concat_mkldnn_op.cc 8.3 KB
Newer Older
M
Michal Gallus 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

M
Michal Gallus 已提交
15
#include <memory>
M
Michal Gallus 已提交
16
#include "paddle/fluid/operators/concat_op.h"
17
#include "paddle/fluid/operators/utils.h"
M
Michal Gallus 已提交
18
#include "paddle/fluid/platform/mkldnn_helper.h"
19
#include "paddle/fluid/platform/mkldnn_reuse.h"
M
Michal Gallus 已提交
20 21 22 23 24 25

namespace paddle {
namespace operators {

using framework::DataLayout;
using framework::Tensor;
26
using framework::LoDTensor;
27 28 29 30
using dnnl::memory;
using dnnl::primitive;
using dnnl::concat;
using dnnl::stream;
M
Michal Gallus 已提交
31 32
using platform::to_void_cast;

33 34 35 36 37
template <typename T>
class ConcatMKLDNNHandler
    : public platform::MKLDNNHandlerNoCachingT<T, dnnl::concat> {
 public:
  ConcatMKLDNNHandler(const framework::ExecutionContext& ctx,
38
                      const dnnl::engine mkldnn_engine,
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
                      const std::vector<const Tensor*>& inputs, Tensor* output)
      : platform::MKLDNNHandlerNoCachingT<T, dnnl::concat>(mkldnn_engine,
                                                           ctx.GetPlace()) {
    int concat_axis = ctx.Attr<int>("axis");
    const int rank = inputs[0]->dims().size();
    PADDLE_ENFORCE_EQ(
        concat_axis >= -rank && concat_axis < rank, true,
        platform::errors::InvalidArgument(
            "The axis is expected to be in range of [%d, %d), but got %d",
            -rank, rank, concat_axis));

    if (ctx.HasInput("AxisTensor")) {
      auto* axis_tensor = ctx.Input<Tensor>("AxisTensor");
      concat_axis = GetDataFromTensor(axis_tensor)[0];
      auto out_dims = inputs[0]->dims();
      for (size_t i = 1; i < inputs.size(); ++i) {
        out_dims[concat_axis] += inputs[i]->dims()[concat_axis];
      }
      output->Resize(out_dims);
    }

    if (concat_axis < 0) {
      concat_axis = concat_axis + rank;
    }

64 65
    memory::data_type dt = framework::ToMKLDNNDataType(
        framework::TransToProtoVarType(inputs[0]->dtype()));
66 67 68 69 70
    std::vector<memory::desc> srcs_md;
    srcs_md.reserve(inputs.size());

    // Create memory descriptors for each of inputs
    for (size_t i = 0; i < inputs.size(); ++i) {
71
      srcs_md.push_back(inputs[i]->mem_desc());
72 73
    }

74
    auto dst_dims = phi::vectorize<int64_t>(output->dims());
75 76 77 78 79 80 81 82 83 84 85 86 87 88
    auto dst_md = memory::desc(dst_dims, dt, MKLDNNMemoryFormat::any);

    this->AcquireForwardPrimitiveDescriptor(dst_md, concat_axis, srcs_md);
  }

  // (jczaja) concat oneDNN prim is not having .desc attribute so
  // we cannot use base AcquireForwardPrimitiveDescriptor
  void AcquireForwardPrimitiveDescriptor(
      const memory::desc& dst_md, const int concat_axis,
      const std::vector<memory::desc>& srcs_md) {
    this->fwd_pd_.reset(new dnnl::concat::primitive_desc(
        dst_md, concat_axis, srcs_md, this->engine_));
  }

89
  std::shared_ptr<dnnl::memory> AcquireSrcMemory(const Tensor& input, int i) {
90 91 92 93 94 95
    const T* input_data = input.data<T>();
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->src_desc(i),
                                            to_void_cast<T>(input_data));
  }
};

M
Michal Gallus 已提交
96 97
static void EnforceLayouts(const std::vector<const Tensor*> inputs) {
  for (auto* input : inputs) {
98 99 100
    PADDLE_ENFORCE_EQ(
        input->layout(), DataLayout::kMKLDNN,
        platform::errors::InvalidArgument("Wrong layout set for Input tensor"));
M
Michal Gallus 已提交
101 102 103
  }
}

104 105 106 107 108 109 110 111 112 113
// From a multi-input, gather only nonempty inputs
static const std::vector<const Tensor*> ReduceMultiInput(
    const std::vector<const Tensor*>& inputs) {
  std::vector<const Tensor*> reduced(inputs.size());
  auto end_it = std::copy_if(inputs.begin(), inputs.end(), reduced.begin(),
                             [](const Tensor* t) { return t->numel() > 0; });
  reduced.resize(std::distance(reduced.begin(), end_it));
  return reduced;
}

M
Michal Gallus 已提交
114 115 116 117
template <typename T>
class ConcatMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
118 119 120
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();
121 122
    // If any of the multiple inputs of concat has an input size of 0, the
    // actual size of the multi_input will change
123
    auto multi_input = ReduceMultiInput(ctx.MultiInput<Tensor>("X"));
M
Michal Gallus 已提交
124 125
    EnforceLayouts(multi_input);
    Tensor* output = ctx.Output<Tensor>("Out");
126

127
    ConcatMKLDNNHandler<T> handler(ctx, mkldnn_engine, multi_input, output);
128

129 130
    std::vector<std::shared_ptr<memory>> srcs;
    srcs.reserve(multi_input.size());
A
Adam 已提交
131

132 133
    auto dst_mem = handler.AcquireDstMemory(output);
    auto concat_p = handler.AcquireForwardPrimitive();
134

135
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
A
Adam 已提交
136 137
    std::unordered_map<int, memory> args;
    for (size_t i = 0; i < multi_input.size(); ++i) {
138
      srcs.push_back(handler.AcquireSrcMemory(*(multi_input[i]), i));
139
      args.insert({DNNL_ARG_MULTIPLE_SRC + i, *(srcs.at(i))});
A
Adam 已提交
140
    }
141
    args.insert({DNNL_ARG_DST, *dst_mem});
A
Adam 已提交
142 143 144

    concat_p->execute(astream, args);
    astream.wait();
M
Michal Gallus 已提交
145

146
    output->set_mem_desc(dst_mem->get_desc());
M
Michal Gallus 已提交
147 148
  }
};
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177

template <typename T>
class ConcatGradMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    const auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& onednn_engine = dev_ctx.GetEngine();

    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();

    auto out_var_names = ctx.OutputNames(framework::GradVarName("X"));

    const auto x = ctx.MultiInput<LoDTensor>("X");
    const auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto dx = ctx.MultiOutput<LoDTensor>(framework::GradVarName("X"));

    for (size_t i = 0; i < dx.size(); ++i) {
      if (dx[i] != nullptr) {
        dx[i]->set_lod(x[i]->lod());
      }
    }

    int axis = ctx.Attr<int>("axis");
    if (ctx.HasInput("AxisTensor")) {
      auto* axis_tensor = ctx.Input<Tensor>("AxisTensor");
      axis = GetDataFromTensor<int>(axis_tensor)[0];
    }

178
    auto dout_vec_dims = phi::vectorize(dout->dims());
179 180 181 182 183

    axis = ComputeAxis(axis, dout_vec_dims.size());

    std::vector<int64_t> offset(dout_vec_dims.size(), 0);

184 185 186 187 188
    dnnl::memory::data_type dout_type = framework::ToMKLDNNDataType(
        framework::TransToProtoVarType(dout->dtype()));
    platform::ReorderMKLDNNHandler reorder_handler(
        dout_vec_dims, framework::TransToProtoVarType(dout->dtype()), dout_type,
        onednn_engine);
189
    auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
190
        dout->mem_desc(), platform::to_void_cast(dout->data<T>()));
191 192 193 194

    for (size_t i = 0; i < dx.size(); ++i) {
      if (out_var_names[i] != framework::kEmptyVarName &&
          dx[i]->numel() != 0UL) {
195
        auto dx_vec_dims = phi::vectorize(dx[i]->dims());
196 197 198 199
        auto slice_mem_p = reorder_handler.AcquireSubmemory(
            dx_vec_dims, offset, reorder_src_memory_p);

        auto reorder_dst_memory_p = reorder_handler.AcquireDstMemory(
200 201
            dx[i], dx_vec_dims,
            platform::GetPlainMKLDNNFormat(dx_vec_dims.size()), ctx.GetPlace());
202 203 204 205 206 207 208
        auto reorder_p =
            reorder_handler.AcquireReorder(reorder_dst_memory_p, slice_mem_p);

        reorder_p->execute(astream, *slice_mem_p, *reorder_dst_memory_p);

        offset[axis] += dx[i]->dims()[axis];

209
        dx[i]->set_mem_desc(reorder_dst_memory_p->get_desc());
210 211 212 213 214 215
      }
    }
    astream.wait();
  }
};

M
Michal Gallus 已提交
216 217 218 219 220 221
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(concat, MKLDNN, ::paddle::platform::CPUPlace,
222
                   ops::ConcatMKLDNNOpKernel<float>,
223
                   ops::ConcatMKLDNNOpKernel<paddle::platform::bfloat16>,
224 225
                   ops::ConcatMKLDNNOpKernel<int8_t>,
                   ops::ConcatMKLDNNOpKernel<uint8_t>);
226 227 228 229

REGISTER_OP_KERNEL(concat_grad, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::ConcatGradMKLDNNOpKernel<float>,
                   ops::ConcatGradMKLDNNOpKernel<paddle::platform::bfloat16>);