sum_op.cc 5.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/sum_op.h"
#include <vector>
Q
QI JUN 已提交
14
#include "paddle/framework/var_type_inference.h"
Y
Yu Yang 已提交
15
#include "paddle/operators/net_op.h"
16 17 18 19 20 21 22 23 24

namespace paddle {
namespace operators {
using framework::Tensor;

class SumOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

25
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
qiaolongfei 已提交
26
    PADDLE_ENFORCE(ctx->HasInputs("X"), "Inputs(X) should not be null");
27

Q
Qiao Longfei 已提交
28 29
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of SumOp should not be null.");
30 31 32 33 34
    if (ctx->IsRuntime() &&
        ctx->GetOutputsVarType("Out")[0] ==
            framework::VarDesc::LOD_TENSOR_ARRAY) {
      return;  // skip runtime infershape when is tensor array;
    }
35

36
    auto x_dims = ctx->GetInputsDim("X");
Q
Qiao Longfei 已提交
37
    size_t N = x_dims.size();
Q
qijun 已提交
38
    PADDLE_ENFORCE_GT(N, 1, "Input tensors count should > 1.");
Q
qiaolongfei 已提交
39 40

    auto in_dim = x_dims[0];
Q
Qiao Longfei 已提交
41 42
    for (size_t i = 1; i < N; i++) {
      auto dim = x_dims[i];
43
      PADDLE_ENFORCE_EQ(in_dim, dim, "Input tensors must have same shape");
Q
qijun 已提交
44
    }
Q
Qiao Longfei 已提交
45 46
    ctx->SetOutputDim("Out", in_dim);
    ctx->ShareLoD("X", /*->*/ "Out");
47
  }
48 49

 protected:
Y
Yu Yang 已提交
50
  framework::OpKernelType GetKernelType(
51 52 53
      const framework::ExecutionContext& ctx) const override {
    auto x_vars = ctx.MultiInputVar("X");
    if (x_vars[0]->IsType<framework::LoDTensor>()) {
Y
Yu Yang 已提交
54 55 56
      return framework::OpKernelType(
          framework::ToDataType(x_vars[0]->Get<framework::LoDTensor>().type()),
          ctx.device_context());
57
    } else if (x_vars[0]->IsType<framework::SelectedRows>()) {
Y
Yu Yang 已提交
58 59 60 61
      return framework::OpKernelType(
          framework::ToDataType(
              x_vars[0]->Get<framework::SelectedRows>().value().type()),
          ctx.device_context());
62 63 64 65
    } else if (x_vars[0]->IsType<framework::LoDTensorArray>()) {
      auto& array = x_vars[0]->Get<framework::LoDTensorArray>();
      for (auto& each : array) {
        if (each.numel() != 0) {
Y
Yu Yang 已提交
66 67
          return framework::OpKernelType(framework::ToDataType(each.type()),
                                         ctx.device_context());
68 69 70 71 72 73
        }
      }
    }
    PADDLE_THROW("Unexpected branch. Input type is %s",
                 x_vars[0]->Type().name());
  }
74 75 76 77
};

class SumOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Q
Qiao Longfei 已提交
78
  SumOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker)
79
      : OpProtoAndCheckerMaker(proto, op_checker) {
80 81 82
    AddInput("X", "(vector<Tensor>) The input tensors of sum operator.")
        .AsDuplicable();
    AddOutput("Out", "(Tensor) The output tensor of sum operator.");
83
    AddComment(R"DOC(
84
Sum operator.
85

86 87 88
This operators sums the input tensors. All the inputs can carry the 
LoD (Level of Details) information. However, the output only shares 
the LoD information with the first input.
89
)DOC");
90 91 92
  }
};

Q
QI JUN 已提交
93 94 95 96 97
class SumOpVarTypeInference : public framework::VarTypeInference {
 public:
  void operator()(const framework::OpDescBind& op_desc,
                  framework::BlockDescBind* block) const override {
    auto& inputs = op_desc.Input("X");
98
    auto var_type = framework::VarDesc::SELECTED_ROWS;
Q
QI JUN 已提交
99 100 101 102 103

    bool any_input_is_lod_tensor = std::any_of(
        inputs.begin(), inputs.end(), [block](const std::string& name) {
          return block->Var(name)->GetType() == framework::VarDesc::LOD_TENSOR;
        });
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119

    auto is_tensor_array = [block](const std::string& name) {
      return block->Var(name)->GetType() ==
             framework::VarDesc::LOD_TENSOR_ARRAY;
    };

    bool any_input_is_tensor_array =
        std::any_of(inputs.begin(), inputs.end(), is_tensor_array);
    bool all_inputs_are_tensor_array =
        std::all_of(inputs.begin(), inputs.end(), is_tensor_array);

    if (any_input_is_tensor_array) {
      PADDLE_ENFORCE(all_inputs_are_tensor_array);
      var_type = framework::VarDesc::LOD_TENSOR_ARRAY;
    } else if (any_input_is_lod_tensor) {
      var_type = framework::VarDesc::LOD_TENSOR;
Q
QI JUN 已提交
120 121 122
    }

    auto out_var_name = op_desc.Output("Out").front();
123
    block->Var(out_var_name)->SetType(var_type);
Q
QI JUN 已提交
124 125 126
  }
};

127
class SumGradMaker : public framework::GradOpDescMakerBase {
128
 public:
129
  using framework::GradOpDescMakerBase::GradOpDescMakerBase;
130

Y
Yu Yang 已提交
131 132
  std::vector<std::unique_ptr<framework::OpDescBind>> operator()()
      const override {
133
    auto x_grads = InputGrad("X");
Y
Yu Yang 已提交
134
    std::vector<std::unique_ptr<framework::OpDescBind>> grad_ops;
135 136 137 138
    grad_ops.reserve(x_grads.size());
    auto og = OutputGrad("Out");
    std::transform(x_grads.begin(), x_grads.end(), std::back_inserter(grad_ops),
                   [&og](const std::string& x_grad) {
Y
Yu Yang 已提交
139 140 141 142 143 144
                     auto* grad_op = new framework::OpDescBind();
                     grad_op->SetType("scale");
                     grad_op->SetInput("X", og);
                     grad_op->SetOutput("Out", {x_grad});
                     grad_op->SetAttr("scale", 1.0f);
                     return std::unique_ptr<framework::OpDescBind>(grad_op);
145 146
                   });
    return grad_ops;
147 148 149 150 151 152 153
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
154

Q
QI JUN 已提交
155 156
REGISTER_OPERATOR(sum, ops::SumOp, ops::SumOpMaker, ops::SumGradMaker,
                  ops::SumOpVarTypeInference);
Y
Yu Yang 已提交
157 158
REGISTER_OP_CPU_KERNEL(sum, ops::SumKernel<paddle::platform::CPUPlace, float>,
                       ops::SumKernel<paddle::platform::CPUPlace, double>);