benchmark.cc 19.3 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. */

#include <iostream>
T
tensor-tang 已提交
16
#include <random>
T
tensor-tang 已提交
17 18 19 20
#include <string>
#include <vector>
#include "gflags/gflags.h"
#include "glog/logging.h"
T
tensor-tang 已提交
21
#include "paddle/fluid/framework/tensor.h"
T
tensor-tang 已提交
22
#include "paddle/fluid/operators/jit/kernels.h"
23
#include "paddle/fluid/platform/device_tracer.h"
24
#include "paddle/fluid/platform/enforce.h"
T
tensor-tang 已提交
25 26
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/port.h"
T
tensor-tang 已提交
27
#include "paddle/fluid/platform/variant.h"  // for UNUSED
T
tensor-tang 已提交
28 29 30 31

DEFINE_int32(burning, 10, "Burning times.");
DEFINE_int32(repeat, 3000, "Repeat times.");
DEFINE_int32(max_size, 1000, "The Max size would be tested.");
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
DEFINE_string(filter, "", "The Benchmark name would be run.");

class BenchJITKernel {
 public:
  BenchJITKernel() = default;
  virtual ~BenchJITKernel() = default;
  virtual void Run() = 0;
  virtual const char* Name() = 0;
  virtual const char* Dtype() = 0;
  virtual const char* Place() = 0;
};

static std::vector<BenchJITKernel*> g_all_benchmarks;

BenchJITKernel* InsertBenchmark(BenchJITKernel* b) {
  g_all_benchmarks.push_back(b);
  return b;
}

#define BENCH_JITKERNEL(name, dtype, place)                                    \
  class BenchJITKernel_##name##_##dtype##_##place##_ : public BenchJITKernel { \
   public:                                                                     \
    const char* Name() override { return #name; }                              \
    const char* Dtype() override { return #dtype; }                            \
    const char* Place() override { return #place; }                            \
    void Run() override;                                                       \
  };                                                                           \
T
tensor-tang 已提交
59
  static auto inserted_##name##_##dtype##_##place##_ UNUSED =                  \
60 61 62 63 64 65 66 67 68 69 70 71 72
      InsertBenchmark(new BenchJITKernel_##name##_##dtype##_##place##_());     \
  void BenchJITKernel_##name##_##dtype##_##place##_::Run()

void RUN_ALL_BENCHMARK() {
  for (auto p : g_all_benchmarks) {
    if (!FLAGS_filter.empty() && FLAGS_filter != p->Name()) {
      continue;
    }
    LOG(INFO) << "Benchmark " << p->Name() << "." << p->Dtype() << "."
              << p->Place();
    p->Run();
  }
}
T
tensor-tang 已提交
73 74 75

template <typename T>
void RandomVec(const int n, T* a, const T lower = static_cast<T>(-20.f),
76 77
               const T upper = static_cast<T>(20.f), unsigned int seed = 100) {
  std::mt19937 rng(seed);
T
tensor-tang 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91
  std::uniform_real_distribution<double> uniform_dist(0, 1);
  for (int i = 0; i < n; ++i) {
    a[i] = static_cast<T>(uniform_dist(rng) * (upper - lower) + lower);
  }
}

std::vector<int> TestSizes() {
  std::vector<int> s;
  for (int i = 1; i <= FLAGS_max_size; ++i) {
    s.push_back(i);
  }
  return s;
}

92
template <typename KernelTuple, typename... Args>
T
tensor-tang 已提交
93 94
struct BenchFunc {
  // return this function avg time
T
tensor-tang 已提交
95
  // TODO(TJ): clear cache every time
96
  double operator()(const typename KernelTuple::func_type tgt, Args... args) {
T
tensor-tang 已提交
97 98 99
    for (int i = 0; i < FLAGS_burning; ++i) {
      tgt(args...);
    }
T
tensor-tang 已提交
100
    auto start = paddle::platform::PosixInNsec() * 1e-3;
T
tensor-tang 已提交
101 102 103
    for (int i = 0; i < FLAGS_repeat; ++i) {
      tgt(args...);
    }
T
tensor-tang 已提交
104
    auto end = paddle::platform::PosixInNsec() * 1e-3;
105
    return static_cast<double>(end - start) / FLAGS_repeat;
T
tensor-tang 已提交
106 107 108 109 110
  }
};

namespace jit = paddle::operators::jit;

111 112 113
template <typename KernelTuple, typename PlaceType, typename... Args>
void BenchAllImpls(const typename KernelTuple::attr_type& attr, Args... args) {
  BenchFunc<KernelTuple, Args...> benchmark;
T
tensor-tang 已提交
114
  std::vector<std::pair<std::string, double>> infos;
115 116 117
  auto funcs = jit::GetAllCandidateFuncsWithTypes<KernelTuple, PlaceType>(attr);
  for (auto f : funcs) {
    infos.push_back(std::make_pair(f.first, benchmark(f.second, args...)));
T
tensor-tang 已提交
118 119 120
  }

  // Test result from Get function
121
  auto tgt = jit::KernelFuncs<KernelTuple, PlaceType>::Cache().At(attr);
T
tensor-tang 已提交
122
  if (!tgt) {
123 124
    PADDLE_THROW(
        paddle::platform::errors::Fatal("Benchmark target can not be empty."));
T
tensor-tang 已提交
125
  }
T
tensor-tang 已提交
126 127 128 129
  infos.push_back(std::make_pair("Target", benchmark(tgt, args...)));

  // print
  std::ostringstream loginfos;
130 131
  loginfos << "Kernel Type " << jit::to_string(KernelTuple::kernel_type) << ": "
           << attr << ": ";
T
tensor-tang 已提交
132 133 134 135
  for (auto pair : infos) {
    loginfos << pair.first << " takes " << pair.second << " us; ";
  }
  LOG(INFO) << loginfos.str();
T
tensor-tang 已提交
136 137
}

T
tensor-tang 已提交
138
using Tensor = paddle::framework::Tensor;
139 140 141
template <typename KernelTuple, typename PlaceType>
void BenchKernelXYZN() {
  using T = typename KernelTuple::data_type;
T
tensor-tang 已提交
142
  for (int d : TestSizes()) {
T
tensor-tang 已提交
143 144 145 146 147 148 149 150 151
    Tensor x, y, z;
    x.Resize({d});
    y.Resize({d});
    z.Resize({d});
    T* x_data = x.mutable_data<T>(PlaceType());
    T* y_data = y.mutable_data<T>(PlaceType());
    T* z_data = z.mutable_data<T>(PlaceType());
    RandomVec<T>(d, x_data);
    RandomVec<T>(d, y_data);
152 153
    BenchAllImpls<KernelTuple, PlaceType>(d, x.data<T>(), y.data<T>(), z_data,
                                          d);
T
tensor-tang 已提交
154
    // test inplace
155
    BenchAllImpls<KernelTuple, PlaceType>(d, x.data<T>(), z_data, z_data, d);
T
tensor-tang 已提交
156 157
  }
}
158

159 160 161
template <typename KernelTuple, typename PlaceType>
void BenchKernelAXYN() {
  using T = typename KernelTuple::data_type;
162 163
  for (int d : TestSizes()) {
    const T a = static_cast<T>(3);
T
tensor-tang 已提交
164 165 166 167 168 169
    Tensor x, y;
    x.Resize({d});
    y.Resize({d});
    T* x_data = x.mutable_data<T>(PlaceType());
    T* y_data = y.mutable_data<T>(PlaceType());
    RandomVec<T>(d, x_data);
170
    BenchAllImpls<KernelTuple, PlaceType>(d, &a, x.data<T>(), y_data, d);
T
tensor-tang 已提交
171
    // test inplace
172
    BenchAllImpls<KernelTuple, PlaceType>(d, &a, x.data<T>(), x_data, d);
173 174 175
  }
}

176 177 178
template <typename KernelTuple, typename PlaceType>
void BenchKernelXRN() {
  using T = typename KernelTuple::data_type;
179 180 181 182
  for (int d : TestSizes()) {
    Tensor x;
    RandomVec<T>(d, x.mutable_data<T>({d}, PlaceType()));
    T res;
183
    BenchAllImpls<KernelTuple, PlaceType>(d, x.data<T>(), &res, d);
184 185 186
  }
}

187 188 189
template <typename KernelTuple, typename PlaceType>
void BenchKernelXYN() {
  using T = typename KernelTuple::data_type;
190
  for (int d : TestSizes()) {
T
tensor-tang 已提交
191 192 193 194 195 196
    Tensor x, y;
    x.Resize({d});
    y.Resize({d});
    T* x_data = x.mutable_data<T>(PlaceType());
    T* y_data = y.mutable_data<T>(PlaceType());
    RandomVec<T>(d, x_data);
197
    BenchAllImpls<KernelTuple, PlaceType>(d, x.data<T>(), y_data, d);
198 199 200
  }
}

201 202 203
template <typename KernelTuple, typename PlaceType>
void BenchKernelLSTM() {
  using T = typename KernelTuple::data_type;
T
tensor-tang 已提交
204 205
  for (bool use_peephole : {true, false}) {
    for (int d : TestSizes()) {
T
tensor-tang 已提交
206
      const jit::lstm_attr_t attr(d, jit::kVSigmoid, jit::kVTanh, jit::kVTanh,
T
tensor-tang 已提交
207
                                  use_peephole);
T
tensor-tang 已提交
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
      Tensor x, ct_1, ct, ht, wp, checked;
      x.Resize({4 * d});
      ct_1.Resize({d});
      ct.Resize({d});
      ht.Resize({d});
      wp.Resize({3 * d});
      checked.Resize({2 * d});
      auto place = PlaceType();
      RandomVec<T>(x.numel(), x.mutable_data<T>(place), -2.f, 2.f);
      RandomVec<T>(wp.numel(), wp.mutable_data<T>(place), -2.f, 2.f);
      RandomVec<T>(ct_1.numel(), ct_1.mutable_data<T>(place), -2.f, 2.f);
      const T* ct_1_data = ct_1.data<T>();
      const T* wp_data = wp.data<T>();
      T* x_data = x.mutable_data<T>(place);
      T* checked_data = checked.mutable_data<T>(place);
      T* ct_data = ct.mutable_data<T>(place);
      T* ht_data = ht.mutable_data<T>(place);
T
tensor-tang 已提交
225 226 227 228 229 230 231 232 233
      jit::lstm_t step;
      step.gates = x_data;
      step.ct_1 = ct_1_data;
      step.ct = ct_data;
      step.ht = ht_data;
      if (use_peephole) {
        step.wp = wp_data;
        step.checked = checked_data;
      }
234
      BenchAllImpls<KernelTuple, PlaceType>(attr, &step, &attr);
T
tensor-tang 已提交
235 236 237 238
    }
  }
}

239 240 241
template <typename KernelTuple, typename PlaceType>
void BenchKernelGRU() {
  using T = typename KernelTuple::data_type;
242
  for (int d : TestSizes()) {
T
tensor-tang 已提交
243
    const jit::gru_attr_t attr(d, jit::kVSigmoid, jit::kVTanh);
T
tensor-tang 已提交
244 245 246 247 248 249 250 251 252 253
    auto place = PlaceType();
    Tensor x, ht_1, ht;
    x.Resize({3 * d});
    ht_1.Resize({d});
    ht.Resize({d});
    RandomVec<T>(3 * d, x.mutable_data<T>(place), -2.f, 2.f);
    RandomVec<T>(d, ht_1.mutable_data<T>(place), -2.f, 2.f);
    const T* ht_1_data = ht_1.data<T>();
    T* x_data = x.mutable_data<T>(place);
    T* ht_data = ht.mutable_data<T>(place);
254 255 256 257
    jit::gru_t step;
    step.gates = x_data;
    step.ht_1 = ht_1_data;
    step.ht = ht_data;
258
    BenchAllImpls<KernelTuple, PlaceType>(attr, &step, &attr);
259 260 261
  }
}

262 263 264
template <typename KernelTuple, typename PlaceType>
void BenchKernelSeqPool() {
  using T = typename KernelTuple::data_type;
265 266
  std::vector<jit::SeqPoolType> pool_types = {
      jit::SeqPoolType::kSum, jit::SeqPoolType::kAvg, jit::SeqPoolType::kSqrt};
267
  for (auto type : pool_types) {
T
tensor-tang 已提交
268
    for (int w : TestSizes()) {
T
tensor-tang 已提交
269
      jit::seq_pool_attr_t attr(w, type);
T
tensor-tang 已提交
270
      for (int h : TestSizes()) {
T
tensor-tang 已提交
271
        attr.h = h;
T
tensor-tang 已提交
272 273 274 275 276 277
        Tensor x, y;
        x.Resize({h * w});
        y.Resize({w});
        RandomVec<T>(h * w, x.mutable_data<T>(PlaceType()), -2.f, 2.f);
        const T* x_data = x.data<T>();
        T* y_data = y.mutable_data<T>(PlaceType());
278
        BenchAllImpls<KernelTuple, PlaceType>(attr, x_data, y_data, &attr);
279 280 281 282 283
      }
    }
  }
}

284 285 286
template <typename KernelTuple, typename PlaceType>
void BenchKernelEmbSeqPool() {
  using T = typename KernelTuple::data_type;
287 288 289 290 291 292 293 294 295
  std::vector<jit::SeqPoolType> pool_types = {jit::SeqPoolType::kSum};
  int64_t tbl_h = 1e4;
  for (int tbl_w : {10, 16, 256}) {
    Tensor table;
    table.Resize({tbl_h, tbl_w});
    RandomVec<T>(tbl_h * tbl_w, table.mutable_data<T>(PlaceType()), -2.f, 2.f);
    const T* table_data = table.data<T>();
    for (auto type : pool_types) {
      for (int idx_w : {1, 2, 10, 16}) {
296
        for (int idx_h : {1, 2, 9, 13, 16}) {
297 298 299 300 301 302 303 304 305 306 307
          int64_t out_w = tbl_w * idx_w;
          jit::emb_seq_pool_attr_t attr(tbl_h, tbl_w, idx_h, idx_w, out_w,
                                        type);
          Tensor idx, out;
          idx.Resize({idx_h, idx_w});
          out.Resize({out_w});
          RandomVec<int64_t>(idx_h * idx_w,
                             idx.mutable_data<int64_t>(PlaceType()), 0,
                             tbl_h - 1);
          const int64_t* idx_data = idx.data<int64_t>();
          T* o_data = out.mutable_data<T>(PlaceType());
308 309
          BenchAllImpls<KernelTuple, PlaceType>(attr, table_data, idx_data,
                                                o_data, &attr);
310 311 312 313 314 315
        }
      }
    }
  }
}

316 317 318
template <typename KernelTuple, typename PlaceType>
void BenchKernelSgd() {
  using T = typename KernelTuple::data_type;
319 320 321
  const T lr = 0.1;
  auto UnDuplicatedRandomVec = [](int n, const int64_t lower,
                                  const int64_t upper) -> std::vector<int64_t> {
G
GaoWei8 已提交
322 323 324 325 326 327 328 329 330
    PADDLE_ENFORCE_LE(
        static_cast<size_t>(upper - lower), n - 1,
        paddle::platform::errors::InvalidArgument(
            "The range of Sgd (upper - lower) should be equal to or lower "
            "than n-1 (Sgd size -1). But upper - lower is %d and n-1 is %d.",
            static_cast<size_t>(upper - lower), (n - 1)));
    PADDLE_ENFORCE_GT(
        n, 0, paddle::platform::errors::InvalidArgument(
                  "The Sgd size should be larger than 0. But the n is %d.", n));
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
    std::vector<int64_t> all, out;
    for (int i = 0; i < n; ++i) {
      all.push_back(i);
    }
    std::random_shuffle(all.begin(), all.end());
    out.insert(out.begin(), all.begin(), all.begin() + n);
    return out;
  };
  for (int param_h : {1, 1000}) {
    for (int grad_w : {1, 2, 8, 16, 30, 256}) {
      // only benchmark inplace
      Tensor param;
      param.Resize({param_h, grad_w});
      T* param_data = param.mutable_data<T>(PlaceType());
      RandomVec<T>(param_h * grad_w, param_data, -2.f, 2.f);
      for (int rows_size = 1; rows_size <= std::min(param_h, 10); ++rows_size) {
        Tensor grad;
        grad.Resize({rows_size, grad_w});
        std::vector<int64_t> rows =
            UnDuplicatedRandomVec(rows_size, 0, rows_size - 1);
        RandomVec<T>(rows_size * grad_w, grad.mutable_data<T>(PlaceType()),
                     -2.f, 2.f);
        const T* grad_data = grad.data<T>();
        const int64_t* rows_data = rows.data();
        jit::sgd_attr_t attr(param_h, grad_w, rows_size, grad_w, rows_size);
356 357
        BenchAllImpls<KernelTuple, PlaceType>(attr, &lr, param_data, grad_data,
                                              rows_data, param_data, &attr);
358 359 360 361 362
      }
    }
  }
}

363 364 365
template <typename KernelTuple, typename PlaceType>
void BenchKernelMatMul() {
  using T = typename KernelTuple::data_type;
T
tensor-tang 已提交
366
  for (int m : {1, 2, 3, 4}) {
367
    for (int n : TestSizes()) {
T
tensor-tang 已提交
368
      for (int k : TestSizes()) {
T
tensor-tang 已提交
369 370 371 372 373 374 375 376 377
        Tensor a, b, c;
        a.Resize({m * k});
        b.Resize({k * n});
        c.Resize({m * n});
        RandomVec<T>(m * k, a.mutable_data<T>(PlaceType()), -2.f, 2.f);
        RandomVec<T>(k * n, b.mutable_data<T>(PlaceType()), -2.f, 2.f);
        const T* a_data = a.data<T>();
        const T* b_data = b.data<T>();
        T* c_data = c.mutable_data<T>(PlaceType());
378
        const jit::matmul_attr_t attr{m, n, k};
379 380
        BenchAllImpls<KernelTuple, PlaceType>(attr, a_data, b_data, c_data,
                                              &attr);
T
tensor-tang 已提交
381 382 383 384 385
      }
    }
  }
}

386 387 388
template <typename KernelTuple, typename PlaceType>
void BenchKernelSoftmax() {
  using T = typename KernelTuple::data_type;
389 390 391 392 393 394 395 396
  for (int bs : {1, 2, 10}) {
    for (int n : TestSizes()) {
      Tensor x, y;
      x.Resize({bs, n});
      y.Resize({bs, n});
      RandomVec<T>(bs * n, x.mutable_data<T>(PlaceType()), -2.f, 2.f);
      const T* x_data = x.data<T>();
      T* y_data = y.mutable_data<T>(PlaceType());
397
      BenchAllImpls<KernelTuple, PlaceType>(n, x_data, y_data, n, bs, 1);
398 399 400 401
    }
  }
}

402 403 404
template <typename KernelTuple, typename PlaceType>
void BenchKernelLayerNorm() {
  using T = typename KernelTuple::data_type;
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
  const T epsilon = 9.99999975e-06;
  for (int n : {1, 2, 10}) {
    for (int x_dim_0 : {1, 9, 17, 50}) {
      int left = n * x_dim_0;
      for (int x_dim_1 : TestSizes()) {
        int right = x_dim_1;
        int sz = left * right;
        Tensor x, mean, var, scale, bias, out;
        x.Resize({n, x_dim_0, x_dim_1});
        out.Resize({n, x_dim_0, x_dim_1});
        mean.Resize({n, x_dim_0});
        var.Resize({n, x_dim_0});
        scale.Resize({x_dim_1});
        bias.Resize({x_dim_1});

        RandomVec<T>(sz, x.mutable_data<T>(PlaceType()), -2.f, 2.f);
        RandomVec<T>(left, mean.mutable_data<T>(PlaceType()), -2.f, 2.f);
        RandomVec<T>(left, var.mutable_data<T>(PlaceType()), -2.f, 2.f);
        RandomVec<T>(right, scale.mutable_data<T>(PlaceType()), -2.f, 2.f);
        RandomVec<T>(right, bias.mutable_data<T>(PlaceType()), -2.f, 2.f);

        const T* scale_data = scale.data<T>();
        const T* bias_data = bias.data<T>();
        T* x_data = x.data<T>();
        T* mean_data = mean.data<T>();
        T* var_data = var.data<T>();
        T* out_data = out.mutable_data<T>(PlaceType());

433 434 435
        BenchAllImpls<KernelTuple, PlaceType>(right, x_data, out_data,
                                              mean_data, var_data, scale_data,
                                              bias_data, left, epsilon, right);
436 437 438 439 440
      }
    }
  }
}

441 442 443
template <typename KernelTuple, typename PlaceType>
void BenchKernelCRFDecoding() {
  using T = typename KernelTuple::data_type;
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
  constexpr int state_trans_base_idx = 2;
  for (int seq_len : {1, 11, 17, 50}) {
    for (int tag_num : TestSizes()) {
      int x_sz = seq_len * tag_num;
      int w_sz = (tag_num + state_trans_base_idx) * tag_num;
      Tensor x, w, alpha, track;
      x.Resize({seq_len, tag_num});
      w.Resize({tag_num + state_trans_base_idx, tag_num});
      alpha.Resize({seq_len, tag_num});
      track.Resize({seq_len, tag_num});

      RandomVec<T>(x_sz, x.mutable_data<T>(PlaceType()), -2.f, 2.f);
      RandomVec<T>(w_sz, w.mutable_data<T>(PlaceType()), -2.f, 2.f);

      const T* x_data = x.data<T>();
      const T* w_data = w.data<T>();
      T* alpha_data = alpha.mutable_data<T>(PlaceType());
      int* track_data = track.mutable_data<int>(PlaceType());

463 464
      BenchAllImpls<KernelTuple, PlaceType>(tag_num, seq_len, x_data, w_data,
                                            alpha_data, track_data, tag_num);
465 466 467 468
    }
  }
}

469 470 471
template <typename KernelTuple, typename PlaceType>
void BenchKernelVBroadcast() {
  using T = typename KernelTuple::data_type;
472
  for (int64_t w : {1, 16, 64, 100, 256}) {
473 474 475 476
    Tensor x;
    x.Resize({w});
    RandomVec<T>(w, x.mutable_data<T>(PlaceType()));
    const T* x_data = x.data<T>();
477
    for (int h : TestSizes()) {
478 479 480
      Tensor y;
      y.Resize({h * w});
      T* y_data = y.mutable_data<T>(PlaceType());
481 482
      BenchAllImpls<KernelTuple, PlaceType>(w, x_data, y_data,
                                            static_cast<int64_t>(h), w);
483 484 485 486
    }
  }
}

487 488 489 490
#define BenchKernelVMul BenchKernelXYZN
#define BenchKernelVAdd BenchKernelXYZN
#define BenchKernelVAddRelu BenchKernelXYZN
#define BenchKernelVSub BenchKernelXYZN
491

492 493
#define BenchKernelVScal BenchKernelAXYN
#define BenchKernelVAddBias BenchKernelAXYN
494

495 496 497 498 499 500 501
#define BenchKernelVRelu BenchKernelXYN
#define BenchKernelVIdentity BenchKernelXYN
#define BenchKernelVSquare BenchKernelXYN
#define BenchKernelVExp BenchKernelXYN
#define BenchKernelVSigmoid BenchKernelXYN
#define BenchKernelVTanh BenchKernelXYN
#define BenchKernelVCopy BenchKernelXYN
502

503 504
#define BenchKernelHMax BenchKernelXRN
#define BenchKernelHSum BenchKernelXRN
505

506 507
#define BenchKernelLSTMCtHt BenchKernelLSTM
#define BenchKernelLSTMC1H1 BenchKernelLSTM
508

509 510 511
#define BenchKernelGRUH1 BenchKernelGRU
#define BenchKernelGRUHtPart1 BenchKernelGRU
#define BenchKernelGRUHtPart2 BenchKernelGRU
512

513
using CPUPlace = paddle::platform::CPUPlace;
514

515 516 517 518
#define BENCH_FP32_CPU(name)                                \
  BENCH_JITKERNEL(name, FP32, CPU) {                        \
    BenchKernel##name<jit::name##Tuple<float>, CPUPlace>(); \
  }
519

520 521 522 523 524
// xyzn
BENCH_FP32_CPU(VMul);
BENCH_FP32_CPU(VAdd);
BENCH_FP32_CPU(VAddRelu);
BENCH_FP32_CPU(VSub);
525

526 527 528
// axyn
BENCH_FP32_CPU(VScal);
BENCH_FP32_CPU(VAddBias);
529

530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
// xyn
BENCH_FP32_CPU(VRelu);
BENCH_FP32_CPU(VIdentity);
BENCH_FP32_CPU(VSquare);
BENCH_FP32_CPU(VExp);
BENCH_FP32_CPU(VSigmoid);
BENCH_FP32_CPU(VTanh);
BENCH_FP32_CPU(VCopy);

// xrn
BENCH_FP32_CPU(HMax);
BENCH_FP32_CPU(HSum);

// LSTM
BENCH_FP32_CPU(LSTMCtHt);
BENCH_FP32_CPU(LSTMC1H1);

// GRU
BENCH_FP32_CPU(GRUH1);
BENCH_FP32_CPU(GRUHtPart1);
BENCH_FP32_CPU(GRUHtPart2);

BENCH_FP32_CPU(LayerNorm);
BENCH_FP32_CPU(CRFDecoding);

BENCH_FP32_CPU(SeqPool);
BENCH_FP32_CPU(EmbSeqPool);
BENCH_FP32_CPU(MatMul);
BENCH_FP32_CPU(Softmax);
BENCH_FP32_CPU(Sgd);
BENCH_FP32_CPU(VBroadcast);
561

562 563 564 565 566 567
// Benchmark all jit kernels including jitcode, mkl and refer.
// To use this tool, run command: ./benchmark [options...]
// Options:
//     --burning: the burning time before count
//     --repeat: the repeat times
//     --max_size: the max size would be tested
568
//     --filter: the bench name would be run
569 570 571 572 573
int main(int argc, char* argv[]) {
  gflags::ParseCommandLineFlags(&argc, &argv, true);
  google::InitGoogleLogging(argv[0]);
  LOG(INFO) << "Burning " << FLAGS_burning << " times, Repeat " << FLAGS_repeat
            << " times.";
T
tensor-tang 已提交
574

575
  RUN_ALL_BENCHMARK();
576
}