conv_cudnn_helper.h 25.0 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include <algorithm>
18
#include <array>
19
#include <memory>
20
#include <string>
Q
qingqing01 已提交
21
#include <vector>
22

23
#include "paddle/fluid/framework/conv_search_cache.h"
Q
qingqing01 已提交
24 25
#include "paddle/fluid/framework/operator_kernel_configs.h"
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
26
#include "paddle/fluid/operators/eigen/eigen_function.h"
27
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
Q
qingqing01 已提交
28 29 30 31
#include "paddle/fluid/platform/cudnn_desc.h"
namespace paddle {
namespace operators {

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
using Tensor = framework::Tensor;
using DataLayout = platform::DataLayout;
template <typename T>
using ScalingParamType = typename platform::CudnnDataType<T>::ScalingParamType;
using framework::AlgorithmsCache;
static inline void GetNCDHW(const framework::DDim& dims,
                            const DataLayout& layout, int* N, int* C, int* D,
                            int* H, int* W) {
  *N = dims[0];
  *C = layout == DataLayout::kNCHW ? dims[1] : dims[dims.size() - 1];
  int i = layout == DataLayout::kNCHW ? 0 : 1;
  if (dims.size() == 5) {
    *D = dims[2 - i];
    *H = dims[3 - i];
    *W = dims[4 - i];
  } else {
    *D = 1;
    *H = dims[2 - i];
    *W = dims[3 - i];
  }
}

template <typename DeviceContext, typename T, size_t D>
static void RemovePaddingSlice(const framework::ExecutionContext& context,
                               const Tensor* input, Tensor* out,
                               const std::vector<int>& starts,
                               const std::vector<int>& axes) {
  auto& place =
      *context.template device_context<DeviceContext>().eigen_device();
  auto in_dims = input->dims();
  auto new_out_dims = out->dims();
63 64
  auto offsets = Eigen::DSizes<Eigen::DenseIndex, D>();
  auto extents = Eigen::DSizes<Eigen::DenseIndex, D>();
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
  for (size_t i = 0; i < D; ++i) {
    offsets[i] = 0;
    extents[i] = new_out_dims[i];
  }

  int start;
  for (size_t i = 0; i < axes.size(); ++i) {
    start = starts[i];
    if (start < 0) {
      start = (start + in_dims[axes[i]]);
    }
    start = std::max(start, 0);
    offsets[axes[i]] = start;
  }
  auto in_t =
      framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
          *input);

  auto out_t =
      framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
          *out, new_out_dims);
86 87
  EigenSlice<std::decay_t<decltype(place)>, T, D>::Eval(place, out_t, in_t,
                                                        offsets, extents);
88 89
}

90 91 92 93 94 95 96 97
template <typename T>
std::ostream& operator<<(std::ostream& out, const std::vector<T>& v) {
  out << "[";
  for (auto const& tmp : v) out << tmp << ",";
  out << "]";
  return out;
}

98 99 100 101 102 103 104 105 106 107
inline int MaxBwdFilterAlgos(cudnnHandle_t cudnn_handle) {
  int max_algos = 0;
#if CUDNN_VERSION_MIN(7, 0, 1)
  PADDLE_ENFORCE_CUDA_SUCCESS(
      platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithmMaxCount(
          cudnn_handle, &max_algos));
#endif
  return max_algos;
}

108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
template <typename PerfType, typename AlgoType>
void ChooseAlgoByWorkspace(PerfType* perf_results, size_t perf_num,
                           size_t workspace_byte, AlgoType* algo) {
  for (size_t i = 0; i < perf_num; ++i) {
    auto result = perf_results[i];
    if (result.status == CUDNN_STATUS_SUCCESS &&
        result.memory < workspace_byte) {
      *algo = result.algo;
      VLOG(3) << "    algo: " << result.algo << ", time: " << result.time
              << " ms, wksp = " << result.memory
              << ", status = " << result.status;
      return;
    }
  }
  VLOG(3) << "Can not find alog that requires memory < "
          << static_cast<double>(workspace_byte) / (1 << 20) << " MB";
}

126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
template <typename PerfType, typename AlgoType>
void ChooseAlgo(const std::vector<PerfType>& perf_results,
                size_t workspace_byte, AlgoType* algo) {
  VLOG(3) << "=========BwdFilterAlgo Perf result=========";
  for (const auto& result : perf_results) {
    auto math_type_str = "False";
    if (result.mathType == CUDNN_TENSOR_OP_MATH) {
      math_type_str = "True";
    }
    VLOG(3) << "    algo: " << result.algo << ", TensorCore: " << math_type_str
            << ", time: " << result.time << " ms"
            << ", wksp = " << result.memory << ", status = " << result.status;
  }

  for (size_t i = 0; i != perf_results.size(); ++i) {
    const auto& result = perf_results[i];
    if (result.status == CUDNN_STATUS_SUCCESS &&
        (result.memory <= workspace_byte)) {
      if ((result.mathType == CUDNN_TENSOR_OP_MATH) &&
          (i != perf_results.size() - 1)) {
        const auto& next_result = perf_results[i + 1];
        if (next_result.status == CUDNN_STATUS_SUCCESS &&
            next_result.algo == result.algo &&
            next_result.memory == result.memory &&
            next_result.mathType != CUDNN_TENSOR_OP_MATH &&
            next_result.time < 1.01 * result.time) {
          // Skip over this result- it's not really a Tensor Core algo.
          // Because it is only 1% performance difference.
          // Prefer to choose the next equivalent non-Tensor Core algo.
          continue;
        }
      }
      *algo = result.algo;
      auto math_type_str = "0";
      if (result.mathType == CUDNN_TENSOR_OP_MATH) {
        math_type_str = "1";
      }
      VLOG(3) << "    choose algo: " << result.algo << ", TC: " << math_type_str
              << ", time: " << result.time << " ms"
              << ", wksp = " << result.memory << ", status = " << result.status;
      return;
    }
  }
}

171
using framework::ConvSearchCache;
Q
qingqing01 已提交
172

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
static void SetConvMathType(const framework::ExecutionContext& ctx,
                            cudnnDataType_t dtype,
                            const platform::ConvolutionDescriptor& cdesc) {
#if CUDA_VERSION >= 9000 && CUDNN_VERSION_MIN(7, 0, 1)
  auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
  if (dev_ctx.GetComputeCapability() >= 70 && dtype == CUDNN_DATA_HALF) {
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
        cdesc.desc(), CUDNN_TENSOR_OP_MATH));
    VLOG(5) << "use cudnn_tensor_op_math";
#if CUDA_VERSION >= 11000
#if CUDNN_VERSION_MIN(8, 1, 0)
  } else if (dev_ctx.GetComputeCapability() >= 80 &&
             dtype == CUDNN_DATA_BFLOAT16) {
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
        cdesc.desc(), CUDNN_TENSOR_OP_MATH));
#endif  // CUDNN_VERSION_MIN(8, 1, 0)
  } else if (dtype == CUDNN_DATA_FLOAT && !cdesc.allow_tf32_) {
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
        cdesc.desc(), CUDNN_FMA_MATH));
#endif  // CUDA_VERSION >= 11000
  } else {
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
        cdesc.desc(), CUDNN_DEFAULT_MATH));
    VLOG(5) << "NOT use cudnn_tensor_op_math";
  }
#endif
  return;
}

Q
qingqing01 已提交
202 203 204 205 206 207
struct ConvArgs {
  cudnnHandle_t handle;
  platform::TensorDescriptor idesc, odesc;
  platform::FilterDescriptor wdesc;
  platform::ConvolutionDescriptor cdesc;
  const framework::Tensor *x, *w, *o;
208
  cudnnDataType_t cudnn_dtype;
Q
qingqing01 已提交
209 210 211 212 213 214 215 216 217 218

  // strides
  std::vector<int> s;
  // paddings
  std::vector<int> p;
  // dilations
  std::vector<int> d;

  ConvArgs(const framework::Tensor* x, const framework::Tensor* w,
           const framework::Tensor* o, const std::vector<int> s,
219 220 221
           const std::vector<int> p, const std::vector<int> d,
           cudnnDataType_t dtype)
      : x(x), w(w), o(o), s(s), p(p), d(d), cudnn_dtype(dtype) {}
Q
qingqing01 已提交
222 223 224 225 226 227 228 229 230 231 232 233
};

template <typename perf_t>
struct SearchAlgorithm {};

template <>
struct SearchAlgorithm<cudnnConvolutionFwdAlgoPerf_t> {
  using perf_t = cudnnConvolutionFwdAlgoPerf_t;
  using algo_t = cudnnConvolutionFwdAlgo_t;

  template <typename T>
  static algo_t Find(const ConvArgs& args, bool exhaustive_search,
234
                     bool deterministic,
Q
qingqing01 已提交
235 236
                     const framework::ExecutionContext& ctx) {
    auto dtype = platform::CudnnDataType<T>::type;
237
    bool has_got_workspace_size = true;
Q
qingqing01 已提交
238
    size_t workspace_size_limit = FLAGS_conv_workspace_size_limit * 1024 * 1024;
239
    size_t workspace_size = 0;
Q
qingqing01 已提交
240
    algo_t algo;
241
    SetConvMathType(ctx, dtype, args.cdesc);
242

243
    if (!exhaustive_search && !deterministic) {
244 245 246 247
#if CUDNN_VERSION >= 7001
      int perf_count;
      int best_algo_idx = 0;
      std::unique_ptr<perf_t[]> perf_results(new perf_t[kNUM_CUDNN_FWD_ALGS]);
248 249 250 251 252
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnGetConvolutionForwardAlgorithm_v7(
              args.handle, args.idesc.desc(), args.wdesc.desc(),
              args.cdesc.desc(), args.odesc.desc(), kNUM_CUDNN_FWD_ALGS,
              &perf_count, perf_results.get()));
253 254 255 256
      algo = (perf_results.get())[best_algo_idx].algo;
      workspace_size = GetWorkspaceSize(args, algo);

      if (workspace_size > workspace_size_limit) {
257
#if CUDNN_VERSION >= 8000
258 259 260 261
        // cudnnGetConvolutionForwardAlgorithm is removed in CUDNN-8
        ChooseAlgoByWorkspace<perf_t, algo_t>(perf_results.get(),
                                              kNUM_CUDNN_FWD_ALGS,
                                              workspace_size_limit, &algo);
262 263 264 265 266 267 268 269 270 271 272 273
#else
        VLOG(1) << "Fallback to non-v7 method to find conv algorithm becasue "
                   "the workspace size request("
                << workspace_size << ") exceeds the limit("
                << workspace_size_limit << ")";
        PADDLE_ENFORCE_CUDA_SUCCESS(
            platform::dynload::cudnnGetConvolutionForwardAlgorithm(
                args.handle, args.idesc.desc(), args.wdesc.desc(),
                args.cdesc.desc(), args.odesc.desc(),
                CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
                workspace_size_limit, &algo));
#endif
274 275
      }
#else
276 277 278 279 280 281
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnGetConvolutionForwardAlgorithm(
              args.handle, args.idesc.desc(), args.wdesc.desc(),
              args.cdesc.desc(), args.odesc.desc(),
              CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
              workspace_size_limit, &algo));
282
#endif
Q
qingqing01 已提交
283
      VLOG(3) << "choose algo " << algo;
284 285
    } else if (deterministic) {
      algo = static_cast<cudnnConvolutionFwdAlgo_t>(1);
Q
qingqing01 已提交
286 287 288 289 290
    } else {
      auto& dev_ctx =
          ctx.template device_context<platform::CUDADeviceContext>();
      auto workspace_handle = dev_ctx.cudnn_workspace_handle();

291 292
      auto& temp = ctx.cuda_device_context();
      AlgorithmsCache<algo_t>& algo_cache =
293
          *(framework::ConvSearchCache::Instance().GetForward());
294

Q
qingqing01 已提交
295 296 297
      auto x_dims = framework::vectorize(args.x->dims());
      auto w_dims = framework::vectorize(args.w->dims());

298 299 300
      VLOG(10) << "cudnnConvolutionFwdAlgoPerf_t:"
               << ", x_dims:" << x_dims << ", w_dims:" << w_dims << ", args.s"
               << args.s << ", args.p" << args.p << ", args.d" << args.d;
301

Q
qingqing01 已提交
302
      algo = algo_cache.GetAlgorithm(
303 304
          x_dims, w_dims, args.s, args.p, args.d, 0,
          static_cast<int64_t>(args.cudnn_dtype), [&]() {
Q
qingqing01 已提交
305 306 307 308
            int returned_algo_count;
            std::array<perf_t, kNUM_CUDNN_FWD_ALGS> perf_stat;

            auto cudnn_find_func = [&](void* cudnn_workspace_ptr) {
309
              PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
                  platform::dynload::cudnnFindConvolutionForwardAlgorithmEx(
                      args.handle, args.idesc.desc(), args.x->data<T>(),
                      args.wdesc.desc(), args.w->data<T>(), args.cdesc.desc(),
                      args.odesc.desc(), const_cast<T*>(args.o->data<T>()),
                      kNUM_CUDNN_FWD_ALGS, &returned_algo_count,
                      perf_stat.data(), cudnn_workspace_ptr,
                      workspace_size_limit));
            };
            workspace_handle.RunFuncSync(cudnn_find_func, workspace_size_limit);

            VLOG(3) << "FwdAlgo Perf result: (algo: stat, time, memory)";
            for (int i = 0; i < returned_algo_count; ++i) {
              const auto& stat = perf_stat[i];
              VLOG(3) << stat.algo << ": " << stat.status << " " << stat.time
                      << " " << stat.memory;
            }
            return perf_stat[0].algo;
          });
    }
    VLOG(3) << "choose algo " << algo;
    return algo;
  }

  static size_t GetWorkspaceSize(const ConvArgs& args, algo_t algo) {
    size_t workspace_size = 0;
335 336 337 338
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
            args.handle, args.idesc.desc(), args.wdesc.desc(),
            args.cdesc.desc(), args.odesc.desc(), algo, &workspace_size));
Q
qingqing01 已提交
339 340 341 342 343 344 345 346 347 348 349
    return workspace_size;
  }
};

template <>
struct SearchAlgorithm<cudnnConvolutionBwdDataAlgoPerf_t> {
  using perf_t = cudnnConvolutionBwdDataAlgoPerf_t;
  using algo_t = cudnnConvolutionBwdDataAlgo_t;

  template <typename T>
  static algo_t Find(const ConvArgs& args, bool exhaustive_search,
350
                     bool deterministic,
Q
qingqing01 已提交
351 352 353
                     const framework::ExecutionContext& ctx) {
    auto dtype = platform::CudnnDataType<T>::type;
    size_t workspace_size_limit = FLAGS_conv_workspace_size_limit * 1024 * 1024;
354 355
    size_t workspace_size = 0;
    bool has_got_workspace_size = true;
Q
qingqing01 已提交
356
    algo_t algo;
357
    SetConvMathType(ctx, dtype, args.cdesc);
358

359
    if (!exhaustive_search && !deterministic) {
360 361 362 363 364
#if CUDNN_VERSION >= 7001
      int perf_count;
      int best_algo_idx = 0;
      std::unique_ptr<perf_t[]> perf_results(
          new perf_t[kNUM_CUDNN_BWD_DATA_ALGS]);
365
      PADDLE_ENFORCE_CUDA_SUCCESS(
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
          platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm_v7(
              args.handle, args.wdesc.desc(), args.odesc.desc(),
              args.cdesc.desc(), args.idesc.desc(), kNUM_CUDNN_BWD_DATA_ALGS,
              &perf_count, perf_results.get()));
      algo = (perf_results.get())[best_algo_idx].algo;

#if CUDNN_VERSION < 7500
      int stride_dim = args.x->dims().size() - 2;
      bool blacklist = std::any_of(args.s.begin(), args.s.begin() + stride_dim,
                                   [=](int n) { return n != 1; });
      if (blacklist && (static_cast<cudnnConvolutionBwdDataAlgo_t>(
                            perf_results[best_algo_idx].algo) ==
                            CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING ||
                        static_cast<cudnnConvolutionBwdDataAlgo_t>(
                            perf_results[best_algo_idx].algo) ==
                            CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT)) {
        algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1;
      }
#endif
      workspace_size = GetWorkspaceSize(args, algo);
      if (workspace_size > workspace_size_limit) {
        has_got_workspace_size = false;
388
#if CUDNN_VERSION >= 8000
389 390 391 392
        // cudnnGetConvolutionBackwardDataAlgorithm is removed in CUDNN-8
        ChooseAlgoByWorkspace<perf_t, algo_t>(perf_results.get(),
                                              kNUM_CUDNN_BWD_DATA_ALGS,
                                              workspace_size_limit, &algo);
393 394 395 396 397 398 399 400 401 402 403 404
#else
        VLOG(1) << "Fallback to non-v7 method to find conv algorithm becasue "
                   "the workspace size request("
                << workspace_size << ") exceeds the limit("
                << workspace_size_limit << ")";
        PADDLE_ENFORCE_CUDA_SUCCESS(
            platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm(
                args.handle, args.wdesc.desc(), args.odesc.desc(),
                args.cdesc.desc(), args.idesc.desc(),
                CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
                workspace_size_limit, &algo));
#endif
405 406
      }
#else
407 408 409 410 411 412
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm(
              args.handle, args.wdesc.desc(), args.odesc.desc(),
              args.cdesc.desc(), args.idesc.desc(),
              CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
              workspace_size_limit, &algo));
413
#endif
Q
qingqing01 已提交
414 415 416 417 418 419 420
    } else if (deterministic) {
      return CUDNN_CONVOLUTION_BWD_DATA_ALGO_1;
    } else {
      auto& dev_ctx =
          ctx.template device_context<platform::CUDADeviceContext>();
      auto workspace_handle = dev_ctx.cudnn_workspace_handle();

421
      AlgorithmsCache<algo_t>& algo_cache =
422
          *(framework::ConvSearchCache::Instance().GetBackwardData());
423

Q
qingqing01 已提交
424 425 426
      auto x_dims = framework::vectorize(args.x->dims());
      auto w_dims = framework::vectorize(args.w->dims());

427 428 429
      VLOG(10) << "cudnnConvolutionFwdAlgoPerf_t"
               << ", x_dims:" << x_dims << ", w_dims:" << w_dims << ", args.s"
               << args.s << ", args.p" << args.p << ", args.d" << args.d;
430

Q
qingqing01 已提交
431
      algo = algo_cache.GetAlgorithm(
432 433
          x_dims, w_dims, args.s, args.p, args.d, 0,
          static_cast<int64_t>(args.cudnn_dtype), [&]() {
Q
qingqing01 已提交
434
            int returned_algo_count;
435
            std::array<perf_t, kNUM_CUDNN_BWD_DATA_ALGS> perf_stat;
Q
qingqing01 已提交
436 437

            auto cudnn_find_func = [&](void* cudnn_workspace_ptr) {
438
              PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
                  platform::dynload::
                      cudnnFindConvolutionBackwardDataAlgorithmEx(
                          args.handle, args.wdesc.desc(), args.w->data<T>(),
                          args.odesc.desc(), args.o->data<T>(),
                          args.cdesc.desc(), args.idesc.desc(),
                          const_cast<T*>(args.x->data<T>()),
                          kNUM_CUDNN_BWD_DATA_ALGS, &returned_algo_count,
                          perf_stat.data(), cudnn_workspace_ptr,
                          workspace_size_limit));
            };
            workspace_handle.RunFuncSync(cudnn_find_func, workspace_size_limit);

            VLOG(3) << "BwdDataAlgo Perf result: (algo: stat, time, memory)";
            for (int i = 0; i < returned_algo_count; ++i) {
              const auto& stat = perf_stat[i];
              VLOG(3) << stat.algo << ": " << stat.status << " " << stat.time
                      << " " << stat.memory;
            }

            return perf_stat[0].algo;
          });
    }
    VLOG(3) << "choose algo " << algo;
    return algo;
  }

  static size_t GetWorkspaceSize(const ConvArgs& args, algo_t algo) {
    size_t workspace_size = 0;
467
    PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
468
        platform::dynload::cudnnGetConvolutionBackwardDataWorkspaceSize(
469 470
            args.handle, args.wdesc.desc(), args.odesc.desc(),
            args.cdesc.desc(), args.idesc.desc(), algo, &workspace_size));
Q
qingqing01 已提交
471 472 473 474 475 476 477 478 479 480 481
    return workspace_size;
  }
};

template <>
struct SearchAlgorithm<cudnnConvolutionBwdFilterAlgoPerf_t> {
  using perf_t = cudnnConvolutionBwdFilterAlgoPerf_t;
  using algo_t = cudnnConvolutionBwdFilterAlgo_t;

  template <typename T>
  static algo_t Find(const ConvArgs& args, bool exhaustive_search,
482
                     bool deterministic,
Q
qingqing01 已提交
483
                     const framework::ExecutionContext& ctx) {
484
    platform::CUDAGraphCaptureModeGuard guard;
Q
qingqing01 已提交
485 486
    auto dtype = platform::CudnnDataType<T>::type;
    size_t workspace_size_limit = FLAGS_conv_workspace_size_limit * 1024 * 1024;
487 488
    size_t workspace_size = 0;
    bool has_got_workspace_size = true;
489
    SetConvMathType(ctx, dtype, args.cdesc);
Q
qingqing01 已提交
490 491

    algo_t algo;
492
    if (!exhaustive_search && !deterministic) {
493 494 495 496 497 498
#if CUDNN_VERSION >= 7001
      using perf_t = cudnnConvolutionBwdFilterAlgoPerf_t;
      int perf_count;
      int best_algo_idx = 0;
      std::unique_ptr<perf_t[]> perf_results(
          new perf_t[kNUM_CUDNN_BWD_FILTER_ALGS]);
499
      PADDLE_ENFORCE_CUDA_SUCCESS(
500 501 502 503 504 505 506
          platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm_v7(
              args.handle, args.idesc.desc(), args.odesc.desc(),
              args.cdesc.desc(), args.wdesc.desc(), kNUM_CUDNN_BWD_FILTER_ALGS,
              &perf_count, perf_results.get()));
      algo = (perf_results.get())[best_algo_idx].algo;
      workspace_size = GetWorkspaceSize(args, algo);
      if (workspace_size > workspace_size_limit) {
507
        workspace_size = workspace_size_limit;
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
#if CUDNN_VERSION >= 8000
        // cudnnGetConvolutionBackwardFilterAlgorithm is removed in CUDNN-8
        ChooseAlgoByWorkspace<perf_t, algo_t>(perf_results.get(),
                                              kNUM_CUDNN_BWD_FILTER_ALGS,
                                              workspace_size_limit, &algo);
#else
        VLOG(1) << "Fallback to non-v7 method to find conv algorithm becasue "
                   "the workspace size request("
                << workspace_size << ") exceeds the limit("
                << workspace_size_limit << ")";
        PADDLE_ENFORCE_CUDA_SUCCESS(
            platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm(
                args.handle, args.idesc.desc(), args.odesc.desc(),
                args.cdesc.desc(), args.wdesc.desc(),
                CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,
                workspace_size_limit, &algo));
#endif
525 526
      }
#else
527
      PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
528 529 530 531 532
          platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm(
              args.handle, args.idesc.desc(), args.odesc.desc(),
              args.cdesc.desc(), args.wdesc.desc(),
              CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,
              workspace_size_limit, &algo));
533
#endif
Q
qingqing01 已提交
534 535 536 537 538 539
    } else if (deterministic) {
      return CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1;
    } else {
      auto& dev_ctx =
          ctx.template device_context<platform::CUDADeviceContext>();
      auto workspace_handle = dev_ctx.cudnn_workspace_handle();
540
      AlgorithmsCache<algo_t>& algo_cache =
541
          *(framework::ConvSearchCache::Instance().GetBackwardFilter());
Q
qingqing01 已提交
542 543 544 545

      auto x_dims = framework::vectorize(args.x->dims());
      auto w_dims = framework::vectorize(args.w->dims());

546 547 548
      VLOG(10) << "cudnnConvolutionFwdAlgoPerf_t:"
               << ", x_dims:" << x_dims << ", w_dims:" << w_dims << ", args.s"
               << args.s << ", args.p" << args.p << ", args.d" << args.d;
549 550 551 552 553
      if (dtype != CUDNN_DATA_HALF) {
        algo = algo_cache.GetAlgorithm(
            x_dims, w_dims, args.s, args.p, args.d, 0,
            static_cast<int64_t>(args.cudnn_dtype), [&]() {
              int returned_algo_count;
554
              std::array<perf_t, kNUM_CUDNN_BWD_FILTER_ALGS> perf_stat;
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
              auto cudnn_find_func = [&](void* cudnn_workspace_ptr) {
                PADDLE_ENFORCE_CUDA_SUCCESS(
                    platform::dynload::
                        cudnnFindConvolutionBackwardFilterAlgorithmEx(
                            args.handle, args.idesc.desc(), args.x->data<T>(),
                            args.odesc.desc(), args.o->data<T>(),
                            args.cdesc.desc(), args.wdesc.desc(),
                            const_cast<T*>(args.w->data<T>()),
                            kNUM_CUDNN_BWD_FILTER_ALGS, &returned_algo_count,
                            perf_stat.data(), cudnn_workspace_ptr,
                            workspace_size_limit));
              };
              workspace_handle.RunFuncSync(cudnn_find_func,
                                           workspace_size_limit);

              VLOG(3)
                  << "BwdFilterAlgo Perf result: (algo: stat, time, memory)";
              for (int i = 0; i < returned_algo_count; ++i) {
                const auto& stat = perf_stat[i];
                VLOG(3) << stat.algo << ": " << stat.status << " " << stat.time
                        << " " << stat.memory;
              }
              return perf_stat[0].algo;
            });
      } else {
        auto max_algos = MaxBwdFilterAlgos(args.handle);
        algo = algo_cache.GetAlgorithm(
            x_dims, w_dims, args.s, args.p, args.d, 0,
            static_cast<int64_t>(args.cudnn_dtype), [&]() {
              algo_t chosen_algo;
              std::vector<perf_t> perf_results(max_algos);
              int actual_algos = 0;
587
              PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
588
                  platform::dynload::
589 590
                      cudnnFindConvolutionBackwardFilterAlgorithm(
                          args.handle, args.idesc.desc(), args.odesc.desc(),
Q
qingqing01 已提交
591
                          args.cdesc.desc(), args.wdesc.desc(),
592 593 594 595 596 597 598 599
                          perf_results.size(), &actual_algos,
                          perf_results.data()));
              perf_results.resize(actual_algos);
              ChooseAlgo<perf_t, algo_t>(perf_results, workspace_size_limit,
                                         &chosen_algo);
              return chosen_algo;
            });
      }
Q
qingqing01 已提交
600 601 602 603 604 605
    }
    VLOG(3) << "choose algo " << algo;
    return algo;
  }

  static size_t GetWorkspaceSize(const ConvArgs& args, algo_t algo) {
606
    platform::CUDAGraphCaptureModeGuard guard;
Q
qingqing01 已提交
607
    size_t workspace_size = 0;
608
    PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
609 610 611 612 613 614 615 616 617
        platform::dynload::cudnnGetConvolutionBackwardFilterWorkspaceSize(
            args.handle, args.idesc.desc(), args.odesc.desc(),
            args.cdesc.desc(), args.wdesc.desc(), algo, &workspace_size));
    return workspace_size;
  }
};

}  // namespace operators
}  // namespace paddle