sum_op.cc 3.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/sum_op.h"
#include <vector>
Y
Yu Yang 已提交
14
#include "paddle/operators/net_op.h"
15 16 17 18 19 20 21 22 23 24

namespace paddle {
namespace operators {
using framework::Tensor;

class SumOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
Q
Qiao Longfei 已提交
25
  void InferShape(framework::InferShapeContextBase* ctx) const override {
Q
qiaolongfei 已提交
26
    PADDLE_ENFORCE(ctx->HasInputs("X"), "Inputs(X) should not be null");
Q
Qiao Longfei 已提交
27 28 29
    auto x_dims = ctx->GetInputsDim("X");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of SumOp should not be null.");
30

Q
Qiao Longfei 已提交
31
    size_t N = x_dims.size();
Q
qijun 已提交
32
    PADDLE_ENFORCE_GT(N, 1, "Input tensors count should > 1.");
Q
qiaolongfei 已提交
33 34

    auto in_dim = x_dims[0];
Q
Qiao Longfei 已提交
35 36
    for (size_t i = 1; i < N; i++) {
      auto dim = x_dims[i];
Q
qijun 已提交
37 38
      PADDLE_ENFORCE(in_dim == dim, "Input tensors must have same shape");
    }
Q
Qiao Longfei 已提交
39 40
    ctx->SetOutputDim("Out", in_dim);
    ctx->ShareLoD("X", /*->*/ "Out");
41 42 43 44 45
  }
};

class SumOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Q
Qiao Longfei 已提交
46
  SumOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker)
47
      : OpProtoAndCheckerMaker(proto, op_checker) {
48 49
    AddInput("X", "the input tensors of sum operator.").AsDuplicable();
    AddOutput("Out", "the output tensor of sum operator.");
50
    AddComment(R"DOC(
51 52 53 54 55
Sum the input tensors.

All the inputs can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD with the first input.
)DOC");
56 57 58
  }
};

59
class SumGradMaker : public framework::GradOpDescMakerBase {
60
 public:
61
  using framework::GradOpDescMakerBase::GradOpDescMakerBase;
62

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
  std::vector<framework::OpDescBind> operator()() const override {
    auto x_grads = InputGrad("X");
    std::vector<framework::OpDescBind> grad_ops;
    grad_ops.reserve(x_grads.size());
    auto og = OutputGrad("Out");
    std::transform(x_grads.begin(), x_grads.end(), std::back_inserter(grad_ops),
                   [&og](const std::string& x_grad) {
                     framework::OpDescBind grad_op;
                     grad_op.SetType("scale");
                     grad_op.SetInput("X", og);
                     grad_op.SetOutput("Out", {x_grad});
                     grad_op.SetAttr("scale", 1.0f);
                     return grad_op;
                   });
    return grad_ops;
78 79 80 81 82 83 84
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
85 86

REGISTER_OPERATOR(sum, ops::SumOp, ops::SumOpMaker, ops::SumGradMaker);
87
REGISTER_OP_CPU_KERNEL(sum, ops::SumKernel<paddle::platform::CPUPlace, float>);