sum_op.cc 5.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/sum_op.h"
#include <vector>
Q
QI JUN 已提交
14
#include "paddle/framework/var_type_inference.h"
Y
Yu Yang 已提交
15
#include "paddle/operators/net_op.h"
16 17 18 19 20 21 22 23 24

namespace paddle {
namespace operators {
using framework::Tensor;

class SumOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

25
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
qiaolongfei 已提交
26
    PADDLE_ENFORCE(ctx->HasInputs("X"), "Inputs(X) should not be null");
27

Q
Qiao Longfei 已提交
28 29
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of SumOp should not be null.");
30 31 32 33 34
    if (ctx->IsRuntime() &&
        ctx->GetOutputsVarType("Out")[0] ==
            framework::VarDesc::LOD_TENSOR_ARRAY) {
      return;  // skip runtime infershape when is tensor array;
    }
35

36
    auto x_dims = ctx->GetInputsDim("X");
Q
Qiao Longfei 已提交
37
    size_t N = x_dims.size();
Q
qijun 已提交
38
    PADDLE_ENFORCE_GT(N, 1, "Input tensors count should > 1.");
Q
qiaolongfei 已提交
39 40

    auto in_dim = x_dims[0];
Q
Qiao Longfei 已提交
41 42
    for (size_t i = 1; i < N; i++) {
      auto dim = x_dims[i];
43
      PADDLE_ENFORCE_EQ(in_dim, dim, "Input tensors must have same shape");
Q
qijun 已提交
44
    }
Q
Qiao Longfei 已提交
45 46
    ctx->SetOutputDim("Out", in_dim);
    ctx->ShareLoD("X", /*->*/ "Out");
47
  }
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

 protected:
  framework::DataType IndicateDataType(
      const framework::ExecutionContext& ctx) const override {
    auto x_vars = ctx.MultiInputVar("X");
    if (x_vars[0]->IsType<framework::LoDTensor>()) {
      return framework::ToDataType(
          x_vars[0]->Get<framework::LoDTensor>().type());
    } else if (x_vars[0]->IsType<framework::SelectedRows>()) {
      return framework::ToDataType(
          x_vars[0]->Get<framework::SelectedRows>().value().type());
    } else if (x_vars[0]->IsType<framework::LoDTensorArray>()) {
      auto& array = x_vars[0]->Get<framework::LoDTensorArray>();
      for (auto& each : array) {
        if (each.numel() != 0) {
          return framework::ToDataType(each.type());
        }
      }
    }
    PADDLE_THROW("Unexpected branch. Input type is %s",
                 x_vars[0]->Type().name());
  }
70 71 72 73
};

class SumOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Q
Qiao Longfei 已提交
74
  SumOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker)
75
      : OpProtoAndCheckerMaker(proto, op_checker) {
76 77 78
    AddInput("X", "(vector<Tensor>) The input tensors of sum operator.")
        .AsDuplicable();
    AddOutput("Out", "(Tensor) The output tensor of sum operator.");
79
    AddComment(R"DOC(
80
Sum operator.
81

82 83 84
This operators sums the input tensors. All the inputs can carry the 
LoD (Level of Details) information. However, the output only shares 
the LoD information with the first input.
85
)DOC");
86 87 88
  }
};

Q
QI JUN 已提交
89 90 91 92 93
class SumOpVarTypeInference : public framework::VarTypeInference {
 public:
  void operator()(const framework::OpDescBind& op_desc,
                  framework::BlockDescBind* block) const override {
    auto& inputs = op_desc.Input("X");
94
    auto var_type = framework::VarDesc::SELECTED_ROWS;
Q
QI JUN 已提交
95 96 97 98 99

    bool any_input_is_lod_tensor = std::any_of(
        inputs.begin(), inputs.end(), [block](const std::string& name) {
          return block->Var(name)->GetType() == framework::VarDesc::LOD_TENSOR;
        });
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115

    auto is_tensor_array = [block](const std::string& name) {
      return block->Var(name)->GetType() ==
             framework::VarDesc::LOD_TENSOR_ARRAY;
    };

    bool any_input_is_tensor_array =
        std::any_of(inputs.begin(), inputs.end(), is_tensor_array);
    bool all_inputs_are_tensor_array =
        std::all_of(inputs.begin(), inputs.end(), is_tensor_array);

    if (any_input_is_tensor_array) {
      PADDLE_ENFORCE(all_inputs_are_tensor_array);
      var_type = framework::VarDesc::LOD_TENSOR_ARRAY;
    } else if (any_input_is_lod_tensor) {
      var_type = framework::VarDesc::LOD_TENSOR;
Q
QI JUN 已提交
116 117 118
    }

    auto out_var_name = op_desc.Output("Out").front();
119
    block->Var(out_var_name)->SetType(var_type);
Q
QI JUN 已提交
120 121 122
  }
};

123
class SumGradMaker : public framework::GradOpDescMakerBase {
124
 public:
125
  using framework::GradOpDescMakerBase::GradOpDescMakerBase;
126

Y
Yu Yang 已提交
127 128
  std::vector<std::unique_ptr<framework::OpDescBind>> operator()()
      const override {
129
    auto x_grads = InputGrad("X");
Y
Yu Yang 已提交
130
    std::vector<std::unique_ptr<framework::OpDescBind>> grad_ops;
131 132 133 134
    grad_ops.reserve(x_grads.size());
    auto og = OutputGrad("Out");
    std::transform(x_grads.begin(), x_grads.end(), std::back_inserter(grad_ops),
                   [&og](const std::string& x_grad) {
Y
Yu Yang 已提交
135 136 137 138 139 140
                     auto* grad_op = new framework::OpDescBind();
                     grad_op->SetType("scale");
                     grad_op->SetInput("X", og);
                     grad_op->SetOutput("Out", {x_grad});
                     grad_op->SetAttr("scale", 1.0f);
                     return std::unique_ptr<framework::OpDescBind>(grad_op);
141 142
                   });
    return grad_ops;
143 144 145 146 147 148 149
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
150

Q
QI JUN 已提交
151 152
REGISTER_OPERATOR(sum, ops::SumOp, ops::SumOpMaker, ops::SumGradMaker,
                  ops::SumOpVarTypeInference);
Y
Yu Yang 已提交
153 154
REGISTER_OP_CPU_KERNEL(sum, ops::SumKernel<paddle::platform::CPUPlace, float>,
                       ops::SumKernel<paddle::platform::CPUPlace, double>);