data_feeder.py 12.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
from . import core
Y
Yu Yang 已提交
18
import numpy
C
chengduoZH 已提交
19
import os
20 21
import six
from six.moves import zip, range, xrange
Y
yuyang18 已提交
22
import multiprocessing
Y
Yu Yang 已提交
23

24
from .framework import Variable, default_main_program
Y
Yu Yang 已提交
25 26 27 28

__all__ = ['DataFeeder']


S
sneaxiy 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
def convert_dtype(dtype):
    if dtype == core.VarDesc.VarType.FP32:
        return 'float32'
    elif dtype == core.VarDesc.VarType.INT64:
        return 'int64'
    elif dtype == core.VarDesc.VarType.FP64:
        return 'float64'
    elif dtype == core.VarDesc.VarType.FP16:
        return 'float16'
    elif dtype == core.VarDesc.VarType.INT32:
        return 'int32'
    elif dtype == core.VarDesc.VarType.UINT8:
        return 'uint8'
    else:
        raise ValueError("dtype must be any of [int32, float32, int64, "
                         "float64, uint8]")


Y
Yu Yang 已提交
47 48 49 50 51
class DataToLoDTensorConverter(object):
    def __init__(self, place, lod_level, shape, dtype):
        self.place = place
        self.lod_level = lod_level
        self.shape = shape
52 53 54 55 56 57 58
        negtive_count = 0
        for s in self.shape:
            if s < 0:
                negtive_count += 1
            if negtive_count > 1:
                self.shape = None
                break
S
sneaxiy 已提交
59 60
        self.dtype = convert_dtype(dtype)
        self._reset()
Y
Yu Yang 已提交
61

S
sneaxiy 已提交
62
    def _reset(self):
Y
Yu Yang 已提交
63
        self.data = []
S
sneaxiy 已提交
64
        self.lod = [[] for _ in six.moves.range(self.lod_level)]
Y
Yu Yang 已提交
65 66 67 68 69 70 71 72

    def feed(self, data):
        self._feed_impl_(data, self.lod, self.lod_level)

    def _feed_impl_(self, data, lod, lod_level):
        if lod_level == 0:
            self.data.append(data)
        else:
73
            lod[0].append(len(data))
Y
Yu Yang 已提交
74
            for each_data in data:
K
Kexin Zhao 已提交
75
                self._feed_impl_(each_data, lod[1:], lod_level - 1)
Y
Yu Yang 已提交
76

S
sneaxiy 已提交
77
    def _check_shape(self, shape):
S
sneaxiy 已提交
78 79 80 81 82 83
        for s1, s2 in zip(self.shape, shape):
            if s1 != s2 and s1 >= 0 and s2 >= 0:
                raise ValueError(
                    "Shape not match. What is defined in data layer is {}, but receive {}".
                    format(self.shape, shape))

Y
Yu Yang 已提交
84
    def done(self):
85
        arr = numpy.array(self.data, dtype=self.dtype)
S
sneaxiy 已提交
86 87
        if self.shape:
            if len(arr.shape) != len(self.shape):
S
sneaxiy 已提交
88 89 90 91 92 93
                try:
                    arr = arr.reshape(self.shape)
                except ValueError:
                    raise ValueError(
                        "Reshape error. What is defined in data layer is {}, but receive {}"
                        .format(self.shape, arr.shape))
Y
Yu Yang 已提交
94 95 96
        t = core.LoDTensor()
        t.set(arr, self.place)
        if self.lod_level > 0:
97
            t.set_recursive_sequence_lengths(self.lod)
S
sneaxiy 已提交
98
        self._reset()
Y
Yu Yang 已提交
99 100 101
        return t


S
sneaxiy 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
class BatchedTensorProvider(object):
    def __init__(self, feed_list, place, batch_size, generator, drop_last):
        self.place = place
        self.batch_size = batch_size
        self.generator = generator
        self.converters = []
        self.drop_last = drop_last

        for var in feed_list:
            assert var.lod_level == 0, "lod_level must be 0"
            self.converters.append(
                DataToLoDTensorConverter(
                    place=self.place,
                    lod_level=0,
                    shape=var.shape,
                    dtype=var.dtype))

    def _done(self):
        return [c.done() for c in self.converters]

    def __call__(self):
        idx = 0
        for each_sample in self.generator():
            for each_slot, each_converter in six.moves.zip(each_sample,
                                                           self.converters):
                each_converter.data.append(each_slot)

            idx += 1
            if idx == self.batch_size:
                idx = 0
                yield self._done()

        if not self.drop_last and idx > 0:
            yield self._done()
        else:
            [c._reset() for c in self.converters]


Y
Yu Yang 已提交
140
class DataFeeder(object):
C
chengduoZH 已提交
141
    """
C
chengduoZH 已提交
142 143
    DataFeeder converts the data that returned by a reader into a data
    structure that can feed into Executor and ParallelExecutor. The reader
C
chengduoZH 已提交
144
    usually returns a list of mini-batch data entries. Each data entry in
C
chengduoZH 已提交
145 146
    the list is one sample. Each sample is a list or a tuple with one
    feature or multiple features.
C
chengduoZH 已提交
147 148 149 150 151 152

    The simple usage shows below:

    ..  code-block:: python

        place = fluid.CPUPlace()
C
chengduoZH 已提交
153
        img = fluid.layers.data(name='image', shape=[1, 28, 28])
C
chengduoZH 已提交
154
        label = fluid.layers.data(name='label', shape=[1], dtype='int64')
C
chengduoZH 已提交
155 156
        feeder = fluid.DataFeeder([img, label], fluid.CPUPlace())
        result = feeder.feed([([0] * 784, [9]), ([1] * 784, [1])])
C
chengduoZH 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171


    If you want to feed data into GPU side separately in advance when you
    use multi-GPU to train a model, you can use `decorate_reader` function.

    ..  code-block:: python

        place=fluid.CUDAPlace(0)
        feeder = fluid.DataFeeder(place=place, feed_list=[data, label])
        reader = feeder.decorate_reader(
            paddle.batch(flowers.train(), batch_size=16))

    Args:
        feed_list(list): The Variables or Variables'name that will
            feed into model.
C
chengduoZH 已提交
172 173 174 175
        place(Place): place indicates feed data into CPU or GPU, if you want to
            feed data into GPU, please using `fluid.CUDAPlace(i)` (`i` represents
            the GPU id), or if you want to feed data into CPU, please using
            `fluid.CPUPlace()`.
C
chengduoZH 已提交
176 177 178 179
        program(Program): The Program that will feed data into, if program
            is None, it will use default_main_program(). Default None.

    Raises:
C
chengduoZH 已提交
180
        ValueError: If some Variable is not in this Program.
C
chengduoZH 已提交
181 182 183 184 185 186 187 188

    Examples:
        .. code-block:: python

            # ...
            place = fluid.CPUPlace()
            feed_list = [
                main_program.global_block().var(var_name) for var_name in feed_vars_name
C
chengduoZH 已提交
189
            ] # feed_vars_name is a list of variables' name.
C
chengduoZH 已提交
190 191 192 193 194 195
            feeder = fluid.DataFeeder(feed_list, place)
            for data in reader():
                outs = exe.run(program=main_program,
                               feed=feeder.feed(data))
    """

F
fengjiayi 已提交
196
    def __init__(self, feed_list, place, program=None):
Y
Yu Yang 已提交
197 198 199 200
        self.feed_dtypes = []
        self.feed_names = []
        self.feed_shapes = []
        self.feed_lod_level = []
F
fengjiayi 已提交
201 202
        if program is None:
            program = default_main_program()
Y
Yu Yang 已提交
203
        for each_var in feed_list:
204
            if isinstance(each_var, six.string_types):
F
fengjiayi 已提交
205
                each_var = program.block(0).var(each_var)
Y
Yu Yang 已提交
206 207 208 209 210
            if not isinstance(each_var, Variable):
                raise TypeError("Feed list should contain a list of variable")
            self.feed_dtypes.append(each_var.dtype)
            self.feed_names.append(each_var.name)
            self.feed_lod_level.append(each_var.lod_level)
S
sneaxiy 已提交
211
            self.feed_shapes.append(each_var.shape)
Y
Yu Yang 已提交
212 213 214 215

        self.place = place

    def feed(self, iterable):
C
chengduoZH 已提交
216
        """
C
chengduoZH 已提交
217 218
        According to feed_list and iterable, converters the input into
        a data structure that can feed into Executor and ParallelExecutor.
C
chengduoZH 已提交
219 220 221 222 223 224 225

        Args:
            iterable(list|tuple): the input data.

        Returns:
            dict: the result of conversion.
        """
Y
Yu Yang 已提交
226
        converter = []
227
        for lod_level, shape, dtype in six.moves.zip(
Y
Yu Yang 已提交
228 229 230 231 232 233 234 235 236
                self.feed_lod_level, self.feed_shapes, self.feed_dtypes):
            converter.append(
                DataToLoDTensorConverter(
                    place=self.place,
                    lod_level=lod_level,
                    shape=shape,
                    dtype=dtype))

        for each_sample in iterable:
237 238 239
            assert len(each_sample) == len(converter), (
                "The number of fields in data (%s) does not match " +
                "len(feed_list) (%s)") % (len(each_sample), len(converter))
240 241
            for each_converter, each_slot in six.moves.zip(converter,
                                                           each_sample):
Y
Yu Yang 已提交
242 243
                each_converter.feed(each_slot)
        ret_dict = {}
244 245
        for each_name, each_converter in six.moves.zip(self.feed_names,
                                                       converter):
Y
Yu Yang 已提交
246 247
            ret_dict[each_name] = each_converter.done()
        return ret_dict
Y
yuyang18 已提交
248 249

    def feed_parallel(self, iterable, num_places=None):
C
chengduoZH 已提交
250 251
        """
        Takes multiple mini-batches. Each mini-batch will be feed on each
C
chengduoZH 已提交
252
        device in advance.
C
chengduoZH 已提交
253 254 255

        Args:
            iterable(list|tuple): the input data.
C
chengduoZH 已提交
256
            num_places(int): the number of devices. Default None.
C
chengduoZH 已提交
257 258 259 260 261 262 263

        Returns:
            dict: the result of conversion.

        Notes:
            The number of devices and number of mini-batches must be same.
        """
Y
yuyang18 已提交
264 265 266
        if isinstance(self.place, core.CUDAPlace):
            places = [
                core.CUDAPlace(i)
267 268
                for i in six.moves.xrange(
                    self._get_number_of_places_(num_places))
Y
yuyang18 已提交
269 270 271 272
            ]
        else:
            places = [
                core.CPUPlace()
273 274
                for _ in six.moves.xrange(
                    self._get_number_of_places_(num_places))
Y
yuyang18 已提交
275 276 277 278 279 280 281 282 283
            ]

        if len(iterable) != len(places):
            raise ValueError("feed_parallel takes multiple mini-batches. Each "
                             "mini-batch will be feed on each device. The "
                             "number of devices and number of mini-batches "
                             "must be same.")

        place = self.place
284
        for p, batch in six.moves.zip(places, iterable):
Y
yuyang18 已提交
285 286 287 288 289 290 291 292 293 294
            self.place = p
            yield self.feed(batch)
        self.place = place

    def _get_number_of_places_(self, num_places):
        if num_places is not None:
            return int(num_places)
        elif isinstance(self.place, core.CUDAPlace):
            return core.get_cuda_device_count()
        else:
C
chengduoZH 已提交
295 296 297
            cpu_num = int(
                os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
            return cpu_num
Y
yuyang18 已提交
298 299 300 301 302 303

    def decorate_reader(self,
                        reader,
                        multi_devices,
                        num_places=None,
                        drop_last=True):
C
chengduoZH 已提交
304 305 306 307 308
        """
        Converter the input data into a data that returned by reader into
        multiple mini-batches. Each mini-batch will be feed on each device.

        Args:
C
chengduo 已提交
309 310
            reader(function): the reader is the function which can generate data.
            multi_devices(bool): whether to use multiple devices or not.
Z
Zeng Jinle 已提交
311 312
            num_places(int): if multi_devices is True, you can specify the number
                of GPU to use, if multi_devices is None, the function will use all the
C
chengduo 已提交
313 314 315
                GPU of the current machine. Default None.
            drop_last(bool): whether to drop the last batch if the
                size of the last batch is less than batch_size. Default True.
C
chengduoZH 已提交
316 317 318 319 320

        Returns:
            dict: the result of conversion.

        Raises:
Z
Zeng Jinle 已提交
321
            ValueError: If drop_last is False and the data batch cannot fit for devices.
C
chengduoZH 已提交
322 323
        """

Y
yuyang18 已提交
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
        def __reader_creator__():
            if not multi_devices:
                for item in reader():
                    yield self.feed(item)
            else:
                num = self._get_number_of_places_(num_places)
                item = []
                for batch in reader():
                    item.append(batch)
                    if len(item) == num:
                        yield list(self.feed_parallel(item, num))
                        item = []
                if not drop_last and len(item) != 0:
                    raise ValueError(
                        "The data batch which cannot fit for devices will be "
                        "dropped is not implementation. Other strategies are "
                        "not implemented")

        return __reader_creator__