benchmark.cc 7.7 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. */

#include <iostream>
T
tensor-tang 已提交
16
#include <random>
T
tensor-tang 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
#include <string>
#include <vector>
#include "gflags/gflags.h"
#include "glog/logging.h"
#include "paddle/fluid/operators/jit/kernels.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/port.h"

DEFINE_int32(burning, 10, "Burning times.");
DEFINE_int32(repeat, 3000, "Repeat times.");
DEFINE_int32(max_size, 1000, "The Max size would be tested.");

inline double GetCurrentUS() {
  struct timeval time;
  gettimeofday(&time, NULL);
  return 1e+6 * time.tv_sec + time.tv_usec;
}

template <typename T>
void RandomVec(const int n, T* a, const T lower = static_cast<T>(-20.f),
               const T upper = static_cast<T>(20.f)) {
  static unsigned int seed = 100;
  std::mt19937 rng(seed++);
  std::uniform_real_distribution<double> uniform_dist(0, 1);
  for (int i = 0; i < n; ++i) {
    a[i] = static_cast<T>(uniform_dist(rng) * (upper - lower) + lower);
  }
}

std::vector<int> TestSizes() {
  std::vector<int> s;
  for (int i = 1; i <= FLAGS_max_size; ++i) {
    s.push_back(i);
  }
  return s;
}

T
tensor-tang 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
template <typename KernelTuples, typename... Args>
struct BenchFunc {
  // return this function avg time
  double operator()(const typename KernelTuples::func_type tgt, Args... args) {
    for (int i = 0; i < FLAGS_burning; ++i) {
      tgt(args...);
    }
    auto start = GetCurrentUS();
    for (int i = 0; i < FLAGS_repeat; ++i) {
      tgt(args...);
    }
    auto end = GetCurrentUS();
    return (end - start) / FLAGS_repeat;
  }
};

namespace jit = paddle::operators::jit;

template <jit::KernelType KT, typename KernelTuples, typename PlaceType,
          typename... Args>
void BenchAllImpls(const typename KernelTuples::attr_type& attr, Args... args) {
  BenchFunc<KernelTuples, Args...> benchmark;
  std::vector<std::pair<std::string, double>> infos;
  // test refer
  auto refer = jit::GetRefer<KT, KernelTuples>();
  if (!refer) {
    LOG(FATAL) << "Refer can not be empty!";
  }
  infos.push_back(std::make_pair("Refer", benchmark(refer, args...)));

  // test jitcode
  auto jitcode = jit::GetJitCode<KT, KernelTuples, PlaceType>(attr);
  if (jitcode) {
    infos.push_back(std::make_pair("JitCode", benchmark(jitcode, args...)));
  }
  // test all impls in more
  jit::KernelKey kkey(KT, PlaceType());
  auto& pool = jit::KernelPool().Instance().AllKernels();
  auto iter = pool.find(kkey);
  if (iter != pool.end()) {
    auto& impls = iter->second;
    for (auto& impl : impls) {
T
tensor-tang 已提交
96
      auto i = dynamic_cast<const jit::KernelMore<KernelTuples>*>(impl.get());
T
tensor-tang 已提交
97 98
      if (i && i->UseMe(attr)) {
        auto more = i->GetFunc();
T
tensor-tang 已提交
99 100
        infos.push_back(
            std::make_pair(i->ImplType(), benchmark(more, args...)));
T
tensor-tang 已提交
101 102
      }
    }
T
tensor-tang 已提交
103
  }
T
tensor-tang 已提交
104 105 106 107
  // Test result from Get function
  auto tgt = jit::Get<KT, KernelTuples, PlaceType>(attr);
  if (!tgt) {
    LOG(FATAL) << "Target can not be empty!";
T
tensor-tang 已提交
108
  }
T
tensor-tang 已提交
109 110 111 112 113 114 115 116 117
  infos.push_back(std::make_pair("Target", benchmark(tgt, args...)));

  // print
  std::ostringstream loginfos;
  loginfos << "Kernel Type " << jit::to_string(KT) << ": " << attr << ": ";
  for (auto pair : infos) {
    loginfos << pair.first << " takes " << pair.second << " us; ";
  }
  LOG(INFO) << loginfos.str();
T
tensor-tang 已提交
118 119
}

120 121
template <paddle::operators::jit::KernelType KT, typename T, typename PlaceType>
void BenchXYZNKernel() {
T
tensor-tang 已提交
122 123 124 125
  for (int d : TestSizes()) {
    std::vector<T> x(d), y(d), z(d);
    RandomVec<T>(d, x.data());
    RandomVec<T>(d, y.data());
T
tensor-tang 已提交
126 127
    BenchAllImpls<KT, jit::XYZNTuples<T>, PlaceType>(d, x.data(), y.data(),
                                                     z.data(), d);
T
tensor-tang 已提交
128 129
  }
}
130

131 132 133 134 135 136
template <paddle::operators::jit::KernelType KT, typename T, typename PlaceType>
void BenchAXYNKernel() {
  for (int d : TestSizes()) {
    const T a = static_cast<T>(3);
    std::vector<T> x(d), y(d);
    RandomVec<T>(d, x.data());
T
tensor-tang 已提交
137 138
    BenchAllImpls<KT, jit::AXYNTuples<T>, PlaceType>(d, &a, x.data(), y.data(),
                                                     d);
139 140 141 142 143 144 145 146
  }
}

template <paddle::operators::jit::KernelType KT, typename T, typename PlaceType>
void BenchXYNKernel() {
  for (int d : TestSizes()) {
    std::vector<T> x(d), y(d);
    RandomVec<T>(d, x.data());
T
tensor-tang 已提交
147
    BenchAllImpls<KT, jit::XYNTuples<T>, PlaceType>(d, x.data(), y.data(), d);
148 149 150
  }
}

T
tensor-tang 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
template <paddle::operators::jit::KernelType KT, typename T, typename PlaceType>
void BenchLSTMKernel() {
  for (bool use_peephole : {true, false}) {
    for (int d : TestSizes()) {
      const jit::lstm_attr_t attr(d, jit::vsigmoid, jit::vtanh, jit::vtanh,
                                  use_peephole);
      std::vector<T> x(4 * d), ct_1(d), ct(d), ht(d), wp(3 * d), checked(2 * d);
      RandomVec<T>(4 * d, x.data(), -2.f, 2.f);
      RandomVec<T>(3 * d, wp.data(), -2.f, 2.f);
      RandomVec<T>(d, ct_1.data(), -2.f, 2.f);
      const T* ct_1_data = ct_1.data();
      const T* wp_data = wp.data();
      T* x_data = x.data();
      T* checked_data = checked.data();
      T* ct_data = ct.data();
      T* ht_data = ht.data();
      jit::lstm_t step;
      step.gates = x_data;
      step.ct_1 = ct_1_data;
      step.ct = ct_data;
      step.ht = ht_data;
      if (use_peephole) {
        step.wp = wp_data;
        step.checked = checked_data;
      }
T
tensor-tang 已提交
176
      BenchAllImpls<KT, jit::LSTMTuples<T>, PlaceType>(attr, &step, &attr);
T
tensor-tang 已提交
177 178 179 180
    }
  }
}

181 182 183 184 185 186 187 188 189 190 191 192 193 194
template <paddle::operators::jit::KernelType KT, typename T, typename PlaceType>
void BenchGRUKernel() {
  for (int d : TestSizes()) {
    const jit::gru_attr_t attr(d, jit::vsigmoid, jit::vtanh);
    std::vector<T> x(3 * d), ht_1(d), ht(d);
    RandomVec<T>(3 * d, x.data(), -2.f, 2.f);
    RandomVec<T>(d, ht_1.data(), -2.f, 2.f);
    const T* ht_1_data = ht_1.data();
    T* x_data = x.data();
    T* ht_data = ht.data();
    jit::gru_t step;
    step.gates = x_data;
    step.ht_1 = ht_1_data;
    step.ht = ht_data;
T
tensor-tang 已提交
195
    BenchAllImpls<KT, jit::GRUTuples<T>, PlaceType>(attr, &step, &attr);
196 197 198
  }
}

199 200 201 202 203 204 205 206 207 208 209 210 211
// Benchmark all jit kernels including jitcode, mkl and refer.
// To use this tool, run command: ./benchmark [options...]
// Options:
//     --burning: the burning time before count
//     --repeat: the repeat times
//     --max_size: the max size would be tested
int main(int argc, char* argv[]) {
  gflags::ParseCommandLineFlags(&argc, &argv, true);
  google::InitGoogleLogging(argv[0]);
  LOG(INFO) << "Burning " << FLAGS_burning << " times, Repeat " << FLAGS_repeat
            << " times.";
  using T = float;
  using PlaceType = paddle::platform::CPUPlace;
T
tensor-tang 已提交
212
  // xyzn
213 214 215 216
  BenchXYZNKernel<jit::vmul, T, PlaceType>();
  BenchXYZNKernel<jit::vadd, T, PlaceType>();
  BenchXYZNKernel<jit::vaddrelu, T, PlaceType>();
  BenchXYZNKernel<jit::vsub, T, PlaceType>();
217

T
tensor-tang 已提交
218
  // axyn
219 220
  BenchAXYNKernel<jit::vscal, T, PlaceType>();
  BenchAXYNKernel<jit::vaddbias, T, PlaceType>();
221

T
tensor-tang 已提交
222
  // xyn
223 224 225 226 227
  BenchXYNKernel<jit::vrelu, T, PlaceType>();
  BenchXYNKernel<jit::videntity, T, PlaceType>();
  BenchXYNKernel<jit::vexp, T, PlaceType>();
  BenchXYNKernel<jit::vsigmoid, T, PlaceType>();
  BenchXYNKernel<jit::vtanh, T, PlaceType>();
T
tensor-tang 已提交
228 229 230 231

  // lstm and peephole
  BenchLSTMKernel<jit::lstmctht, T, PlaceType>();
  BenchLSTMKernel<jit::lstmc1h1, T, PlaceType>();
232 233 234 235 236

  // gru functions
  BenchGRUKernel<jit::gruh1, T, PlaceType>();
  BenchGRUKernel<jit::gruhtpart1, T, PlaceType>();
  BenchGRUKernel<jit::gruhtpart2, T, PlaceType>();
237
}