benchmark.cc 19.4 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. */

#include <iostream>
T
tensor-tang 已提交
16
#include <random>
17

T
tensor-tang 已提交
18 19
#include "gflags/gflags.h"
#include "glog/logging.h"
T
tensor-tang 已提交
20
#include "paddle/fluid/framework/tensor.h"
T
tensor-tang 已提交
21
#include "paddle/fluid/operators/jit/kernels.h"
22
#include "paddle/fluid/platform/device_tracer.h"
23
#include "paddle/fluid/platform/enforce.h"
T
tensor-tang 已提交
24
#include "paddle/fluid/platform/place.h"
T
tensor-tang 已提交
25
#include "paddle/fluid/platform/variant.h"  // for UNUSED
T
tensor-tang 已提交
26 27 28 29

DEFINE_int32(burning, 10, "Burning times.");
DEFINE_int32(repeat, 3000, "Repeat times.");
DEFINE_int32(max_size, 1000, "The Max size would be tested.");
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
DEFINE_string(filter, "", "The Benchmark name would be run.");

class BenchJITKernel {
 public:
  BenchJITKernel() = default;
  virtual ~BenchJITKernel() = default;
  virtual void Run() = 0;
  virtual const char* Name() = 0;
  virtual const char* Dtype() = 0;
  virtual const char* Place() = 0;
};

static std::vector<BenchJITKernel*> g_all_benchmarks;

BenchJITKernel* InsertBenchmark(BenchJITKernel* b) {
  g_all_benchmarks.push_back(b);
  return b;
}

#define BENCH_JITKERNEL(name, dtype, place)                                    \
  class BenchJITKernel_##name##_##dtype##_##place##_ : public BenchJITKernel { \
   public:                                                                     \
    const char* Name() override { return #name; }                              \
    const char* Dtype() override { return #dtype; }                            \
    const char* Place() override { return #place; }                            \
    void Run() override;                                                       \
  };                                                                           \
T
tensor-tang 已提交
57
  static auto inserted_##name##_##dtype##_##place##_ UNUSED =                  \
58 59 60 61 62 63 64 65 66 67 68 69 70
      InsertBenchmark(new BenchJITKernel_##name##_##dtype##_##place##_());     \
  void BenchJITKernel_##name##_##dtype##_##place##_::Run()

void RUN_ALL_BENCHMARK() {
  for (auto p : g_all_benchmarks) {
    if (!FLAGS_filter.empty() && FLAGS_filter != p->Name()) {
      continue;
    }
    LOG(INFO) << "Benchmark " << p->Name() << "." << p->Dtype() << "."
              << p->Place();
    p->Run();
  }
}
T
tensor-tang 已提交
71 72 73

template <typename T>
void RandomVec(const int n, T* a, const T lower = static_cast<T>(-20.f),
74 75
               const T upper = static_cast<T>(20.f), unsigned int seed = 100) {
  std::mt19937 rng(seed);
T
tensor-tang 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89
  std::uniform_real_distribution<double> uniform_dist(0, 1);
  for (int i = 0; i < n; ++i) {
    a[i] = static_cast<T>(uniform_dist(rng) * (upper - lower) + lower);
  }
}

std::vector<int> TestSizes() {
  std::vector<int> s;
  for (int i = 1; i <= FLAGS_max_size; ++i) {
    s.push_back(i);
  }
  return s;
}

90
template <typename KernelTuple, typename... Args>
T
tensor-tang 已提交
91 92
struct BenchFunc {
  // return this function avg time
T
tensor-tang 已提交
93
  // TODO(TJ): clear cache every time
94
  double operator()(const typename KernelTuple::func_type tgt, Args... args) {
T
tensor-tang 已提交
95 96 97
    for (int i = 0; i < FLAGS_burning; ++i) {
      tgt(args...);
    }
T
tensor-tang 已提交
98
    auto start = paddle::platform::PosixInNsec() * 1e-3;
T
tensor-tang 已提交
99 100 101
    for (int i = 0; i < FLAGS_repeat; ++i) {
      tgt(args...);
    }
T
tensor-tang 已提交
102
    auto end = paddle::platform::PosixInNsec() * 1e-3;
103
    return static_cast<double>(end - start) / FLAGS_repeat;
T
tensor-tang 已提交
104 105 106 107 108
  }
};

namespace jit = paddle::operators::jit;

109 110 111
template <typename KernelTuple, typename PlaceType, typename... Args>
void BenchAllImpls(const typename KernelTuple::attr_type& attr, Args... args) {
  BenchFunc<KernelTuple, Args...> benchmark;
T
tensor-tang 已提交
112
  std::vector<std::pair<std::string, double>> infos;
113 114 115
  auto funcs = jit::GetAllCandidateFuncsWithTypes<KernelTuple, PlaceType>(attr);
  for (auto f : funcs) {
    infos.push_back(std::make_pair(f.first, benchmark(f.second, args...)));
T
tensor-tang 已提交
116 117 118
  }

  // Test result from Get function
119
  auto tgt = jit::KernelFuncs<KernelTuple, PlaceType>::Cache().At(attr);
T
tensor-tang 已提交
120
  if (!tgt) {
121 122
    PADDLE_THROW(
        paddle::platform::errors::Fatal("Benchmark target can not be empty."));
T
tensor-tang 已提交
123
  }
T
tensor-tang 已提交
124 125 126 127
  infos.push_back(std::make_pair("Target", benchmark(tgt, args...)));

  // print
  std::ostringstream loginfos;
128 129
  loginfos << "Kernel Type " << jit::to_string(KernelTuple::kernel_type) << ": "
           << attr << ": ";
T
tensor-tang 已提交
130 131 132 133
  for (auto pair : infos) {
    loginfos << pair.first << " takes " << pair.second << " us; ";
  }
  LOG(INFO) << loginfos.str();
T
tensor-tang 已提交
134 135
}

T
tensor-tang 已提交
136
using Tensor = paddle::framework::Tensor;
137 138 139
template <typename KernelTuple, typename PlaceType>
void BenchKernelXYZN() {
  using T = typename KernelTuple::data_type;
T
tensor-tang 已提交
140
  for (int d : TestSizes()) {
T
tensor-tang 已提交
141 142 143 144 145 146 147 148 149
    Tensor x, y, z;
    x.Resize({d});
    y.Resize({d});
    z.Resize({d});
    T* x_data = x.mutable_data<T>(PlaceType());
    T* y_data = y.mutable_data<T>(PlaceType());
    T* z_data = z.mutable_data<T>(PlaceType());
    RandomVec<T>(d, x_data);
    RandomVec<T>(d, y_data);
150 151
    BenchAllImpls<KernelTuple, PlaceType>(d, x.data<T>(), y.data<T>(), z_data,
                                          d);
T
tensor-tang 已提交
152
    // test inplace
153
    BenchAllImpls<KernelTuple, PlaceType>(d, x.data<T>(), z_data, z_data, d);
T
tensor-tang 已提交
154 155
  }
}
156

157 158 159
template <typename KernelTuple, typename PlaceType>
void BenchKernelAXYN() {
  using T = typename KernelTuple::data_type;
160 161
  for (int d : TestSizes()) {
    const T a = static_cast<T>(3);
T
tensor-tang 已提交
162 163 164 165 166 167
    Tensor x, y;
    x.Resize({d});
    y.Resize({d});
    T* x_data = x.mutable_data<T>(PlaceType());
    T* y_data = y.mutable_data<T>(PlaceType());
    RandomVec<T>(d, x_data);
168
    BenchAllImpls<KernelTuple, PlaceType>(d, &a, x.data<T>(), y_data, d);
T
tensor-tang 已提交
169
    // test inplace
170
    BenchAllImpls<KernelTuple, PlaceType>(d, &a, x.data<T>(), x_data, d);
171 172 173
  }
}

174 175 176
template <typename KernelTuple, typename PlaceType>
void BenchKernelXRN() {
  using T = typename KernelTuple::data_type;
177 178 179 180
  for (int d : TestSizes()) {
    Tensor x;
    RandomVec<T>(d, x.mutable_data<T>({d}, PlaceType()));
    T res;
181
    BenchAllImpls<KernelTuple, PlaceType>(d, x.data<T>(), &res, d);
182 183 184
  }
}

185 186 187
template <typename KernelTuple, typename PlaceType>
void BenchKernelXYN() {
  using T = typename KernelTuple::data_type;
188
  for (int d : TestSizes()) {
T
tensor-tang 已提交
189 190 191 192 193 194
    Tensor x, y;
    x.Resize({d});
    y.Resize({d});
    T* x_data = x.mutable_data<T>(PlaceType());
    T* y_data = y.mutable_data<T>(PlaceType());
    RandomVec<T>(d, x_data);
195
    BenchAllImpls<KernelTuple, PlaceType>(d, x.data<T>(), y_data, d);
196 197 198
  }
}

199 200 201
template <typename KernelTuple, typename PlaceType>
void BenchKernelLSTM() {
  using T = typename KernelTuple::data_type;
T
tensor-tang 已提交
202 203
  for (bool use_peephole : {true, false}) {
    for (int d : TestSizes()) {
T
tensor-tang 已提交
204
      const jit::lstm_attr_t attr(d, jit::kVSigmoid, jit::kVTanh, jit::kVTanh,
T
tensor-tang 已提交
205
                                  use_peephole);
T
tensor-tang 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
      Tensor x, ct_1, ct, ht, wp, checked;
      x.Resize({4 * d});
      ct_1.Resize({d});
      ct.Resize({d});
      ht.Resize({d});
      wp.Resize({3 * d});
      checked.Resize({2 * d});
      auto place = PlaceType();
      RandomVec<T>(x.numel(), x.mutable_data<T>(place), -2.f, 2.f);
      RandomVec<T>(wp.numel(), wp.mutable_data<T>(place), -2.f, 2.f);
      RandomVec<T>(ct_1.numel(), ct_1.mutable_data<T>(place), -2.f, 2.f);
      const T* ct_1_data = ct_1.data<T>();
      const T* wp_data = wp.data<T>();
      T* x_data = x.mutable_data<T>(place);
      T* checked_data = checked.mutable_data<T>(place);
      T* ct_data = ct.mutable_data<T>(place);
      T* ht_data = ht.mutable_data<T>(place);
T
tensor-tang 已提交
223 224 225 226 227 228 229 230 231
      jit::lstm_t step;
      step.gates = x_data;
      step.ct_1 = ct_1_data;
      step.ct = ct_data;
      step.ht = ht_data;
      if (use_peephole) {
        step.wp = wp_data;
        step.checked = checked_data;
      }
232
      BenchAllImpls<KernelTuple, PlaceType>(attr, &step, &attr);
T
tensor-tang 已提交
233 234 235 236
    }
  }
}

237 238 239
template <typename KernelTuple, typename PlaceType>
void BenchKernelGRU() {
  using T = typename KernelTuple::data_type;
240
  for (int d : TestSizes()) {
T
tensor-tang 已提交
241
    const jit::gru_attr_t attr(d, jit::kVSigmoid, jit::kVTanh);
T
tensor-tang 已提交
242 243 244 245 246 247 248 249 250 251
    auto place = PlaceType();
    Tensor x, ht_1, ht;
    x.Resize({3 * d});
    ht_1.Resize({d});
    ht.Resize({d});
    RandomVec<T>(3 * d, x.mutable_data<T>(place), -2.f, 2.f);
    RandomVec<T>(d, ht_1.mutable_data<T>(place), -2.f, 2.f);
    const T* ht_1_data = ht_1.data<T>();
    T* x_data = x.mutable_data<T>(place);
    T* ht_data = ht.mutable_data<T>(place);
252 253 254 255
    jit::gru_t step;
    step.gates = x_data;
    step.ht_1 = ht_1_data;
    step.ht = ht_data;
256
    BenchAllImpls<KernelTuple, PlaceType>(attr, &step, &attr);
257 258 259
  }
}

260 261 262
template <typename KernelTuple, typename PlaceType>
void BenchKernelSeqPool() {
  using T = typename KernelTuple::data_type;
263 264
  std::vector<jit::SeqPoolType> pool_types = {
      jit::SeqPoolType::kSum, jit::SeqPoolType::kAvg, jit::SeqPoolType::kSqrt};
265
  for (auto type : pool_types) {
T
tensor-tang 已提交
266
    for (int w : TestSizes()) {
T
tensor-tang 已提交
267
      jit::seq_pool_attr_t attr(w, type);
T
tensor-tang 已提交
268
      for (int h : TestSizes()) {
T
tensor-tang 已提交
269
        attr.h = h;
T
tensor-tang 已提交
270 271 272 273 274 275
        Tensor x, y;
        x.Resize({h * w});
        y.Resize({w});
        RandomVec<T>(h * w, x.mutable_data<T>(PlaceType()), -2.f, 2.f);
        const T* x_data = x.data<T>();
        T* y_data = y.mutable_data<T>(PlaceType());
276
        BenchAllImpls<KernelTuple, PlaceType>(attr, x_data, y_data, &attr);
277 278 279 280 281
      }
    }
  }
}

282 283 284
template <typename KernelTuple, typename PlaceType>
void BenchKernelEmbSeqPool() {
  using T = typename KernelTuple::data_type;
285 286 287 288 289 290 291 292 293
  std::vector<jit::SeqPoolType> pool_types = {jit::SeqPoolType::kSum};
  int64_t tbl_h = 1e4;
  for (int tbl_w : {10, 16, 256}) {
    Tensor table;
    table.Resize({tbl_h, tbl_w});
    RandomVec<T>(tbl_h * tbl_w, table.mutable_data<T>(PlaceType()), -2.f, 2.f);
    const T* table_data = table.data<T>();
    for (auto type : pool_types) {
      for (int idx_w : {1, 2, 10, 16}) {
294
        for (int idx_h : {1, 2, 9, 13, 16}) {
295 296 297 298 299 300 301 302 303 304 305
          int64_t out_w = tbl_w * idx_w;
          jit::emb_seq_pool_attr_t attr(tbl_h, tbl_w, idx_h, idx_w, out_w,
                                        type);
          Tensor idx, out;
          idx.Resize({idx_h, idx_w});
          out.Resize({out_w});
          RandomVec<int64_t>(idx_h * idx_w,
                             idx.mutable_data<int64_t>(PlaceType()), 0,
                             tbl_h - 1);
          const int64_t* idx_data = idx.data<int64_t>();
          T* o_data = out.mutable_data<T>(PlaceType());
306 307
          BenchAllImpls<KernelTuple, PlaceType>(attr, table_data, idx_data,
                                                o_data, &attr);
308 309 310 311 312 313
        }
      }
    }
  }
}

314 315 316
template <typename KernelTuple, typename PlaceType>
void BenchKernelSgd() {
  using T = typename KernelTuple::data_type;
317 318 319
  const T lr = 0.1;
  auto UnDuplicatedRandomVec = [](int n, const int64_t lower,
                                  const int64_t upper) -> std::vector<int64_t> {
G
GaoWei8 已提交
320 321 322 323 324 325 326
    PADDLE_ENFORCE_LE(
        static_cast<size_t>(upper - lower), n - 1,
        paddle::platform::errors::InvalidArgument(
            "The range of Sgd (upper - lower) should be equal to or lower "
            "than n-1 (Sgd size -1). But upper - lower is %d and n-1 is %d.",
            static_cast<size_t>(upper - lower), (n - 1)));
    PADDLE_ENFORCE_GT(
327 328 329
        n, 0,
        paddle::platform::errors::InvalidArgument(
            "The Sgd size should be larger than 0. But the n is %d.", n));
330 331 332 333
    std::vector<int64_t> all, out;
    for (int i = 0; i < n; ++i) {
      all.push_back(i);
    }
334 335 336 337
    std::random_device rnd;
    int64_t seed_tmp = rnd();
    std::default_random_engine rng(seed_tmp);
    std::shuffle(all.begin(), all.end(), rng);
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
    out.insert(out.begin(), all.begin(), all.begin() + n);
    return out;
  };
  for (int param_h : {1, 1000}) {
    for (int grad_w : {1, 2, 8, 16, 30, 256}) {
      // only benchmark inplace
      Tensor param;
      param.Resize({param_h, grad_w});
      T* param_data = param.mutable_data<T>(PlaceType());
      RandomVec<T>(param_h * grad_w, param_data, -2.f, 2.f);
      for (int rows_size = 1; rows_size <= std::min(param_h, 10); ++rows_size) {
        Tensor grad;
        grad.Resize({rows_size, grad_w});
        std::vector<int64_t> rows =
            UnDuplicatedRandomVec(rows_size, 0, rows_size - 1);
        RandomVec<T>(rows_size * grad_w, grad.mutable_data<T>(PlaceType()),
                     -2.f, 2.f);
        const T* grad_data = grad.data<T>();
        const int64_t* rows_data = rows.data();
        jit::sgd_attr_t attr(param_h, grad_w, rows_size, grad_w, rows_size);
358 359
        BenchAllImpls<KernelTuple, PlaceType>(attr, &lr, param_data, grad_data,
                                              rows_data, param_data, &attr);
360 361 362 363 364
      }
    }
  }
}

365 366 367
template <typename KernelTuple, typename PlaceType>
void BenchKernelMatMul() {
  using T = typename KernelTuple::data_type;
T
tensor-tang 已提交
368
  for (int m : {1, 2, 3, 4}) {
369
    for (int n : TestSizes()) {
T
tensor-tang 已提交
370
      for (int k : TestSizes()) {
T
tensor-tang 已提交
371 372 373 374 375 376 377 378 379
        Tensor a, b, c;
        a.Resize({m * k});
        b.Resize({k * n});
        c.Resize({m * n});
        RandomVec<T>(m * k, a.mutable_data<T>(PlaceType()), -2.f, 2.f);
        RandomVec<T>(k * n, b.mutable_data<T>(PlaceType()), -2.f, 2.f);
        const T* a_data = a.data<T>();
        const T* b_data = b.data<T>();
        T* c_data = c.mutable_data<T>(PlaceType());
380
        const jit::matmul_attr_t attr{m, n, k};
381 382
        BenchAllImpls<KernelTuple, PlaceType>(attr, a_data, b_data, c_data,
                                              &attr);
T
tensor-tang 已提交
383 384 385 386 387
      }
    }
  }
}

388 389 390
template <typename KernelTuple, typename PlaceType>
void BenchKernelSoftmax() {
  using T = typename KernelTuple::data_type;
391 392 393 394 395 396 397 398
  for (int bs : {1, 2, 10}) {
    for (int n : TestSizes()) {
      Tensor x, y;
      x.Resize({bs, n});
      y.Resize({bs, n});
      RandomVec<T>(bs * n, x.mutable_data<T>(PlaceType()), -2.f, 2.f);
      const T* x_data = x.data<T>();
      T* y_data = y.mutable_data<T>(PlaceType());
399
      BenchAllImpls<KernelTuple, PlaceType>(n, x_data, y_data, n, bs, 1);
400 401 402 403
    }
  }
}

404 405 406
template <typename KernelTuple, typename PlaceType>
void BenchKernelLayerNorm() {
  using T = typename KernelTuple::data_type;
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
  const T epsilon = 9.99999975e-06;
  for (int n : {1, 2, 10}) {
    for (int x_dim_0 : {1, 9, 17, 50}) {
      int left = n * x_dim_0;
      for (int x_dim_1 : TestSizes()) {
        int right = x_dim_1;
        int sz = left * right;
        Tensor x, mean, var, scale, bias, out;
        x.Resize({n, x_dim_0, x_dim_1});
        out.Resize({n, x_dim_0, x_dim_1});
        mean.Resize({n, x_dim_0});
        var.Resize({n, x_dim_0});
        scale.Resize({x_dim_1});
        bias.Resize({x_dim_1});

        RandomVec<T>(sz, x.mutable_data<T>(PlaceType()), -2.f, 2.f);
        RandomVec<T>(left, mean.mutable_data<T>(PlaceType()), -2.f, 2.f);
        RandomVec<T>(left, var.mutable_data<T>(PlaceType()), -2.f, 2.f);
        RandomVec<T>(right, scale.mutable_data<T>(PlaceType()), -2.f, 2.f);
        RandomVec<T>(right, bias.mutable_data<T>(PlaceType()), -2.f, 2.f);

        const T* scale_data = scale.data<T>();
        const T* bias_data = bias.data<T>();
        T* x_data = x.data<T>();
        T* mean_data = mean.data<T>();
        T* var_data = var.data<T>();
        T* out_data = out.mutable_data<T>(PlaceType());

435 436 437
        BenchAllImpls<KernelTuple, PlaceType>(right, x_data, out_data,
                                              mean_data, var_data, scale_data,
                                              bias_data, left, epsilon, right);
438 439 440 441 442
      }
    }
  }
}

443 444 445
template <typename KernelTuple, typename PlaceType>
void BenchKernelCRFDecoding() {
  using T = typename KernelTuple::data_type;
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
  constexpr int state_trans_base_idx = 2;
  for (int seq_len : {1, 11, 17, 50}) {
    for (int tag_num : TestSizes()) {
      int x_sz = seq_len * tag_num;
      int w_sz = (tag_num + state_trans_base_idx) * tag_num;
      Tensor x, w, alpha, track;
      x.Resize({seq_len, tag_num});
      w.Resize({tag_num + state_trans_base_idx, tag_num});
      alpha.Resize({seq_len, tag_num});
      track.Resize({seq_len, tag_num});

      RandomVec<T>(x_sz, x.mutable_data<T>(PlaceType()), -2.f, 2.f);
      RandomVec<T>(w_sz, w.mutable_data<T>(PlaceType()), -2.f, 2.f);

      const T* x_data = x.data<T>();
      const T* w_data = w.data<T>();
      T* alpha_data = alpha.mutable_data<T>(PlaceType());
      int* track_data = track.mutable_data<int>(PlaceType());

465 466
      BenchAllImpls<KernelTuple, PlaceType>(tag_num, seq_len, x_data, w_data,
                                            alpha_data, track_data, tag_num);
467 468 469 470
    }
  }
}

471 472 473
template <typename KernelTuple, typename PlaceType>
void BenchKernelVBroadcast() {
  using T = typename KernelTuple::data_type;
474
  for (int64_t w : {1, 16, 64, 100, 256}) {
475 476 477 478
    Tensor x;
    x.Resize({w});
    RandomVec<T>(w, x.mutable_data<T>(PlaceType()));
    const T* x_data = x.data<T>();
479
    for (int h : TestSizes()) {
480 481 482
      Tensor y;
      y.Resize({h * w});
      T* y_data = y.mutable_data<T>(PlaceType());
483 484
      BenchAllImpls<KernelTuple, PlaceType>(w, x_data, y_data,
                                            static_cast<int64_t>(h), w);
485 486 487 488
    }
  }
}

489 490 491 492
#define BenchKernelVMul BenchKernelXYZN
#define BenchKernelVAdd BenchKernelXYZN
#define BenchKernelVAddRelu BenchKernelXYZN
#define BenchKernelVSub BenchKernelXYZN
493

494 495
#define BenchKernelVScal BenchKernelAXYN
#define BenchKernelVAddBias BenchKernelAXYN
496

497 498 499 500 501 502 503
#define BenchKernelVRelu BenchKernelXYN
#define BenchKernelVIdentity BenchKernelXYN
#define BenchKernelVSquare BenchKernelXYN
#define BenchKernelVExp BenchKernelXYN
#define BenchKernelVSigmoid BenchKernelXYN
#define BenchKernelVTanh BenchKernelXYN
#define BenchKernelVCopy BenchKernelXYN
504

505 506
#define BenchKernelHMax BenchKernelXRN
#define BenchKernelHSum BenchKernelXRN
507

508 509
#define BenchKernelLSTMCtHt BenchKernelLSTM
#define BenchKernelLSTMC1H1 BenchKernelLSTM
510

511 512 513
#define BenchKernelGRUH1 BenchKernelGRU
#define BenchKernelGRUHtPart1 BenchKernelGRU
#define BenchKernelGRUHtPart2 BenchKernelGRU
514

515
using CPUPlace = paddle::platform::CPUPlace;
516

517 518 519 520
#define BENCH_FP32_CPU(name)                                \
  BENCH_JITKERNEL(name, FP32, CPU) {                        \
    BenchKernel##name<jit::name##Tuple<float>, CPUPlace>(); \
  }
521

522 523 524 525 526
// xyzn
BENCH_FP32_CPU(VMul);
BENCH_FP32_CPU(VAdd);
BENCH_FP32_CPU(VAddRelu);
BENCH_FP32_CPU(VSub);
527

528 529 530
// axyn
BENCH_FP32_CPU(VScal);
BENCH_FP32_CPU(VAddBias);
531

532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
// xyn
BENCH_FP32_CPU(VRelu);
BENCH_FP32_CPU(VIdentity);
BENCH_FP32_CPU(VSquare);
BENCH_FP32_CPU(VExp);
BENCH_FP32_CPU(VSigmoid);
BENCH_FP32_CPU(VTanh);
BENCH_FP32_CPU(VCopy);

// xrn
BENCH_FP32_CPU(HMax);
BENCH_FP32_CPU(HSum);

// LSTM
BENCH_FP32_CPU(LSTMCtHt);
BENCH_FP32_CPU(LSTMC1H1);

// GRU
BENCH_FP32_CPU(GRUH1);
BENCH_FP32_CPU(GRUHtPart1);
BENCH_FP32_CPU(GRUHtPart2);

BENCH_FP32_CPU(LayerNorm);
BENCH_FP32_CPU(CRFDecoding);

BENCH_FP32_CPU(SeqPool);
BENCH_FP32_CPU(EmbSeqPool);
BENCH_FP32_CPU(MatMul);
BENCH_FP32_CPU(Softmax);
BENCH_FP32_CPU(Sgd);
BENCH_FP32_CPU(VBroadcast);
563

564 565 566 567 568 569
// Benchmark all jit kernels including jitcode, mkl and refer.
// To use this tool, run command: ./benchmark [options...]
// Options:
//     --burning: the burning time before count
//     --repeat: the repeat times
//     --max_size: the max size would be tested
570
//     --filter: the bench name would be run
571
int main(int argc, char* argv[]) {
572
  ::GFLAGS_NAMESPACE::ParseCommandLineFlags(&argc, &argv, true);
573 574 575
  google::InitGoogleLogging(argv[0]);
  LOG(INFO) << "Burning " << FLAGS_burning << " times, Repeat " << FLAGS_repeat
            << " times.";
T
tensor-tang 已提交
576

577
  RUN_ALL_BENCHMARK();
578
}