concat_mkldnn_op.cc 8.6 KB
Newer Older
M
Michal Gallus 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

M
Michal Gallus 已提交
15
#include <memory>
M
Michal Gallus 已提交
16
#include "paddle/fluid/operators/concat_op.h"
17
#include "paddle/fluid/operators/utils.h"
M
Michal Gallus 已提交
18
#include "paddle/fluid/platform/mkldnn_helper.h"
19
#include "paddle/fluid/platform/mkldnn_reuse.h"
M
Michal Gallus 已提交
20 21 22 23 24 25

namespace paddle {
namespace operators {

using framework::DataLayout;
using framework::Tensor;
26
using framework::LoDTensor;
M
Michal Gallus 已提交
27 28 29 30 31 32
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::concat;
using mkldnn::stream;
using platform::to_void_cast;

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
template <typename T>
class ConcatMKLDNNHandler
    : public platform::MKLDNNHandlerNoCachingT<T, dnnl::concat> {
 public:
  ConcatMKLDNNHandler(const framework::ExecutionContext& ctx,
                      const mkldnn::engine mkldnn_engine,
                      const std::vector<const Tensor*>& inputs, Tensor* output)
      : platform::MKLDNNHandlerNoCachingT<T, dnnl::concat>(mkldnn_engine,
                                                           ctx.GetPlace()) {
    int concat_axis = ctx.Attr<int>("axis");
    const int rank = inputs[0]->dims().size();
    PADDLE_ENFORCE_EQ(
        concat_axis >= -rank && concat_axis < rank, true,
        platform::errors::InvalidArgument(
            "The axis is expected to be in range of [%d, %d), but got %d",
            -rank, rank, concat_axis));

    if (ctx.HasInput("AxisTensor")) {
      auto* axis_tensor = ctx.Input<Tensor>("AxisTensor");
      concat_axis = GetDataFromTensor(axis_tensor)[0];
      auto out_dims = inputs[0]->dims();
      for (size_t i = 1; i < inputs.size(); ++i) {
        out_dims[concat_axis] += inputs[i]->dims()[concat_axis];
      }
      output->Resize(out_dims);
    }

    if (concat_axis < 0) {
      concat_axis = concat_axis + rank;
    }

    memory::data_type dt = framework::ToMKLDNNDataType(inputs[0]->type());
    std::vector<memory::desc> srcs_md;
    srcs_md.reserve(inputs.size());

    // Create memory descriptors for each of inputs
    for (size_t i = 0; i < inputs.size(); ++i) {
      const auto dims = framework::vectorize<int64_t>(inputs[i]->dims());
      srcs_md.emplace_back(memory::desc(dims, dt, inputs[i]->format()));
    }

    auto dst_dims = framework::vectorize<int64_t>(output->dims());
    auto dst_md = memory::desc(dst_dims, dt, MKLDNNMemoryFormat::any);

    this->AcquireForwardPrimitiveDescriptor(dst_md, concat_axis, srcs_md);
  }

  // (jczaja) concat oneDNN prim is not having .desc attribute so
  // we cannot use base AcquireForwardPrimitiveDescriptor
  void AcquireForwardPrimitiveDescriptor(
      const memory::desc& dst_md, const int concat_axis,
      const std::vector<memory::desc>& srcs_md) {
    this->fwd_pd_.reset(new dnnl::concat::primitive_desc(
        dst_md, concat_axis, srcs_md, this->engine_));
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(const Tensor& input, int i) {
    const T* input_data = input.data<T>();
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->src_desc(i),
                                            to_void_cast<T>(input_data));
  }
};

M
Michal Gallus 已提交
96 97
static void EnforceLayouts(const std::vector<const Tensor*> inputs) {
  for (auto* input : inputs) {
98 99 100 101 102 103
    PADDLE_ENFORCE_EQ(
        input->layout(), DataLayout::kMKLDNN,
        platform::errors::InvalidArgument("Wrong layout set for Input tensor"));
    PADDLE_ENFORCE_NE(
        input->format(), MKLDNNMemoryFormat::undef,
        platform::errors::InvalidArgument("Wrong format set for Input tensor"));
M
Michal Gallus 已提交
104 105 106
  }
}

107 108 109 110 111 112 113 114 115 116
// From a multi-input, gather only nonempty inputs
static const std::vector<const Tensor*> ReduceMultiInput(
    const std::vector<const Tensor*>& inputs) {
  std::vector<const Tensor*> reduced(inputs.size());
  auto end_it = std::copy_if(inputs.begin(), inputs.end(), reduced.begin(),
                             [](const Tensor* t) { return t->numel() > 0; });
  reduced.resize(std::distance(reduced.begin(), end_it));
  return reduced;
}

M
Michal Gallus 已提交
117 118 119 120
template <typename T>
class ConcatMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
121 122 123
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();
124 125
    // If any of the multiple inputs of concat has an input size of 0, the
    // actual size of the multi_input will change
126
    auto multi_input = ReduceMultiInput(ctx.MultiInput<Tensor>("X"));
M
Michal Gallus 已提交
127 128
    EnforceLayouts(multi_input);
    Tensor* output = ctx.Output<Tensor>("Out");
129

130
    ConcatMKLDNNHandler<T> handler(ctx, mkldnn_engine, multi_input, output);
131

132 133
    std::vector<std::shared_ptr<memory>> srcs;
    srcs.reserve(multi_input.size());
A
Adam 已提交
134

135 136
    auto dst_mem = handler.AcquireDstMemory(output);
    auto concat_p = handler.AcquireForwardPrimitive();
137

138
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
A
Adam 已提交
139 140
    std::unordered_map<int, memory> args;
    for (size_t i = 0; i < multi_input.size(); ++i) {
141 142
      srcs.push_back(handler.AcquireSrcMemory(*(multi_input[i]), i));
      args.insert({MKLDNN_ARG_MULTIPLE_SRC + i, *(srcs.at(i))});
A
Adam 已提交
143 144 145 146 147
    }
    args.insert({MKLDNN_ARG_DST, *dst_mem});

    concat_p->execute(astream, args);
    astream.wait();
M
Michal Gallus 已提交
148

149
    output->set_layout(DataLayout::kMKLDNN);
A
Adam 已提交
150
    output->set_format(platform::GetMKLDNNFormat(*dst_mem));
M
Michal Gallus 已提交
151 152
  }
};
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218

template <typename T>
class ConcatGradMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    const auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& onednn_engine = dev_ctx.GetEngine();

    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();

    auto out_var_names = ctx.OutputNames(framework::GradVarName("X"));

    const auto x = ctx.MultiInput<LoDTensor>("X");
    const auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto dx = ctx.MultiOutput<LoDTensor>(framework::GradVarName("X"));

    for (size_t i = 0; i < dx.size(); ++i) {
      if (dx[i] != nullptr) {
        dx[i]->set_lod(x[i]->lod());
      }
    }

    int axis = ctx.Attr<int>("axis");
    if (ctx.HasInput("AxisTensor")) {
      auto* axis_tensor = ctx.Input<Tensor>("AxisTensor");
      axis = GetDataFromTensor<int>(axis_tensor)[0];
    }

    auto dout_vec_dims = framework::vectorize(dout->dims());

    axis = ComputeAxis(axis, dout_vec_dims.size());

    std::vector<int64_t> offset(dout_vec_dims.size(), 0);

    mkldnn::memory::data_type dout_type =
        framework::ToMKLDNNDataType(dout->type());
    platform::ReorderMKLDNNHandler reorder_handler(dout_vec_dims, dout->type(),
                                                   dout_type, onednn_engine);
    auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
        dout->format(), platform::to_void_cast(dout->data<T>()));

    for (size_t i = 0; i < dx.size(); ++i) {
      if (out_var_names[i] != framework::kEmptyVarName &&
          dx[i]->numel() != 0UL) {
        auto dx_vec_dims = framework::vectorize(dx[i]->dims());
        auto slice_mem_p = reorder_handler.AcquireSubmemory(
            dx_vec_dims, offset, reorder_src_memory_p);

        auto reorder_dst_memory_p = reorder_handler.AcquireDstMemory(
            dx[i], dx_vec_dims, dout->format(), ctx.GetPlace());
        auto reorder_p =
            reorder_handler.AcquireReorder(reorder_dst_memory_p, slice_mem_p);

        reorder_p->execute(astream, *slice_mem_p, *reorder_dst_memory_p);

        offset[axis] += dx[i]->dims()[axis];

        dx[i]->set_layout(framework::DataLayout::kMKLDNN);
        dx[i]->set_format(platform::GetMKLDNNFormat(*reorder_dst_memory_p));
      }
    }
    astream.wait();
  }
};

M
Michal Gallus 已提交
219 220 221 222 223 224
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(concat, MKLDNN, ::paddle::platform::CPUPlace,
225
                   ops::ConcatMKLDNNOpKernel<float>,
226
                   ops::ConcatMKLDNNOpKernel<paddle::platform::bfloat16>,
227 228
                   ops::ConcatMKLDNNOpKernel<int8_t>,
                   ops::ConcatMKLDNNOpKernel<uint8_t>);
229 230 231 232

REGISTER_OP_KERNEL(concat_grad, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::ConcatGradMKLDNNOpKernel<float>,
                   ops::ConcatGradMKLDNNOpKernel<paddle::platform::bfloat16>);