concat_mkldnn_op.cc 8.3 KB
Newer Older
M
Michal Gallus 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

M
Michal Gallus 已提交
15
#include <memory>
16

M
Michal Gallus 已提交
17
#include "paddle/fluid/operators/concat_op.h"
18
#include "paddle/fluid/operators/utils.h"
M
Michal Gallus 已提交
19
#include "paddle/fluid/platform/mkldnn_helper.h"
20
#include "paddle/fluid/platform/mkldnn_reuse.h"
M
Michal Gallus 已提交
21 22 23 24

namespace paddle {
namespace operators {

25
using dnnl::concat;
26 27 28
using dnnl::memory;
using dnnl::primitive;
using dnnl::stream;
29 30 31
using framework::DataLayout;
using framework::LoDTensor;
using framework::Tensor;
M
Michal Gallus 已提交
32 33
using platform::to_void_cast;

34 35 36 37 38
template <typename T>
class ConcatMKLDNNHandler
    : public platform::MKLDNNHandlerNoCachingT<T, dnnl::concat> {
 public:
  ConcatMKLDNNHandler(const framework::ExecutionContext& ctx,
39
                      const dnnl::engine mkldnn_engine,
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
                      const std::vector<const Tensor*>& inputs, Tensor* output)
      : platform::MKLDNNHandlerNoCachingT<T, dnnl::concat>(mkldnn_engine,
                                                           ctx.GetPlace()) {
    int concat_axis = ctx.Attr<int>("axis");
    const int rank = inputs[0]->dims().size();
    PADDLE_ENFORCE_EQ(
        concat_axis >= -rank && concat_axis < rank, true,
        platform::errors::InvalidArgument(
            "The axis is expected to be in range of [%d, %d), but got %d",
            -rank, rank, concat_axis));

    if (ctx.HasInput("AxisTensor")) {
      auto* axis_tensor = ctx.Input<Tensor>("AxisTensor");
      concat_axis = GetDataFromTensor(axis_tensor)[0];
      auto out_dims = inputs[0]->dims();
      for (size_t i = 1; i < inputs.size(); ++i) {
        out_dims[concat_axis] += inputs[i]->dims()[concat_axis];
      }
      output->Resize(out_dims);
    }

    if (concat_axis < 0) {
      concat_axis = concat_axis + rank;
    }

65 66
    memory::data_type dt = framework::ToMKLDNNDataType(
        framework::TransToProtoVarType(inputs[0]->dtype()));
67 68 69 70 71
    std::vector<memory::desc> srcs_md;
    srcs_md.reserve(inputs.size());

    // Create memory descriptors for each of inputs
    for (size_t i = 0; i < inputs.size(); ++i) {
72
      srcs_md.push_back(inputs[i]->mem_desc());
73 74
    }

75
    auto dst_dims = phi::vectorize<int64_t>(output->dims());
76 77 78 79 80 81 82 83 84 85 86 87 88 89
    auto dst_md = memory::desc(dst_dims, dt, MKLDNNMemoryFormat::any);

    this->AcquireForwardPrimitiveDescriptor(dst_md, concat_axis, srcs_md);
  }

  // (jczaja) concat oneDNN prim is not having .desc attribute so
  // we cannot use base AcquireForwardPrimitiveDescriptor
  void AcquireForwardPrimitiveDescriptor(
      const memory::desc& dst_md, const int concat_axis,
      const std::vector<memory::desc>& srcs_md) {
    this->fwd_pd_.reset(new dnnl::concat::primitive_desc(
        dst_md, concat_axis, srcs_md, this->engine_));
  }

90
  std::shared_ptr<dnnl::memory> AcquireSrcMemory(const Tensor& input, int i) {
91 92 93 94 95 96
    const T* input_data = input.data<T>();
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->src_desc(i),
                                            to_void_cast<T>(input_data));
  }
};

M
Michal Gallus 已提交
97 98
static void EnforceLayouts(const std::vector<const Tensor*> inputs) {
  for (auto* input : inputs) {
99 100 101
    PADDLE_ENFORCE_EQ(
        input->layout(), DataLayout::kMKLDNN,
        platform::errors::InvalidArgument("Wrong layout set for Input tensor"));
M
Michal Gallus 已提交
102 103 104
  }
}

105 106 107 108 109 110 111 112 113 114
// From a multi-input, gather only nonempty inputs
static const std::vector<const Tensor*> ReduceMultiInput(
    const std::vector<const Tensor*>& inputs) {
  std::vector<const Tensor*> reduced(inputs.size());
  auto end_it = std::copy_if(inputs.begin(), inputs.end(), reduced.begin(),
                             [](const Tensor* t) { return t->numel() > 0; });
  reduced.resize(std::distance(reduced.begin(), end_it));
  return reduced;
}

M
Michal Gallus 已提交
115 116 117 118
template <typename T>
class ConcatMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
119 120 121
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();
122 123
    // If any of the multiple inputs of concat has an input size of 0, the
    // actual size of the multi_input will change
124
    auto multi_input = ReduceMultiInput(ctx.MultiInput<Tensor>("X"));
M
Michal Gallus 已提交
125 126
    EnforceLayouts(multi_input);
    Tensor* output = ctx.Output<Tensor>("Out");
127

128
    ConcatMKLDNNHandler<T> handler(ctx, mkldnn_engine, multi_input, output);
129

130 131
    std::vector<std::shared_ptr<memory>> srcs;
    srcs.reserve(multi_input.size());
A
Adam 已提交
132

133 134
    auto dst_mem = handler.AcquireDstMemory(output);
    auto concat_p = handler.AcquireForwardPrimitive();
135

136
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
A
Adam 已提交
137 138
    std::unordered_map<int, memory> args;
    for (size_t i = 0; i < multi_input.size(); ++i) {
139
      srcs.push_back(handler.AcquireSrcMemory(*(multi_input[i]), i));
140
      args.insert({DNNL_ARG_MULTIPLE_SRC + i, *(srcs.at(i))});
A
Adam 已提交
141
    }
142
    args.insert({DNNL_ARG_DST, *dst_mem});
A
Adam 已提交
143 144 145

    concat_p->execute(astream, args);
    astream.wait();
M
Michal Gallus 已提交
146

147
    output->set_mem_desc(dst_mem->get_desc());
M
Michal Gallus 已提交
148 149
  }
};
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178

template <typename T>
class ConcatGradMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    const auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& onednn_engine = dev_ctx.GetEngine();

    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();

    auto out_var_names = ctx.OutputNames(framework::GradVarName("X"));

    const auto x = ctx.MultiInput<LoDTensor>("X");
    const auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto dx = ctx.MultiOutput<LoDTensor>(framework::GradVarName("X"));

    for (size_t i = 0; i < dx.size(); ++i) {
      if (dx[i] != nullptr) {
        dx[i]->set_lod(x[i]->lod());
      }
    }

    int axis = ctx.Attr<int>("axis");
    if (ctx.HasInput("AxisTensor")) {
      auto* axis_tensor = ctx.Input<Tensor>("AxisTensor");
      axis = GetDataFromTensor<int>(axis_tensor)[0];
    }

179
    auto dout_vec_dims = phi::vectorize(dout->dims());
180 181 182 183 184

    axis = ComputeAxis(axis, dout_vec_dims.size());

    std::vector<int64_t> offset(dout_vec_dims.size(), 0);

185 186 187 188 189
    dnnl::memory::data_type dout_type = framework::ToMKLDNNDataType(
        framework::TransToProtoVarType(dout->dtype()));
    platform::ReorderMKLDNNHandler reorder_handler(
        dout_vec_dims, framework::TransToProtoVarType(dout->dtype()), dout_type,
        onednn_engine);
190
    auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
191
        dout->mem_desc(), platform::to_void_cast(dout->data<T>()));
192 193 194 195

    for (size_t i = 0; i < dx.size(); ++i) {
      if (out_var_names[i] != framework::kEmptyVarName &&
          dx[i]->numel() != 0UL) {
196
        auto dx_vec_dims = phi::vectorize(dx[i]->dims());
197 198 199 200
        auto slice_mem_p = reorder_handler.AcquireSubmemory(
            dx_vec_dims, offset, reorder_src_memory_p);

        auto reorder_dst_memory_p = reorder_handler.AcquireDstMemory(
201 202
            dx[i], dx_vec_dims,
            platform::GetPlainMKLDNNFormat(dx_vec_dims.size()), ctx.GetPlace());
203 204 205 206 207 208 209
        auto reorder_p =
            reorder_handler.AcquireReorder(reorder_dst_memory_p, slice_mem_p);

        reorder_p->execute(astream, *slice_mem_p, *reorder_dst_memory_p);

        offset[axis] += dx[i]->dims()[axis];

210
        dx[i]->set_mem_desc(reorder_dst_memory_p->get_desc());
211 212 213 214 215 216
      }
    }
    astream.wait();
  }
};

M
Michal Gallus 已提交
217 218 219 220 221 222
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(concat, MKLDNN, ::paddle::platform::CPUPlace,
223
                   ops::ConcatMKLDNNOpKernel<float>,
224
                   ops::ConcatMKLDNNOpKernel<paddle::platform::bfloat16>,
225 226
                   ops::ConcatMKLDNNOpKernel<int8_t>,
                   ops::ConcatMKLDNNOpKernel<uint8_t>);
227 228 229 230

REGISTER_OP_KERNEL(concat_grad, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::ConcatGradMKLDNNOpKernel<float>,
                   ops::ConcatGradMKLDNNOpKernel<paddle::platform::bfloat16>);