data_feeder.py 20.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
from . import core
18
import numpy as np
C
chengduoZH 已提交
19
import os
20 21
import six
from six.moves import zip, range, xrange
Y
yuyang18 已提交
22
import multiprocessing
23
import warnings
Y
Yu Yang 已提交
24

25
from .framework import Variable, default_main_program, _current_expected_place
C
chengduo 已提交
26
from .framework import _cpu_num, _cuda_ids
Y
Yu Yang 已提交
27 28 29
__all__ = ['DataFeeder']


S
sneaxiy 已提交
30
def convert_dtype(dtype):
P
pkpk 已提交
31
    if isinstance(dtype, core.VarDesc.VarType):
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
        if dtype == core.VarDesc.VarType.BOOL:
            return 'bool'
        elif dtype == core.VarDesc.VarType.FP16:
            return 'float16'
        elif dtype == core.VarDesc.VarType.FP32:
            return 'float32'
        elif dtype == core.VarDesc.VarType.FP64:
            return 'float64'
        elif dtype == core.VarDesc.VarType.INT8:
            return 'int8'
        elif dtype == core.VarDesc.VarType.INT16:
            return 'int16'
        elif dtype == core.VarDesc.VarType.INT32:
            return 'int32'
        elif dtype == core.VarDesc.VarType.INT64:
            return 'int64'
        elif dtype == core.VarDesc.VarType.UINT8:
            return 'uint8'
50 51 52 53 54 55
    elif isinstance(dtype, type):
        if dtype in [
                np.bool, np.float16, np.float32, np.float64, np.int8, np.int16,
                np.int32, np.int64, np.uint8
        ]:
            return dtype.__name__
P
pkpk 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68
    else:
        if dtype in [
                'bool', 'float16', 'float32', 'float64', 'int8', 'int16',
                'int32', 'int64', 'uint8', u'bool', u'float16', u'float32',
                u'float64', u'int8', u'int16', u'int32', u'int64', u'uint8'
        ]:
            # this code is a little bit dangerous, since error could happen
            # when casting no-asci code to str in python2.
            # but since the set itself is limited, so currently, it is good.
            # however, jointly supporting python2 and python3, (as well as python4 maybe)
            # may still be a long-lasting problem.
            return str(dtype)

69 70 71
    raise ValueError(
        "dtype must be any of [bool, float16, float32, float64, int8, int16, "
        "int32, int64, uint8]")
S
sneaxiy 已提交
72 73


74 75 76 77 78 79
def check_variable_and_dtype(input,
                             input_name,
                             expected_dtype,
                             op_name,
                             extra_message=''):
    check_type(input, input_name, Variable, op_name, extra_message)
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
    check_dtype(input.dtype, input_name, expected_dtype, op_name, extra_message)


def check_type(input, input_name, expected_type, op_name, extra_message=''):
    if not isinstance(input, expected_type):
        raise TypeError(
            "The type of '%s' in %s must be %s, but received %s. %s" %
            (input_name, op_name, expected_type, type(input), extra_message))


def check_dtype(input_dtype,
                input_name,
                expected_dtype,
                op_name,
                extra_message=''):
    if convert_dtype(input_dtype) in ['float16']:
        warnings.warn(
            "The data type of '%s' in %s only support float16 in GPU now. %s" %
            (input_name, op_name, extra_message))
    if convert_dtype(input_dtype) not in expected_dtype:
        raise TypeError(
            "The data type of '%s' in %s must be %s, but received %s. %s" %
            (input_name, op_name, expected_dtype, convert_dtype(input_dtype),
             extra_message))


Y
Yu Yang 已提交
106 107 108 109 110
class DataToLoDTensorConverter(object):
    def __init__(self, place, lod_level, shape, dtype):
        self.place = place
        self.lod_level = lod_level
        self.shape = shape
111 112 113 114 115 116 117
        negtive_count = 0
        for s in self.shape:
            if s < 0:
                negtive_count += 1
            if negtive_count > 1:
                self.shape = None
                break
S
sneaxiy 已提交
118 119
        self.dtype = convert_dtype(dtype)
        self._reset()
Y
Yu Yang 已提交
120

S
sneaxiy 已提交
121
    def _reset(self):
Y
Yu Yang 已提交
122
        self.data = []
S
sneaxiy 已提交
123
        self.lod = [[] for _ in six.moves.range(self.lod_level)]
Y
Yu Yang 已提交
124 125 126 127 128 129 130 131

    def feed(self, data):
        self._feed_impl_(data, self.lod, self.lod_level)

    def _feed_impl_(self, data, lod, lod_level):
        if lod_level == 0:
            self.data.append(data)
        else:
132
            lod[0].append(len(data))
Y
Yu Yang 已提交
133
            for each_data in data:
K
Kexin Zhao 已提交
134
                self._feed_impl_(each_data, lod[1:], lod_level - 1)
Y
Yu Yang 已提交
135

S
sneaxiy 已提交
136
    def _check_shape(self, shape):
S
sneaxiy 已提交
137 138 139 140 141 142
        for s1, s2 in zip(self.shape, shape):
            if s1 != s2 and s1 >= 0 and s2 >= 0:
                raise ValueError(
                    "Shape not match. What is defined in data layer is {}, but receive {}".
                    format(self.shape, shape))

Y
Yu Yang 已提交
143
    def done(self):
144
        arr = np.array(self.data, dtype=self.dtype)
S
sneaxiy 已提交
145 146
        if self.shape:
            if len(arr.shape) != len(self.shape):
S
sneaxiy 已提交
147 148 149 150 151 152
                try:
                    arr = arr.reshape(self.shape)
                except ValueError:
                    raise ValueError(
                        "Reshape error. What is defined in data layer is {}, but receive {}"
                        .format(self.shape, arr.shape))
Y
Yu Yang 已提交
153 154 155
        t = core.LoDTensor()
        t.set(arr, self.place)
        if self.lod_level > 0:
156
            t.set_recursive_sequence_lengths(self.lod)
S
sneaxiy 已提交
157
        self._reset()
Y
Yu Yang 已提交
158 159 160
        return t


S
sneaxiy 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
class BatchedTensorProvider(object):
    def __init__(self, feed_list, place, batch_size, generator, drop_last):
        self.place = place
        self.batch_size = batch_size
        self.generator = generator
        self.converters = []
        self.drop_last = drop_last

        for var in feed_list:
            assert var.lod_level == 0, "lod_level must be 0"
            self.converters.append(
                DataToLoDTensorConverter(
                    place=self.place,
                    lod_level=0,
                    shape=var.shape,
                    dtype=var.dtype))

    def _done(self):
        return [c.done() for c in self.converters]

    def __call__(self):
        idx = 0
        for each_sample in self.generator():
            for each_slot, each_converter in six.moves.zip(each_sample,
                                                           self.converters):
                each_converter.data.append(each_slot)

            idx += 1
            if idx == self.batch_size:
                idx = 0
                yield self._done()

        if not self.drop_last and idx > 0:
            yield self._done()
        else:
            [c._reset() for c in self.converters]


Y
Yu Yang 已提交
199
class DataFeeder(object):
C
chengduoZH 已提交
200
    """
C
chengduoZH 已提交
201
    DataFeeder converts the data that returned by a reader into a data
202 203 204 205 206 207 208 209 210 211 212 213 214 215
    structure that can feed into Executor. The reader is usually a 
    python generator that returns a list of mini-batch data entries. 

    Parameters:
        feed_list (list): Variables or names of Variables that need
            to feed.
        place (:ref:`api_fluid_CPUPlace` | :ref:`api_fluid_CUDAPlace` ): 
            place indicates the device (CPU | GPU) the data will be fed into, if 
            you want to feed data into GPU, please using :code:`fluid.CUDAPlace(i)` 
            (:code:`i` represents the GPU id), or if you want to feed data into CPU, 
            please using :code:`fluid.CPUPlace()`.
        program (:ref:`api_fluid_Program` , optional): The Program that will 
            feed data into, if program is None, it will use default_main_program(). 
            Default None.
C
chengduoZH 已提交
216 217

    Raises:
218
        :code:`ValueError` - If some Variables are not in this Program.
C
chengduoZH 已提交
219

220
    Example:
221 222 223 224 225 226
        ..  code-block:: python

            import numpy as np
            import paddle
            import paddle.fluid as fluid
            
C
chengduoZH 已提交
227
            place = fluid.CPUPlace()
228
            def reader():
229 230
                for _ in range(4):
                    yield np.random.random([4]).astype('float32'), np.random.random([3]).astype('float32'),
231 232 233 234 235
            
            main_program = fluid.Program()
            startup_program = fluid.Program()
            
            with fluid.program_guard(main_program, startup_program):
236 237
                data_1 = fluid.data(name='data_1', shape=[None, 2, 2], dtype='float32')
                data_2 = fluid.data(name='data_2', shape=[None, 1, 3], dtype='float32')
238 239 240
                out = fluid.layers.fc(input=[data_1, data_2], size=2)
                # ...
            feeder = fluid.DataFeeder([data_1, data_2], place)
241
            
242 243
            exe = fluid.Executor(place)
            exe.run(startup_program)
244 245 246 247 248 249 250 251 252 253
            
            feed_data = feeder.feed(reader())
            
            # print feed_data to view feed results
            # print(feed_data['data_1'])
            # print(feed_data['data_2'])
            
            outs = exe.run(program=main_program,
                            feed=feed_data,
                            fetch_list=[out])
254
            print(outs)
255

C
chengduoZH 已提交
256 257
    """

F
fengjiayi 已提交
258
    def __init__(self, feed_list, place, program=None):
Y
Yu Yang 已提交
259 260 261 262
        self.feed_dtypes = []
        self.feed_names = []
        self.feed_shapes = []
        self.feed_lod_level = []
F
fengjiayi 已提交
263 264
        if program is None:
            program = default_main_program()
Y
Yu Yang 已提交
265
        for each_var in feed_list:
266
            if isinstance(each_var, six.string_types):
F
fengjiayi 已提交
267
                each_var = program.block(0).var(each_var)
Y
Yu Yang 已提交
268 269 270 271 272
            if not isinstance(each_var, Variable):
                raise TypeError("Feed list should contain a list of variable")
            self.feed_dtypes.append(each_var.dtype)
            self.feed_names.append(each_var.name)
            self.feed_lod_level.append(each_var.lod_level)
S
sneaxiy 已提交
273
            self.feed_shapes.append(each_var.shape)
Y
Yu Yang 已提交
274 275 276 277

        self.place = place

    def feed(self, iterable):
C
chengduoZH 已提交
278
        """
279 280
        According to :code:`feed_list` of :code:`DataFeeder` and :code:`iterable` , converts 
        the input into a data structure that can feed into Executor.
C
chengduoZH 已提交
281

282 283
        Parameters:
            iterable (generator): user defined python generator to read the raw input data
C
chengduoZH 已提交
284

285 286
        Returns: 
            :code:`dict`: a :code:`dict` that contains (variable name - converted tensor) pairs
287

288
        Example:
289 290
            ..  code-block:: python

291 292 293 294 295 296
                # In this example, reader - generator will return a list of ndarray of 3 elements
                # feed API will convert each ndarray input into a tensor
                # the return result is a dict with keys: data_1, data_2, data_3
                # result['data_1']  a LoD-Tensor with shape of  [5, 2, 1, 3]. 5 is batch size, and [2, 1, 3] is the real shape of data_1.
                # result['data_2'], result['data_3'] are similar.
                import numpy as np
297 298 299
                import paddle.fluid as fluid
                
                def reader(limit=5):
300 301
                    for i in range(1, limit + 1):
                        yield np.ones([6]).astype('float32') * i , np.ones([1]).astype('int64') * i, np.random.random([9]).astype('float32')
302
                
303 304 305
                data_1 = fluid.data(name='data_1', shape=[None, 2, 1, 3])
                data_2 = fluid.data(name='data_2', shape=[None, 1], dtype='int64')
                data_3 = fluid.data(name='data_3', shape=[None, 3, 3], dtype='float32')
306 307
                feeder = fluid.DataFeeder(['data_1','data_2', 'data_3'], fluid.CPUPlace())
                
308 309 310 311
                
                result = feeder.feed(reader())
                print(result['data_1'])
                print(result['data_2'])
312
                print(result['data_3'])
313

C
chengduoZH 已提交
314
        """
Y
Yu Yang 已提交
315
        converter = []
316
        for lod_level, shape, dtype in six.moves.zip(
Y
Yu Yang 已提交
317 318 319 320 321 322 323 324 325
                self.feed_lod_level, self.feed_shapes, self.feed_dtypes):
            converter.append(
                DataToLoDTensorConverter(
                    place=self.place,
                    lod_level=lod_level,
                    shape=shape,
                    dtype=dtype))

        for each_sample in iterable:
326
            assert len(each_sample) == len(converter), (
327 328
                "The number of fields in data (%d) does not match " +
                "len(feed_list) (%d)") % (len(each_sample), len(converter))
329 330
            for each_converter, each_slot in six.moves.zip(converter,
                                                           each_sample):
Y
Yu Yang 已提交
331 332
                each_converter.feed(each_slot)
        ret_dict = {}
333 334
        for each_name, each_converter in six.moves.zip(self.feed_names,
                                                       converter):
Y
Yu Yang 已提交
335 336
            ret_dict[each_name] = each_converter.done()
        return ret_dict
Y
yuyang18 已提交
337 338

    def feed_parallel(self, iterable, num_places=None):
C
chengduoZH 已提交
339
        """
340 341
        Similar with feed function, feed_parallel is used with multiple devices (CPU|GPU).
        Here :code:`iterable` is a list of python generators. The data return by each 
T
tianshuo78520a 已提交
342
        generator in the list will be fed into a separate device.        
C
chengduoZH 已提交
343

344
        Parameters:
T
tianshuo78520a 已提交
345
            iterable (list|tuple): list of user-defined python generators. The element 
346 347 348
                number should match the :code:`num_places`.
            num_places (int, optional): the number of devices. If not provided (None), 
                all available devices on the machine will be used. Default None.
C
chengduoZH 已提交
349

350 351 352
        Returns: 
            :code:`generator`: a :code:`generator` that generate dict which contains (variable name - converted tensor) pairs, 
            the total number of dicts will be generated matches with the :code:`num_places`
C
chengduoZH 已提交
353

354 355
        .. note::        
            The number of devices - :code:`num_places` should equal to the generator (element of :code:`iterable` ) number
356

357
        Example:
358 359
            ..  code-block:: python

360
                import numpy as np
361
                import paddle.fluid as fluid
362

363 364 365 366 367
                def generate_reader(batch_size, base=0, factor=1):
                    def _reader():
                        for i in range(batch_size):
                            yield np.ones([4]) * factor + base, np.ones([4]) * factor + base + 5
                    return _reader()
368 369 370 371

                x = fluid.data(name='x', shape=[None, 2, 2])
                y = fluid.data(name='y', shape=[None, 2, 2], dtype='float32')

372
                z = fluid.layers.elementwise_add(x, y)
373

374
                feeder = fluid.DataFeeder(['x','y'], fluid.CPUPlace())
375
                place_num = 2
376 377 378 379 380
                places = [fluid.CPUPlace() for x in range(place_num)]
                data = []
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(fluid.default_startup_program())
                program = fluid.CompiledProgram(fluid.default_main_program()).with_data_parallel(places=places)
381

T
tianshuo78520a 已提交
382
                # print sample feed_parallel r result
383 384 385
                # for item in list(feeder.feed_parallel([generate_reader(5, 0, 1), generate_reader(3, 10, 2)], 2)):
                #     print(item['x'])
                #     print(item['y'])
386

387 388 389
                reader_list = [generate_reader(5, 0, 1), generate_reader(3, 10, 2)]
                res = exe.run(program=program, feed=list(feeder.feed_parallel(reader_list, 2)), fetch_list=[z])
                print(res)
390

C
chengduoZH 已提交
391
        """
Y
yuyang18 已提交
392 393 394
        if isinstance(self.place, core.CUDAPlace):
            places = [
                core.CUDAPlace(i)
395 396
                for i in six.moves.xrange(
                    self._get_number_of_places_(num_places))
Y
yuyang18 已提交
397 398 399 400
            ]
        else:
            places = [
                core.CPUPlace()
401 402
                for _ in six.moves.xrange(
                    self._get_number_of_places_(num_places))
Y
yuyang18 已提交
403 404 405 406 407 408 409 410 411
            ]

        if len(iterable) != len(places):
            raise ValueError("feed_parallel takes multiple mini-batches. Each "
                             "mini-batch will be feed on each device. The "
                             "number of devices and number of mini-batches "
                             "must be same.")

        place = self.place
412
        for p, batch in six.moves.zip(places, iterable):
Y
yuyang18 已提交
413 414 415 416 417 418 419 420
            self.place = p
            yield self.feed(batch)
        self.place = place

    def _get_number_of_places_(self, num_places):
        if num_places is not None:
            return int(num_places)
        elif isinstance(self.place, core.CUDAPlace):
C
chengduo 已提交
421
            return len(_cuda_ids())
Y
yuyang18 已提交
422
        else:
C
chengduo 已提交
423
            return _cpu_num()
Y
yuyang18 已提交
424 425 426 427 428 429

    def decorate_reader(self,
                        reader,
                        multi_devices,
                        num_places=None,
                        drop_last=True):
C
chengduoZH 已提交
430
        """
431 432 433 434 435
        Decorate the reader (generator) to fit multiple devices. The reader generate
        multiple mini-batches. Each mini-batch will be fed into a single device.

        Parameters:
            reader(generator): a user defined python generator used to get :code:`mini-batch` of data.
T
tianshuo78520a 已提交
436
                A :code:`mini-batch` can be regarded as a python generator that returns batches of input 
437 438 439 440 441 442 443 444 445 446 447
                entities, just like the below :code:`_mini_batch` in the code example.                      
            multi_devices(bool): indicate whether to use multiple devices or not.
            num_places(int, optional): if :code:`multi_devices` is True, you can specify the number
                of devices(CPU|GPU) to use, if multi_devices is None, the function will use all the
                devices of the current machine. Default None.
            drop_last(bool, optional): whether to drop the last round of data if it is not enough to 
                feed all devices. Default True.

        Returns: 
            :code:`generator`: a new :code:`generator` which return converted dicts that can be fed into Executor
            
C
chengduoZH 已提交
448
        Raises:
449
            :code:`ValueError`: If drop_last is False and the data cannot fit devices perfectly.
450

451
        Example:
452 453
            ..  code-block:: python

454
                import numpy as np
455 456
                import paddle
                import paddle.fluid as fluid
457
                import paddle.fluid.compiler as compiler
458
                
459 460 461 462
                def reader():
                    def _mini_batch(batch_size):
                        for i in range(batch_size):
                            yield np.random.random([16]).astype('float32'), np.random.randint(10, size=[1])
463

464 465
                    for _ in range(10):
                        yield _mini_batch(np.random.randint(1, 10))
466
                
467 468
                place_num = 3
                places = [fluid.CPUPlace() for _ in range(place_num)]
469
                
470
                # a simple network sample
471 472
                data = fluid.data(name='data', shape=[None, 4, 4], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
473 474
                hidden = fluid.layers.fc(input=data, size=10)
                
475 476
                feeder = fluid.DataFeeder(place=places[0], feed_list=[data, label])
                reader = feeder.decorate_reader(reader, multi_devices=True, num_places=3, drop_last=True)
477
                
478
                exe = fluid.Executor(places[0])
479
                exe.run(fluid.default_startup_program())
480
                compiled_prog = compiler.CompiledProgram(
481 482
                         fluid.default_main_program()).with_data_parallel(places=places)
                
483
                for i,data in enumerate(reader()):
484 485
                    # print data if you like
                    # print(i, data)
486
                    ret = exe.run(compiled_prog, feed=data, fetch_list=[hidden])
487 488
                    print(ret)

C
chengduoZH 已提交
489 490
        """

Y
yuyang18 已提交
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
        def __reader_creator__():
            if not multi_devices:
                for item in reader():
                    yield self.feed(item)
            else:
                num = self._get_number_of_places_(num_places)
                item = []
                for batch in reader():
                    item.append(batch)
                    if len(item) == num:
                        yield list(self.feed_parallel(item, num))
                        item = []
                if not drop_last and len(item) != 0:
                    raise ValueError(
                        "The data batch which cannot fit for devices will be "
                        "dropped is not implementation. Other strategies are "
                        "not implemented")

        return __reader_creator__