device_context.cc 22.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
6

Q
qijun 已提交
7 8 9 10 11
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yi Wang 已提交
12
#include "paddle/fluid/platform/device_context.h"
13
#include <set>
14
#include <string>
Y
Yu Yang 已提交
15
#include <unordered_set>
16 17
#include <vector>

Y
Yi Wang 已提交
18
#include "paddle/fluid/memory/memory.h"
19 20
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/framework/rw_lock.h"
21
#include "paddle/fluid/memory/allocation/cuda_device_context_allocator.h"
S
sneaxiy 已提交
22
#include "paddle/fluid/platform/cuda_device_guard.h"
23
#endif
24

25 26
#include "glog/logging.h"

27 28 29 30 31
namespace paddle {
namespace memory {

AllocationPtr Alloc(const platform::DeviceContext& dev_ctx, size_t size) {
  auto place = dev_ctx.GetPlace();
32
  if (size == 0) {
33 34
    return Alloc(place, size);
  }
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

  if (platform::is_gpu_place(place)) {
#ifdef PADDLE_WITH_CUDA
    auto* default_dev_ctx = static_cast<platform::CUDADeviceContext*>(
        platform::DeviceContextPool::Instance().Get(place));
    auto& desired_dev_ctx =
        static_cast<const platform::CUDADeviceContext&>(dev_ctx);
    if (default_dev_ctx->stream() == desired_dev_ctx.stream()) {
      return Alloc(place, size);
    } else {
      return allocation::CUDADeviceContextAllocatorPool::Instance().Alloc(
          desired_dev_ctx, size);
    }
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't use CUDA device since it's not compiled with CUDA,"
        "Please recompile or reinstall Paddle with GPU support."));
#endif
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU
    // TODO(liuyuhui): Consider xpu stream later
56 57
    return Alloc(place, size);
#else
58 59 60
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't use XPU device since it's not compiled with XPU,"
        "Please recompile or reinstall Paddle with XPU support."));
61
#endif
62 63 64
  } else {
    return Alloc(place, size);
  }
65 66 67 68 69
}

}  // namespace memory
}  // namespace paddle

Q
qijun 已提交
70 71 72
namespace paddle {
namespace platform {

73 74 75 76
#ifdef PADDLE_WITH_CUDA
bool allow_tf32_cublas = true;
void SetAllowTF32Cublas(bool active) { allow_tf32_cublas = active; }
bool AllowTF32Cublas() { return allow_tf32_cublas; }
A
AshburnLee 已提交
77 78 79 80

bool allow_tf32_cudnn = true;
void SetAllowTF32Cudnn(bool active) { allow_tf32_cudnn = active; }
bool AllowTF32Cudnn() { return allow_tf32_cudnn; }
81 82
#endif  // PADDLE_WITH_CUDA

D
dzhwinter 已提交
83 84
DeviceContextPool* DeviceContextPool::pool = nullptr;

Y
Yu Yang 已提交
85
platform::DeviceContext* DeviceContextPool::Get(const platform::Place& place) {
D
dzhwinter 已提交
86 87
  auto it = device_contexts_.find(place);
  if (it == device_contexts_.end()) {
G
GaoWei8 已提交
88 89
    PADDLE_THROW(platform::errors::Unimplemented(
        "Place %s is not supported. Please check that your paddle compiles "
90 91
        "with WITH_GPU or WITH_XPU option or check that your train process "
        "hold the "
G
GaoWei8 已提交
92 93
        "correct gpu_id if you use Executor.",
        place));
D
dzhwinter 已提交
94
  }
95
  return it->second.get().get();
D
dzhwinter 已提交
96 97
}

98 99 100 101 102 103 104 105 106
template <typename DevCtx, typename PlaceType>
inline void EmplaceDeviceContext(
    std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>*
        map_ptr,
    platform::Place p) {
  using PtrType = std::unique_ptr<DeviceContext>;
  map_ptr->emplace(p, std::async(std::launch::deferred, [=] {
                     // lazy evaluation. i.e., only create device context at
                     // first `Get`
107
                     return PtrType(new DevCtx(BOOST_GET_CONST(PlaceType, p)));
108
                   }));
C
chengduozh 已提交
109 110
}

D
dzhwinter 已提交
111 112
DeviceContextPool::DeviceContextPool(
    const std::vector<platform::Place>& places) {
G
GaoWei8 已提交
113 114 115 116 117
  PADDLE_ENFORCE_GT(
      places.size(), 0,
      platform::errors::InvalidArgument("The number of platform places should "
                                        "be larger than 0. But received %d.",
                                        places.size()));
118
  std::set<Place> set;
Y
Yu Yang 已提交
119 120 121 122 123
  for (auto& p : places) {
    set.insert(p);
  }
  for (auto& p : set) {
    if (platform::is_cpu_place(p)) {
124
#ifdef PADDLE_WITH_MKLDNN
125
      EmplaceDeviceContext<MKLDNNDeviceContext, CPUPlace>(&device_contexts_, p);
126
#else
127
      EmplaceDeviceContext<CPUDeviceContext, CPUPlace>(&device_contexts_, p);
128
#endif
Y
Yu Yang 已提交
129
    } else if (platform::is_gpu_place(p)) {
D
dzhwinter 已提交
130
#ifdef PADDLE_WITH_CUDA
131
      EmplaceDeviceContext<CUDADeviceContext, CUDAPlace>(&device_contexts_, p);
D
dzhwinter 已提交
132
#else
G
GaoWei8 已提交
133 134 135
      PADDLE_THROW(
          platform::errors::Unimplemented("CUDAPlace is not supported. Please "
                                          "re-compile with WITH_GPU option."));
C
chengduoZH 已提交
136 137 138
#endif
    } else if (platform::is_cuda_pinned_place(p)) {
#ifdef PADDLE_WITH_CUDA
139 140
      EmplaceDeviceContext<CUDAPinnedDeviceContext, CUDAPinnedPlace>(
          &device_contexts_, p);
C
chengduoZH 已提交
141
#else
G
GaoWei8 已提交
142
      PADDLE_THROW(platform::errors::Unimplemented(
G
GaoWei8 已提交
143 144
          "CUDAPlace is not supported. Please re-compile with WITH_GPU "
          "option."));
145 146 147 148 149 150 151 152
#endif
    } else if (platform::is_xpu_place(p)) {
#ifdef PADDLE_WITH_XPU
      EmplaceDeviceContext<XPUDeviceContext, XPUPlace>(&device_contexts_, p);
#else
      PADDLE_THROW(
          platform::errors::Unimplemented("XPUPlace is not supported. Please "
                                          "re-compile with WITH_XPU option."));
D
dzhwinter 已提交
153 154 155 156 157
#endif
    }
  }
}

158 159 160 161
CPUDeviceContext::CPUDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

D
dzhwinter 已提交
162
CPUDeviceContext::CPUDeviceContext(CPUPlace place) : place_(place) {
163 164 165 166 167 168 169
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CPUDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

D
dzhwinter 已提交
170
Place CPUDeviceContext::GetPlace() const { return place_; }
171

172 173 174
#ifdef PADDLE_WITH_XPU
XPUDeviceContext::XPUDeviceContext() { context_ = xpu::create_context(); }

175
XPUDeviceContext::~XPUDeviceContext() {}
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

XPUDeviceContext::XPUDeviceContext(XPUPlace place) : place_(place) {
  int dev_id = -1;
  int ret = xpu_current_device(&dev_id);
  PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
                    platform::errors::External(
                        "XPU API return wrong value[%d], please check whether "
                        "Baidu Kunlun Card is properly installed.",
                        ret));
  ret = xpu_set_device(place.device);
  PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
                    platform::errors::External(
                        "XPU API return wrong value[%d], please check whether "
                        "Baidu Kunlun Card is properly installed.",
                        ret));
  context_ = xpu::create_context();
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
  const int MAX_XPU_NUM = 16;
  const int l3_size = 13.5 * 1024 * 1024;
  static void* l3ptrs[MAX_XPU_NUM] = {nullptr};

  auto selected_xpus = GetXPUSelectedDevices();
  for (unsigned int i = 0; i < selected_xpus.size(); i++) {
    if (place.device == selected_xpus[i]) {
      if (l3ptrs[place.device] == nullptr) {
        xpu_malloc(static_cast<void**>(&l3ptrs[place.device]), l3_size,
                   XPU_MEM_L3);
      }
      if (l3ptrs[place.device] != nullptr) {
        context_->_l3_mgr.set(l3ptrs[place.device], l3_size);
        VLOG(3) << "xpu place " << place.device << " set l3 size " << l3_size;
      }
      break;
    }
209
  }
210

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
  ret = xpu_set_device(dev_id);
  PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
                    platform::errors::External(
                        "XPU API return wrong value[%d], please check whether "
                        "Baidu Kunlun Card is properly installed.",
                        ret));
}

void XPUDeviceContext::Wait() const {
  int ret = xpu_set_device(place_.device);
  PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
                    platform::errors::External(
                        "XPU API return wrong value[%d], please check whether "
                        "Baidu Kunlun Card is properly installed.",
                        ret));
226
  xpu_wait(context_->xpu_stream);
227 228 229 230 231 232 233
}

Place XPUDeviceContext::GetPlace() const { return place_; }

xpu::Context* XPUDeviceContext::x_context() const { return context_; }
#endif

234
#ifdef PADDLE_WITH_CUDA
235

Q
init  
qijun 已提交
236 237 238 239 240 241 242
class EigenCudaStreamDevice : public Eigen::StreamInterface {
 public:
  EigenCudaStreamDevice() : scratch_(nullptr), semaphore_(nullptr) {
    Eigen::initializeDeviceProp();
  }
  ~EigenCudaStreamDevice() override {}

D
dzhwinter 已提交
243
  void Reinitialize(const cudaStream_t* cuda_stream, CUDAPlace place) {
Q
init  
qijun 已提交
244 245 246 247 248 249 250 251 252 253 254 255
    stream_ = cuda_stream;
    place_ = place;
    device_prop_ = &Eigen::m_deviceProperties[place.device];
  }

  const cudaStream_t& stream() const override { return *stream_; }

  const cudaDeviceProp& deviceProperties() const override {
    return *device_prop_;
  }

  void* allocate(size_t num_bytes) const override {
S
sneaxiy 已提交
256 257 258
    if (UNLIKELY(num_bytes == 0)) {
      return nullptr;
    }
259 260 261
    auto buf = memory::Alloc(place_, num_bytes);
    VLOG(4) << "Eigen allocated at " << buf->ptr() << ", size" << buf->size()
            << " requested " << num_bytes;
262
    void* retv = buf->ptr();
S
sneaxiy 已提交
263 264 265 266
    {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.emplace(retv, std::move(buf));
    }
267
    return retv;
Q
init  
qijun 已提交
268 269
  }

S
sneaxiy 已提交
270 271 272 273 274 275
  void deallocate(void* buffer) const override {
    if (LIKELY(buffer)) {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.erase(buffer);
    }
  }
Q
init  
qijun 已提交
276 277 278

  void* scratchpad() const override {
    if (scratch_ == NULL) {
Z
Zhang Ting 已提交
279 280 281 282
// windows use an old version of eigen that uses kCudaScratchSize,
// once windows updates eigen to a recent version, the following code
// can use kGpuScratchSize uniformly
#ifdef _WIN32
Q
init  
qijun 已提交
283
      scratch_ = allocate(Eigen::kCudaScratchSize + sizeof(unsigned int));
Z
Zhang Ting 已提交
284 285 286
#else
      scratch_ = allocate(Eigen::kGpuScratchSize + sizeof(unsigned int));
#endif
Q
init  
qijun 已提交
287 288 289 290 291 292
    }
    return scratch_;
  }

  unsigned int* semaphore() const override {
    if (semaphore_ == NULL) {
Z
Zhang Ting 已提交
293
#ifdef _WIN32
Q
init  
qijun 已提交
294 295
      char* scratch =
          static_cast<char*>(scratchpad()) + Eigen::kCudaScratchSize;
Z
Zhang Ting 已提交
296 297 298
#else
      char* scratch = static_cast<char*>(scratchpad()) + Eigen::kGpuScratchSize;
#endif
Q
init  
qijun 已提交
299
      semaphore_ = reinterpret_cast<unsigned int*>(scratch);
300
      PADDLE_ENFORCE_CUDA_SUCCESS(
Q
init  
qijun 已提交
301 302 303 304 305 306
          cudaMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_));
    }
    return semaphore_;
  }

 private:
D
dzhwinter 已提交
307
  CUDAPlace place_;
Q
init  
qijun 已提交
308 309
  const cudaStream_t* stream_;         // not owned;
  const cudaDeviceProp* device_prop_;  // not owned;
Q
qijun 已提交
310
  mutable void* scratch_;
Q
init  
qijun 已提交
311
  mutable unsigned int* semaphore_;
S
sneaxiy 已提交
312
  mutable std::mutex mtx_;  // to protect allocations_
Y
Yu Yang 已提交
313
  mutable std::unordered_map<void*, memory::AllocationPtr> allocations_;
Q
init  
qijun 已提交
314 315
};

316 317 318 319 320 321 322 323 324
void CudnnWorkspaceHandle::ReallocWorkspace(size_t required_workspace_bytes) {
  if (required_workspace_bytes <= WorkspaceSize()) {
    return;
  }
  // reset allocation first before re-allocate to save memory
  allocation_.reset();
  allocation_ = memory::Alloc(device_context_, required_workspace_bytes);
}

325 326 327 328 329 330 331 332 333 334 335 336
thread_local std::unordered_map<const CUDADeviceContext*,
                                std::shared_ptr<CUDAContext>>
    CUDADeviceContext::thread_ctx_;
thread_local std::mutex CUDADeviceContext::ctx_mtx_;

void CUDAContext::InitEigenContext() {
  eigen_stream_.reset(new EigenCudaStreamDevice());
  eigen_stream_->Reinitialize(&RawStream(), place_);
  eigen_device_.reset(new Eigen::GpuDevice(eigen_stream_.get()));
}

CUDAContext::CUDAContext(const CUDAPlace& place,
337
                         const stream::Priority& priority) {
338 339 340 341 342 343
  place_ = place;
  CUDADeviceGuard guard(place_.device);
  stream_.reset(new stream::CUDAStream(place, priority));
  InitEigenContext();
  InitCuBlasContext();
  InitCuDNNContext();
G
Guo Sheng 已提交
344
  InitCuSolverContext();
345 346 347 348 349 350
}

CUDAContext::~CUDAContext() {
  CUDADeviceGuard guard(place_.device);
  DestoryCuDNNContext();
  DestoryCuBlasContext();
G
Guo Sheng 已提交
351
  DestoryCuSolverContext();
352 353
}

354
CUDADeviceContext::CUDADeviceContext(CUDAPlace place) : place_(place) {
Y
Yu Yang 已提交
355
  CUDADeviceGuard guard(place_.device);
C
chengduo 已提交
356 357 358
  compute_capability_ = GetCUDAComputeCapability(place_.device);
  multi_process_ = GetCUDAMultiProcessors(place_.device);
  max_threads_per_mp_ = GetCUDAMaxThreadsPerMultiProcessor(place_.device);
359
  max_grid_dim_size_ = GetGpuMaxGridDimSize(place_.device);
360
  max_threads_per_block_ = GetCUDAMaxThreadsPerBlock(place_.device);
361

C
chengduo 已提交
362 363 364
  driver_version_ = GetCUDADriverVersion(place_.device);
  runtime_version_ = GetCUDARuntimeVersion(place_.device);

365
  LOG_FIRST_N(WARNING, 1) << "Please NOTE: device: " << place_.device
366 367 368
                          << ", GPU Compute Capability: "
                          << compute_capability_ / 10 << "."
                          << compute_capability_ % 10
C
chengduo 已提交
369
                          << ", Driver API Version: " << driver_version_ / 1000
370
                          << "." << (driver_version_ % 100) / 10
C
chengduo 已提交
371 372 373
                          << ", Runtime API Version: "
                          << runtime_version_ / 1000 << "."
                          << (runtime_version_ % 100) / 10;
374 375 376
  size_t cudnn_dso_ver = dynload::cudnnGetVersion();
  LOG_FIRST_N(WARNING, 1) << "device: " << place_.device
                          << ", cuDNN Version: " << cudnn_dso_ver / 1000 << "."
377
                          << (cudnn_dso_ver % 1000) / 100 << ".";
S
sneaxiy 已提交
378 379 380

  {
    // Check CUDA/CUDNN version compatiblity
381 382 383 384
    auto local_cuda_version =
        (driver_version_ / 1000) * 10 + (driver_version_ % 100) / 10;
    auto compile_cuda_version =
        (CUDA_VERSION / 1000) * 10 + (CUDA_VERSION % 100) / 10;
S
sneaxiy 已提交
385 386 387 388 389 390 391 392 393 394 395 396
    if (local_cuda_version < compile_cuda_version) {
      LOG_FIRST_N(WARNING, 1)
          << "WARNING: device: " << place_.device
          << ". The installed Paddle is compiled with CUDA "
          << compile_cuda_version / 10 << "." << compile_cuda_version % 10
          << ", but CUDA runtime version in your machine is "
          << local_cuda_version / 10 << "." << local_cuda_version % 10
          << ", which may cause serious incompatible bug. "
          << "Please recompile or reinstall Paddle with compatible CUDA "
             "version.";
    }
  }
397
  default_ctx_.reset(new CUDAContext(place_));
398 399 400 401
}

CUDADeviceContext::~CUDADeviceContext() {
  SetDeviceId(place_.device);
402 403 404 405 406
#if defined(PADDLE_WITH_NCCL)
  if (nccl_comm_) {
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::ncclCommDestroy(nccl_comm_));
  }
#endif
407 408
}

L
liaogang 已提交
409
Place CUDADeviceContext::GetPlace() const { return place_; }
410

411
void CUDADeviceContext::Wait() const { context()->Stream()->Wait(); }
412

K
Kexin Zhao 已提交
413
int CUDADeviceContext::GetComputeCapability() const {
C
chengduo 已提交
414
  return compute_capability_;
K
Kexin Zhao 已提交
415 416
}

417
int CUDADeviceContext::GetMaxPhysicalThreadCount() const {
C
chengduo 已提交
418
  return multi_process_ * max_threads_per_mp_;
419 420
}

421 422 423 424 425 426
int CUDADeviceContext::GetSMCount() const { return multi_process_; }

int CUDADeviceContext::GetMaxThreadsPerBlock() const {
  return max_threads_per_block_;
}

427
Eigen::GpuDevice* CUDADeviceContext::eigen_device() const {
428
  return context()->EigenDevice().get();
429 430
}

431
bool CUDADeviceContext::tensor_core_available() const {
432
  return context()->CublasTensorCoreHandle() != nullptr;
S
sneaxiy 已提交
433 434
}

435 436 437 438
dim3 CUDADeviceContext::GetCUDAMaxGridDimSize() const {
  return max_grid_dim_size_;
}

439 440 441
cudnnHandle_t CUDADeviceContext::cudnn_handle() const {
  return context()->CudnnHandle();
}
442

S
sneaxiy 已提交
443
CudnnWorkspaceHandle CUDADeviceContext::cudnn_workspace_handle() const {
444
  return CudnnWorkspaceHandle(*this, &cudnn_handle_mtx_);
445
}
446

G
Guo Sheng 已提交
447 448 449 450
cusolverDnHandle_t CUDADeviceContext::cusolver_dn_handle() const {
  return context()->CusolverDnHandle();
}

451 452 453
cudaStream_t CUDADeviceContext::stream() const {
  return context()->RawStream();
}
Q
qijun 已提交
454

C
chengduoZH 已提交
455 456 457 458 459 460 461 462 463 464 465 466 467 468
CUDAPinnedDeviceContext::CUDAPinnedDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

CUDAPinnedDeviceContext::CUDAPinnedDeviceContext(CUDAPinnedPlace place)
    : place_(place) {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CUDAPinnedDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

Place CUDAPinnedDeviceContext::GetPlace() const { return place_; }
L
Luo Tao 已提交
469
#endif
Q
qijun 已提交
470

T
tensor-tang 已提交
471 472
#ifdef PADDLE_WITH_MKLDNN
MKLDNNDeviceContext::MKLDNNDeviceContext(CPUPlace place)
473
    : CPUDeviceContext(place), p_blobmap_() {
474 475
  p_blobmap_.reset(new BlobMap());
  p_mutex_.reset(new std::mutex());
T
tensor-tang 已提交
476 477
}

478 479
MKLDNNDeviceContextThreadLocals::Body::Body()
    : cur_engine(mkldnn::engine::kind::cpu, 0), cur_stream(cur_engine) {
480 481 482 483 484 485
  cur_mkldnn_session_id = kMKLDNNSessionID_Default;
  cur_input_shape_str = "";
  cur_input_shape_cache_capacity = 1;
  cur_paddle_data_layout = paddle::framework::DataLayout::kNCHW;
}

486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
// When Thread finish we clear oneDNN cache
// This is needed when we have one executor used by many threads
// e.g. test_analyzer_detect. Thread ID is not part of caching key
// (for naive executor) so we need to clear cache when one thread finish
// and other is to start inference
// TODO(jczaja): Ideally it would be good to clear only part of cache
// related to thread that is to be terminated
MKLDNNDeviceContextThreadLocals::Body::~Body() {
  auto cpu_place = paddle::platform::CPUPlace();
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  platform::MKLDNNDeviceContext* dev_ctx =
      (platform::MKLDNNDeviceContext*)pool.Get(cpu_place);
  dev_ctx->ResetBlobMap();
}

501 502 503 504 505 506 507 508 509 510
void MKLDNNDeviceContextThreadLocals::Body::set_cur_mkldnn_session_id(
    size_t sid) {
  cur_mkldnn_session_id = sid;
}
size_t MKLDNNDeviceContextThreadLocals::Body::get_cur_mkldnn_session_id(void) {
  return cur_mkldnn_session_id;
}

void MKLDNNDeviceContextThreadLocals::Body::set_cur_input_shape_str(
    std::string input_shape_str) {
511 512
  cur_input_shape_str = input_shape_str;
}
513 514
void MKLDNNDeviceContextThreadLocals::Body::set_cur_input_shape_cache_capacity(
    int input_shape_cache_capacity) {
515 516
  cur_input_shape_cache_capacity = input_shape_cache_capacity;
}
S
Sylwester Fraczek 已提交
517

518 519
void MKLDNNDeviceContextThreadLocals::Body::set_cur_paddle_data_layout(
    framework::DataLayout dl) {
520 521 522
  cur_paddle_data_layout = dl;
}

523 524
framework::DataLayout
MKLDNNDeviceContextThreadLocals::Body::get_cur_paddle_data_layout(void) {
525 526 527
  return cur_paddle_data_layout;
}

528 529 530 531 532 533 534 535 536
void MKLDNNDeviceContextThreadLocals::Body::log_lib_version(void) {
  if (!said_once) {
    said_once = true;
    auto dv = dnnl::version();
    LOG(INFO) << "oneDNN v" << dv->major << "." << dv->minor << "."
              << dv->patch;
  }
}

537 538 539 540 541 542 543 544
const mkldnn::engine& MKLDNNDeviceContextThreadLocals::Body::get_engine(void) {
  return cur_engine;
}

mkldnn::stream& MKLDNNDeviceContextThreadLocals::Body::get_stream(void) {
  return cur_stream;
}

545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
void MKLDNNDeviceContext::ResetBlobMap() {
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
  if (!block_next_cache_clearing_) {
    VLOG(3) << "Clearing DNNL cache.";
    p_blobmap_->clear();
  } else {
    VLOG(3) << "Prevented Clearing DNNL cache.";
    block_next_cache_clearing_ = false;
  }
}

void MKLDNNDeviceContext::BlockNextCacheClearing() {
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
  VLOG(3) << "Next DNNL cache clearing has been blocked.";
  block_next_cache_clearing_ = true;
560
}
561

562
size_t MKLDNNDeviceContext::GetShapeBlobSize() const {
563
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
564
  BlobMap* pMap = p_blobmap_.get();
565
  auto map_it = pMap->find(tls().cur_mkldnn_session_id);
566
  if (map_it == pMap->end()) {
567 568 569
    PADDLE_THROW(platform::errors::NotFound(
        "MKLDNNDeviceContext don't find cur_mkldnn_session_id: %d.",
        tls().cur_mkldnn_session_id));
570 571 572 573
  }
  return map_it->second->size();
}

574
void MKLDNNDeviceContext::SetBlob(const std::string& name,
575
                                  BlobPtr_t<void> data) const {
576
  BlobMap* pMap = p_blobmap_.get();
577 578
  BlobPtr_t<ShapeBlob> sBlob = nullptr;
  BlobPtr_t<KeyBlob> pBlob = nullptr;
579

580
  int sid = tls().get_cur_mkldnn_session_id();
T
tensor-tang 已提交
581

582
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
T
tensor-tang 已提交
583

584 585
  // Find ShapeBlob for current mkldnn session id.
  auto map_it = pMap->find(sid);
586 587 588

  if (map_it == pMap->end()) {
    // 1st time to set blob in current thread
589
    sBlob = std::make_shared<ShapeBlob>();
590 591
    (*pMap)[sid] = sBlob;
    VLOG(2) << "SetBlob: sid=" << sid << ", add new sid\n";
592
  } else {
593
    sBlob = map_it->second;
594
  }
T
tensor-tang 已提交
595

596
  // Find KeyBlob for current input shape
597
  auto key_it = sBlob->find(tls().cur_input_shape_str);
598

599
  if (key_it == sBlob->end()) {
600 601
    // In cache clearing mode, cur_input_shape_cache_capacity defines
    // max pblob capacity
602 603
    if ((static_cast<size_t>(sid) ==
         MKLDNNDeviceContextThreadLocals::kMKLDNNSessionID_CacheClearing) &&
604
        sBlob->size() &&
605
        (sBlob->size() >=
606
         static_cast<size_t>(tls().cur_input_shape_cache_capacity))) {
607 608 609 610
      VLOG(2) << "sid=" << sid
              << ", remove all blobs of shape: " << sBlob->begin()->first;
      sBlob->erase(sBlob->begin()->first);
    }
611 612
    pBlob = std::make_shared<KeyBlob>();
    (*sBlob)[tls().cur_input_shape_str] = pBlob;
613
  } else {
614
    pBlob = key_it->second;
615 616
  }

617 618 619 620 621 622 623
  // Find Blob via name
  auto blob_it = pBlob->find(name);
  if (blob_it == pBlob->end()) {
    (*pBlob)[name] = data;
  } else {
    blob_it->second = data;  // set data to existing blob
  }
624
  VLOG(2) << "SetBlob: sid=" << sid << ", add blob=" << name << "\n";
625
  // lock will be automatically released when out of scope
626
  return;
T
tensor-tang 已提交
627 628
}

629 630 631 632 633 634 635 636 637 638
unsigned int MKLDNNDeviceContext::GetCachedObjectsNumber(void) {
  unsigned int num_entries = 0;
  for (auto const& l3 : *p_blobmap_) {
    for (auto const& l2 : *(l3.second)) {
      num_entries += (l2.second)->size();
    }
  }
  return num_entries;
}

639
MKLDNNDeviceContext::BlobPtr_t<void> MKLDNNDeviceContext::GetBlob(
640
    const std::string& name) const {
641
  BlobMap* pMap = p_blobmap_.get();
642 643
  BlobPtr_t<ShapeBlob> sBlob = nullptr;
  BlobPtr_t<KeyBlob> pBlob = nullptr;
T
tensor-tang 已提交
644

645
  int sid = tls().get_cur_mkldnn_session_id();
T
tensor-tang 已提交
646

647
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
648

649 650
  // Find ShapeBlob for current mkldnn session id firstly
  auto map_it = pMap->find(sid);
651
  if (map_it == pMap->end()) {
652
    VLOG(2) << "GetBlob: sid=" << sid << ", miss sid\n";
653 654 655 656 657
    return nullptr;
  }
  sBlob = map_it->second;

  // Find KeyBlob for current input shape secondly
658
  auto sBlob_it = sBlob->find(tls().cur_input_shape_str);
659
  if (sBlob_it == sBlob->end()) {
660
    VLOG(2) << "GetBlob: sid=" << tls().cur_input_shape_str
661 662 663 664
            << ", miss input_shape_str\n";
    return nullptr;
  }
  pBlob = sBlob_it->second;
665 666 667 668

  // Find Blob via name
  auto key_it = pBlob->find(name);

669
  if (key_it == pBlob->end()) {
670
    VLOG(2) << "GetBlob sid=" << sid << ", miss blob=" << name << "\n";
671 672
    return nullptr;
  }
673

674
  VLOG(2) << "GetBlob sid=" << sid << ", get blob=" << name << "\n";
675 676
  // lock will be automatically released when out of scope
  return key_it->second;
T
tensor-tang 已提交
677 678 679 680
}

#endif

Q
qijun 已提交
681
}  // namespace platform
Q
qijun 已提交
682
}  // namespace paddle