        CUDNN_ENFORCE(
            platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm(
                args.handle, args.wdesc.desc(), args.odesc.desc(),
                args.cdesc.desc(), args.idesc.desc(),
                CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
                workspace_size_limit, &algo));
      }
#else
Q
qingqing01 已提交
247
      CUDNN_ENFORCE(platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm(
248 249
          args.handle, args.wdesc.desc(), args.odesc.desc(), args.cdesc.desc(),
          args.idesc.desc(), CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
Q
qingqing01 已提交
250
          workspace_size_limit, &algo));
251
#endif
Q
qingqing01 已提交
252 253 254 255 256 257 258 259 260 261 262 263
    } else if (deterministic) {
      return CUDNN_CONVOLUTION_BWD_DATA_ALGO_1;
    } else {
      AlgorithmsCache<algo_t>& algo_cache =
          ctx.GetKernelConfig<AlgorithmsCache<algo_t>>(algo_cache_id);
      auto& dev_ctx =
          ctx.template device_context<platform::CUDADeviceContext>();
      auto workspace_handle = dev_ctx.cudnn_workspace_handle();

      auto x_dims = framework::vectorize(args.x->dims());
      auto w_dims = framework::vectorize(args.w->dims());

264 265 266 267 268
      VLOG(10) << "cudnnConvolutionFwdAlgoPerf_t algo_cache_id:"
               << algo_cache_id << ", x_dims:" << x_dims
               << ", w_dims:" << w_dims << ", args.s" << args.s << ", args.p"
               << args.p << ", args.d" << args.d;

Q
qingqing01 已提交
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
      algo = algo_cache.GetAlgorithm(
          x_dims, w_dims, args.s, args.p, args.d, 0, [&]() {
            int returned_algo_count;
            std::array<perf_t, kNUM_CUDNN_FWD_ALGS> perf_stat;

            auto cudnn_find_func = [&](void* cudnn_workspace_ptr) {
              CUDNN_ENFORCE(
                  platform::dynload::
                      cudnnFindConvolutionBackwardDataAlgorithmEx(
                          args.handle, args.wdesc.desc(), args.w->data<T>(),
                          args.odesc.desc(), args.o->data<T>(),
                          args.cdesc.desc(), args.idesc.desc(),
                          const_cast<T*>(args.x->data<T>()),
                          kNUM_CUDNN_BWD_DATA_ALGS, &returned_algo_count,
                          perf_stat.data(), cudnn_workspace_ptr,
                          workspace_size_limit));
            };
            workspace_handle.RunFuncSync(cudnn_find_func, workspace_size_limit);

            VLOG(3) << "BwdDataAlgo Perf result: (algo: stat, time, memory)";
            for (int i = 0; i < returned_algo_count; ++i) {
              const auto& stat = perf_stat[i];
              VLOG(3) << stat.algo << ": " << stat.status << " " << stat.time
                      << " " << stat.memory;
            }

            return perf_stat[0].algo;
          });
    }
    VLOG(3) << "choose algo " << algo;
    return algo;
  }

  static size_t GetWorkspaceSize(const ConvArgs& args, algo_t algo) {
    size_t workspace_size = 0;
    CUDNN_ENFORCE(
        platform::dynload::cudnnGetConvolutionBackwardDataWorkspaceSize(
306 307
            args.handle, args.wdesc.desc(), args.odesc.desc(),
            args.cdesc.desc(), args.idesc.desc(), algo, &workspace_size));
Q
qingqing01 已提交
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
    return workspace_size;
  }
};

template <>
struct SearchAlgorithm<cudnnConvolutionBwdFilterAlgoPerf_t> {
  using perf_t = cudnnConvolutionBwdFilterAlgoPerf_t;
  using algo_t = cudnnConvolutionBwdFilterAlgo_t;

  template <typename T>
  static algo_t Find(const ConvArgs& args, bool exhaustive_search,
                     bool deterministic, int algo_cache_id,
                     const framework::ExecutionContext& ctx) {
    auto dtype = platform::CudnnDataType<T>::type;
    bool exhaustive = (exhaustive_search) & (dtype != CUDNN_DATA_HALF);
    size_t workspace_size_limit = FLAGS_conv_workspace_size_limit * 1024 * 1024;
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
    size_t workspace_size = 0;
    bool has_got_workspace_size = true;

#if CUDA_VERSION >= 9000 && CUDNN_VERSION_MIN(7, 0, 1)
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    if (dev_ctx.GetComputeCapability() >= 70 && dtype == CUDNN_DATA_HALF) {
      CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionMathType(
          args.cdesc.desc(), CUDNN_TENSOR_OP_MATH));
      VLOG(5) << "use cudnn_tensor_op_math";
    } else {
      CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionMathType(
          args.cdesc.desc(), CUDNN_DEFAULT_MATH));
      VLOG(5) << "NOT use cudnn_tensor_op_math";
    }
#endif
Q
qingqing01 已提交
339 340 341

    algo_t algo;
    if (!exhaustive && !deterministic) {
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
#if CUDNN_VERSION >= 7001
      using perf_t = cudnnConvolutionBwdFilterAlgoPerf_t;
      int perf_count;
      int best_algo_idx = 0;
      std::unique_ptr<perf_t[]> perf_results(
          new perf_t[kNUM_CUDNN_BWD_FILTER_ALGS]);
      CUDNN_ENFORCE(
          platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm_v7(
              args.handle, args.idesc.desc(), args.odesc.desc(),
              args.cdesc.desc(), args.wdesc.desc(), kNUM_CUDNN_BWD_FILTER_ALGS,
              &perf_count, perf_results.get()));
      algo = (perf_results.get())[best_algo_idx].algo;
      workspace_size = GetWorkspaceSize(args, algo);
      if (workspace_size > workspace_size_limit) {
        has_got_workspace_size = false;
        VLOG(1) << "Fallback to non-v7 method to find conv algorithm becasue "
                   "the workspace size request("
                << workspace_size << ") exceeds the limit("
                << workspace_size_limit << ")";
      }
      if (!has_got_workspace_size) {
        CUDNN_ENFORCE(
            platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm(
                args.handle, args.idesc.desc(), args.odesc.desc(),
                args.cdesc.desc(), args.wdesc.desc(),
                CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,
                workspace_size_limit, &algo));
      }
#else
Q
qingqing01 已提交
371 372 373 374 375 376
      CUDNN_ENFORCE(
          platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm(
              args.handle, args.idesc.desc(), args.odesc.desc(),
              args.cdesc.desc(), args.wdesc.desc(),
              CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,
              workspace_size_limit, &algo));
377
#endif
Q
qingqing01 已提交
378 379 380 381 382 383 384 385 386 387 388 389
    } else if (deterministic) {
      return CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1;
    } else {
      AlgorithmsCache<algo_t>& algo_cache =
          ctx.GetKernelConfig<AlgorithmsCache<algo_t>>(algo_cache_id);
      auto& dev_ctx =
          ctx.template device_context<platform::CUDADeviceContext>();
      auto workspace_handle = dev_ctx.cudnn_workspace_handle();

      auto x_dims = framework::vectorize(args.x->dims());
      auto w_dims = framework::vectorize(args.w->dims());

390 391 392 393 394
      VLOG(10) << "cudnnConvolutionFwdAlgoPerf_t algo_cache_id:"
               << algo_cache_id << ", x_dims:" << x_dims
               << ", w_dims:" << w_dims << ", args.s" << args.s << ", args.p"
               << args.p << ", args.d" << args.d;

Q
qingqing01 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
      algo = algo_cache.GetAlgorithm(
          x_dims, w_dims, args.s, args.p, args.d, 0, [&]() {
            int returned_algo_count;
            std::array<perf_t, kNUM_CUDNN_FWD_ALGS> perf_stat;
            auto cudnn_find_func = [&](void* cudnn_workspace_ptr) {
              CUDNN_ENFORCE(
                  platform::dynload::
                      cudnnFindConvolutionBackwardFilterAlgorithmEx(
                          args.handle, args.idesc.desc(), args.x->data<T>(),
                          args.odesc.desc(), args.o->data<T>(),
                          args.cdesc.desc(), args.wdesc.desc(),
                          const_cast<T*>(args.w->data<T>()),
                          kNUM_CUDNN_BWD_FILTER_ALGS, &returned_algo_count,
                          perf_stat.data(), cudnn_workspace_ptr,
                          workspace_size_limit));
            };
            workspace_handle.RunFuncSync(cudnn_find_func, workspace_size_limit);

            VLOG(3) << "BwdFilterAlgo Perf result: (algo: stat, time, memory)";
            for (int i = 0; i < returned_algo_count; ++i) {
              const auto& stat = perf_stat[i];
              VLOG(3) << stat.algo << ": " << stat.status << " " << stat.time
                      << " " << stat.memory;
            }
            return perf_stat[0].algo;
          });
    }
    VLOG(3) << "choose algo " << algo;
    return algo;
  }

  static size_t GetWorkspaceSize(const ConvArgs& args, algo_t algo) {
    size_t workspace_size = 0;
    CUDNN_ENFORCE(
        platform::dynload::cudnnGetConvolutionBackwardFilterWorkspaceSize(
            args.handle, args.idesc.desc(), args.odesc.desc(),
            args.cdesc.desc(), args.wdesc.desc(), algo, &workspace_size));
    return workspace_size;
  }
};

}  // namespace operators
}  // namespace paddle