data_feeder.py 20.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
from . import core
Y
Yu Yang 已提交
18
import numpy
C
chengduoZH 已提交
19
import os
20 21
import six
from six.moves import zip, range, xrange
Y
yuyang18 已提交
22
import multiprocessing
Y
Yu Yang 已提交
23

24
from .framework import Variable, default_main_program, _current_expected_place
C
chengduo 已提交
25
from .framework import _cpu_num, _cuda_ids
Y
Yu Yang 已提交
26 27 28
__all__ = ['DataFeeder']


S
sneaxiy 已提交
29
def convert_dtype(dtype):
30 31 32 33 34 35 36 37 38 39 40 41 42
    if isinstance(dtype, str):
        if dtype in [
                'float32', 'int64', 'float64', 'float16', 'int32', 'uint8',
                'bool'
        ]:
            return dtype
        else:
            raise ValueError(
                "dtype must be any of [bool, int32, float32, int64, "
                "float64, uint8]")
    elif dtype == core.VarDesc.VarType.BOOL:
        return 'bool'
    elif dtype == core.VarDesc.VarType.FP32:
S
sneaxiy 已提交
43 44 45 46 47 48 49 50 51 52 53 54
        return 'float32'
    elif dtype == core.VarDesc.VarType.INT64:
        return 'int64'
    elif dtype == core.VarDesc.VarType.FP64:
        return 'float64'
    elif dtype == core.VarDesc.VarType.FP16:
        return 'float16'
    elif dtype == core.VarDesc.VarType.INT32:
        return 'int32'
    elif dtype == core.VarDesc.VarType.UINT8:
        return 'uint8'
    else:
55
        raise ValueError("dtype must be any of [bool,int32, float32, int64, "
S
sneaxiy 已提交
56 57 58
                         "float64, uint8]")


Y
Yu Yang 已提交
59 60 61 62 63
class DataToLoDTensorConverter(object):
    def __init__(self, place, lod_level, shape, dtype):
        self.place = place
        self.lod_level = lod_level
        self.shape = shape
64 65 66 67 68 69 70
        negtive_count = 0
        for s in self.shape:
            if s < 0:
                negtive_count += 1
            if negtive_count > 1:
                self.shape = None
                break
S
sneaxiy 已提交
71 72
        self.dtype = convert_dtype(dtype)
        self._reset()
Y
Yu Yang 已提交
73

S
sneaxiy 已提交
74
    def _reset(self):
Y
Yu Yang 已提交
75
        self.data = []
S
sneaxiy 已提交
76
        self.lod = [[] for _ in six.moves.range(self.lod_level)]
Y
Yu Yang 已提交
77 78 79 80 81 82 83 84

    def feed(self, data):
        self._feed_impl_(data, self.lod, self.lod_level)

    def _feed_impl_(self, data, lod, lod_level):
        if lod_level == 0:
            self.data.append(data)
        else:
85
            lod[0].append(len(data))
Y
Yu Yang 已提交
86
            for each_data in data:
K
Kexin Zhao 已提交
87
                self._feed_impl_(each_data, lod[1:], lod_level - 1)
Y
Yu Yang 已提交
88

S
sneaxiy 已提交
89
    def _check_shape(self, shape):
S
sneaxiy 已提交
90 91 92 93 94 95
        for s1, s2 in zip(self.shape, shape):
            if s1 != s2 and s1 >= 0 and s2 >= 0:
                raise ValueError(
                    "Shape not match. What is defined in data layer is {}, but receive {}".
                    format(self.shape, shape))

Y
Yu Yang 已提交
96
    def done(self):
97
        arr = numpy.array(self.data, dtype=self.dtype)
S
sneaxiy 已提交
98 99
        if self.shape:
            if len(arr.shape) != len(self.shape):
S
sneaxiy 已提交
100 101 102 103 104 105
                try:
                    arr = arr.reshape(self.shape)
                except ValueError:
                    raise ValueError(
                        "Reshape error. What is defined in data layer is {}, but receive {}"
                        .format(self.shape, arr.shape))
Y
Yu Yang 已提交
106 107 108
        t = core.LoDTensor()
        t.set(arr, self.place)
        if self.lod_level > 0:
109
            t.set_recursive_sequence_lengths(self.lod)
S
sneaxiy 已提交
110
        self._reset()
Y
Yu Yang 已提交
111 112 113
        return t


S
sneaxiy 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
class BatchedTensorProvider(object):
    def __init__(self, feed_list, place, batch_size, generator, drop_last):
        self.place = place
        self.batch_size = batch_size
        self.generator = generator
        self.converters = []
        self.drop_last = drop_last

        for var in feed_list:
            assert var.lod_level == 0, "lod_level must be 0"
            self.converters.append(
                DataToLoDTensorConverter(
                    place=self.place,
                    lod_level=0,
                    shape=var.shape,
                    dtype=var.dtype))

    def _done(self):
        return [c.done() for c in self.converters]

    def __call__(self):
        idx = 0
        for each_sample in self.generator():
            for each_slot, each_converter in six.moves.zip(each_sample,
                                                           self.converters):
                each_converter.data.append(each_slot)

            idx += 1
            if idx == self.batch_size:
                idx = 0
                yield self._done()

        if not self.drop_last and idx > 0:
            yield self._done()
        else:
            [c._reset() for c in self.converters]


Y
Yu Yang 已提交
152
class DataFeeder(object):
C
chengduoZH 已提交
153
    """
C
chengduoZH 已提交
154
    DataFeeder converts the data that returned by a reader into a data
155 156 157 158 159 160 161 162 163 164 165 166 167 168
    structure that can feed into Executor. The reader is usually a 
    python generator that returns a list of mini-batch data entries. 

    Parameters:
        feed_list (list): Variables or names of Variables that need
            to feed.
        place (:ref:`api_fluid_CPUPlace` | :ref:`api_fluid_CUDAPlace` ): 
            place indicates the device (CPU | GPU) the data will be fed into, if 
            you want to feed data into GPU, please using :code:`fluid.CUDAPlace(i)` 
            (:code:`i` represents the GPU id), or if you want to feed data into CPU, 
            please using :code:`fluid.CPUPlace()`.
        program (:ref:`api_fluid_Program` , optional): The Program that will 
            feed data into, if program is None, it will use default_main_program(). 
            Default None.
C
chengduoZH 已提交
169 170

    Raises:
171
        :code:`ValueError` - If some Variables are not in this Program.
C
chengduoZH 已提交
172

173
    Example:
174 175 176 177 178 179
        ..  code-block:: python

            import numpy as np
            import paddle
            import paddle.fluid as fluid
            
C
chengduoZH 已提交
180
            place = fluid.CPUPlace()
181
            def reader():
182 183
                for _ in range(4):
                    yield np.random.random([4]).astype('float32'), np.random.random([3]).astype('float32'),
184 185 186 187 188
            
            main_program = fluid.Program()
            startup_program = fluid.Program()
            
            with fluid.program_guard(main_program, startup_program):
189 190
                data_1 = fluid.data(name='data_1', shape=[None, 2, 2], dtype='float32')
                data_2 = fluid.data(name='data_2', shape=[None, 1, 3], dtype='float32')
191 192 193
                out = fluid.layers.fc(input=[data_1, data_2], size=2)
                # ...
            feeder = fluid.DataFeeder([data_1, data_2], place)
194
            
195 196
            exe = fluid.Executor(place)
            exe.run(startup_program)
197 198 199 200 201 202 203 204 205 206
            
            feed_data = feeder.feed(reader())
            
            # print feed_data to view feed results
            # print(feed_data['data_1'])
            # print(feed_data['data_2'])
            
            outs = exe.run(program=main_program,
                            feed=feed_data,
                            fetch_list=[out])
207
            print(outs)
208

C
chengduoZH 已提交
209 210
    """

F
fengjiayi 已提交
211
    def __init__(self, feed_list, place, program=None):
Y
Yu Yang 已提交
212 213 214 215
        self.feed_dtypes = []
        self.feed_names = []
        self.feed_shapes = []
        self.feed_lod_level = []
F
fengjiayi 已提交
216 217
        if program is None:
            program = default_main_program()
Y
Yu Yang 已提交
218
        for each_var in feed_list:
219
            if isinstance(each_var, six.string_types):
F
fengjiayi 已提交
220
                each_var = program.block(0).var(each_var)
Y
Yu Yang 已提交
221 222 223 224 225
            if not isinstance(each_var, Variable):
                raise TypeError("Feed list should contain a list of variable")
            self.feed_dtypes.append(each_var.dtype)
            self.feed_names.append(each_var.name)
            self.feed_lod_level.append(each_var.lod_level)
S
sneaxiy 已提交
226
            self.feed_shapes.append(each_var.shape)
Y
Yu Yang 已提交
227 228 229 230

        self.place = place

    def feed(self, iterable):
C
chengduoZH 已提交
231
        """
232 233
        According to :code:`feed_list` of :code:`DataFeeder` and :code:`iterable` , converts 
        the input into a data structure that can feed into Executor.
C
chengduoZH 已提交
234

235 236
        Parameters:
            iterable (generator): user defined python generator to read the raw input data
C
chengduoZH 已提交
237

238 239
        Returns: 
            :code:`dict`: a :code:`dict` that contains (variable name - converted tensor) pairs
240

241
        Example:
242 243
            ..  code-block:: python

244 245 246 247 248 249
                # In this example, reader - generator will return a list of ndarray of 3 elements
                # feed API will convert each ndarray input into a tensor
                # the return result is a dict with keys: data_1, data_2, data_3
                # result['data_1']  a LoD-Tensor with shape of  [5, 2, 1, 3]. 5 is batch size, and [2, 1, 3] is the real shape of data_1.
                # result['data_2'], result['data_3'] are similar.
                import numpy as np
250 251 252
                import paddle.fluid as fluid
                
                def reader(limit=5):
253 254
                    for i in range(1, limit + 1):
                        yield np.ones([6]).astype('float32') * i , np.ones([1]).astype('int64') * i, np.random.random([9]).astype('float32')
255
                
256 257 258
                data_1 = fluid.data(name='data_1', shape=[None, 2, 1, 3])
                data_2 = fluid.data(name='data_2', shape=[None, 1], dtype='int64')
                data_3 = fluid.data(name='data_3', shape=[None, 3, 3], dtype='float32')
259 260
                feeder = fluid.DataFeeder(['data_1','data_2', 'data_3'], fluid.CPUPlace())
                
261 262 263 264
                
                result = feeder.feed(reader())
                print(result['data_1'])
                print(result['data_2'])
265
                print(result['data_3'])
266

C
chengduoZH 已提交
267
        """
Y
Yu Yang 已提交
268
        converter = []
269
        for lod_level, shape, dtype in six.moves.zip(
Y
Yu Yang 已提交
270 271 272 273 274 275 276 277 278
                self.feed_lod_level, self.feed_shapes, self.feed_dtypes):
            converter.append(
                DataToLoDTensorConverter(
                    place=self.place,
                    lod_level=lod_level,
                    shape=shape,
                    dtype=dtype))

        for each_sample in iterable:
279
            assert len(each_sample) == len(converter), (
280 281
                "The number of fields in data (%d) does not match " +
                "len(feed_list) (%d)") % (len(each_sample), len(converter))
282 283
            for each_converter, each_slot in six.moves.zip(converter,
                                                           each_sample):
Y
Yu Yang 已提交
284 285
                each_converter.feed(each_slot)
        ret_dict = {}
286 287
        for each_name, each_converter in six.moves.zip(self.feed_names,
                                                       converter):
Y
Yu Yang 已提交
288 289
            ret_dict[each_name] = each_converter.done()
        return ret_dict
Y
yuyang18 已提交
290 291

    def feed_parallel(self, iterable, num_places=None):
C
chengduoZH 已提交
292
        """
293 294 295
        Similar with feed function, feed_parallel is used with multiple devices (CPU|GPU).
        Here :code:`iterable` is a list of python generators. The data return by each 
        generator in the list will be fed into a seperate device.        
C
chengduoZH 已提交
296

297 298 299 300 301
        Parameters:
            iterable (list|tuple): list of user-defined python geneators. The element 
                number should match the :code:`num_places`.
            num_places (int, optional): the number of devices. If not provided (None), 
                all available devices on the machine will be used. Default None.
C
chengduoZH 已提交
302

303 304 305
        Returns: 
            :code:`generator`: a :code:`generator` that generate dict which contains (variable name - converted tensor) pairs, 
            the total number of dicts will be generated matches with the :code:`num_places`
C
chengduoZH 已提交
306

307 308
        .. note::        
            The number of devices - :code:`num_places` should equal to the generator (element of :code:`iterable` ) number
309

310
        Example:
311 312
            ..  code-block:: python

313
                import numpy as np
314
                import paddle.fluid as fluid
315

316 317 318 319 320
                def generate_reader(batch_size, base=0, factor=1):
                    def _reader():
                        for i in range(batch_size):
                            yield np.ones([4]) * factor + base, np.ones([4]) * factor + base + 5
                    return _reader()
321 322 323 324

                x = fluid.data(name='x', shape=[None, 2, 2])
                y = fluid.data(name='y', shape=[None, 2, 2], dtype='float32')

325
                z = fluid.layers.elementwise_add(x, y)
326

327
                feeder = fluid.DataFeeder(['x','y'], fluid.CPUPlace())
328
                place_num = 2
329 330 331 332 333
                places = [fluid.CPUPlace() for x in range(place_num)]
                data = []
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(fluid.default_startup_program())
                program = fluid.CompiledProgram(fluid.default_main_program()).with_data_parallel(places=places)
334

335 336 337 338
                # print sample feed_parallel r resultt
                # for item in list(feeder.feed_parallel([generate_reader(5, 0, 1), generate_reader(3, 10, 2)], 2)):
                #     print(item['x'])
                #     print(item['y'])
339

340 341 342
                reader_list = [generate_reader(5, 0, 1), generate_reader(3, 10, 2)]
                res = exe.run(program=program, feed=list(feeder.feed_parallel(reader_list, 2)), fetch_list=[z])
                print(res)
343

C
chengduoZH 已提交
344
        """
Y
yuyang18 已提交
345 346 347
        if isinstance(self.place, core.CUDAPlace):
            places = [
                core.CUDAPlace(i)
348 349
                for i in six.moves.xrange(
                    self._get_number_of_places_(num_places))
Y
yuyang18 已提交
350 351 352 353
            ]
        else:
            places = [
                core.CPUPlace()
354 355
                for _ in six.moves.xrange(
                    self._get_number_of_places_(num_places))
Y
yuyang18 已提交
356 357 358 359 360 361 362 363 364
            ]

        if len(iterable) != len(places):
            raise ValueError("feed_parallel takes multiple mini-batches. Each "
                             "mini-batch will be feed on each device. The "
                             "number of devices and number of mini-batches "
                             "must be same.")

        place = self.place
365
        for p, batch in six.moves.zip(places, iterable):
Y
yuyang18 已提交
366 367 368 369 370 371 372 373
            self.place = p
            yield self.feed(batch)
        self.place = place

    def _get_number_of_places_(self, num_places):
        if num_places is not None:
            return int(num_places)
        elif isinstance(self.place, core.CUDAPlace):
C
chengduo 已提交
374
            return len(_cuda_ids())
Y
yuyang18 已提交
375
        else:
C
chengduo 已提交
376
            return _cpu_num()
Y
yuyang18 已提交
377 378 379 380 381 382

    def decorate_reader(self,
                        reader,
                        multi_devices,
                        num_places=None,
                        drop_last=True):
C
chengduoZH 已提交
383
        """
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
        Decorate the reader (generator) to fit multiple devices. The reader generate
        multiple mini-batches. Each mini-batch will be fed into a single device.

        Parameters:
            reader(generator): a user defined python generator used to get :code:`mini-batch` of data.
                A :code:`mini-batch` can be regarded as a python generator that returns batchs of input 
                entities, just like the below :code:`_mini_batch` in the code example.                      
            multi_devices(bool): indicate whether to use multiple devices or not.
            num_places(int, optional): if :code:`multi_devices` is True, you can specify the number
                of devices(CPU|GPU) to use, if multi_devices is None, the function will use all the
                devices of the current machine. Default None.
            drop_last(bool, optional): whether to drop the last round of data if it is not enough to 
                feed all devices. Default True.

        Returns: 
            :code:`generator`: a new :code:`generator` which return converted dicts that can be fed into Executor
            
C
chengduoZH 已提交
401
        Raises:
402
            :code:`ValueError`: If drop_last is False and the data cannot fit devices perfectly.
403

404
        Example:
405 406
            ..  code-block:: python

407
                import numpy as np
408 409
                import paddle
                import paddle.fluid as fluid
410
                import paddle.fluid.compiler as compiler
411
                
412 413 414 415
                def reader():
                    def _mini_batch(batch_size):
                        for i in range(batch_size):
                            yield np.random.random([16]).astype('float32'), np.random.randint(10, size=[1])
416

417 418
                    for _ in range(10):
                        yield _mini_batch(np.random.randint(1, 10))
419
                
420 421
                place_num = 3
                places = [fluid.CPUPlace() for _ in range(place_num)]
422
                
423
                # a simple network sample
424 425
                data = fluid.data(name='data', shape=[None, 4, 4], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
426 427
                hidden = fluid.layers.fc(input=data, size=10)
                
428 429
                feeder = fluid.DataFeeder(place=places[0], feed_list=[data, label])
                reader = feeder.decorate_reader(reader, multi_devices=True, num_places=3, drop_last=True)
430
                
431
                exe = fluid.Executor(places[0])
432
                exe.run(fluid.default_startup_program())
433
                compiled_prog = compiler.CompiledProgram(
434 435
                         fluid.default_main_program()).with_data_parallel(places=places)
                
436
                for i,data in enumerate(reader()):
437 438
                    # print data if you like
                    # print(i, data)
439
                    ret = exe.run(compiled_prog, feed=data, fetch_list=[hidden])
440 441
                    print(ret)

C
chengduoZH 已提交
442 443
        """

Y
yuyang18 已提交
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
        def __reader_creator__():
            if not multi_devices:
                for item in reader():
                    yield self.feed(item)
            else:
                num = self._get_number_of_places_(num_places)
                item = []
                for batch in reader():
                    item.append(batch)
                    if len(item) == num:
                        yield list(self.feed_parallel(item, num))
                        item = []
                if not drop_last and len(item) != 0:
                    raise ValueError(
                        "The data batch which cannot fit for devices will be "
                        "dropped is not implementation. Other strategies are "
                        "not implemented")

        return __reader_creator__
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522


class NumpyToLoDTensorConverter(object):
    def __init__(self, place):
        self.place = place
        self.data = []
        self._reset()

    def _reset(self):
        self.data = []

    def feed(self, data):
        self.data.append(data)

    def done(self):
        arr = numpy.array(self.data)
        t = core.LoDTensor()
        t.set(arr, self.place)
        self._reset()
        return t


class ListTensorProvider(object):
    def __init__(self, generator, places):
        self.generator = generator
        self.converters = []
        self.places = []
        if places:
            if not isinstance(places, (list, tuple)):
                places = [places]
            assert len(
                places) == 1, "dygraph mode CAN NOT specify multiple places."
            for place in places:
                if isinstance(place, (core.CUDAPlace, core.CPUPlace)):
                    self.places.append(place)
                else:
                    raise ValueError(
                        "Please specify a valid place values such as core.CPUPlace or core.CUDAPlace"
                    )
        if len(self.places) == 0:
            self.places.append(_current_expected_place())

    def _readData(self, iterable, places):
        for place, each_sample in six.moves.zip(places, iterable):
            for item in each_sample:
                if len(self.converters) < len(item):
                    for i in item:
                        self.converters.append(NumpyToLoDTensorConverter(place))
                for each_converter, each_slot in six.moves.zip(self.converters,
                                                               item):
                    each_converter.feed(each_slot)
            yield [c.done() for c in self.converters]

    def __call__(self):
        item = []
        for batch in self.generator():
            item.append(batch)
            if len(item) == len(self.places):
                yield list(self._readData(item, self.places))
                item = []