allocator_facade.cc 41.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16
#include "paddle/fluid/memory/allocation/allocator_facade.h"

17
#include "gflags/gflags.h"
18
#include "paddle/fluid/memory/allocation/aligned_allocator.h"
19
#include "paddle/fluid/memory/allocation/allocator.h"
Y
Yu Yang 已提交
20
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
21
#include "paddle/fluid/memory/allocation/auto_growth_best_fit_allocator.h"
22
#include "paddle/fluid/memory/allocation/cpu_allocator.h"
23
#include "paddle/fluid/memory/allocation/naive_best_fit_allocator.h"
S
sneaxiy 已提交
24
#include "paddle/fluid/memory/allocation/retry_allocator.h"
25
#include "paddle/fluid/memory/allocation/stat_allocator.h"
S
sneaxiy 已提交
26
#include "paddle/fluid/platform/enforce.h"
27
#include "paddle/fluid/platform/place.h"
28

29
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
30
#include <shared_mutex>
31
#include "paddle/fluid/memory/allocation/cuda_allocator.h"
32
#include "paddle/fluid/memory/allocation/cuda_managed_allocator.h"
S
sneaxiy 已提交
33
#include "paddle/fluid/memory/allocation/pinned_allocator.h"
34
#include "paddle/fluid/memory/allocation/stream_safe_cuda_allocator.h"
35
#include "paddle/fluid/memory/allocation/thread_local_allocator.h"
36
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
37
#include "paddle/fluid/platform/device_context.h"
38
#include "paddle/phi/backends/gpu/gpu_context.h"
39 40

#ifdef PADDLE_WITH_CUDA
41
#include "paddle/fluid/platform/device/gpu/cuda/cuda_graph.h"
42
#endif
43

44 45 46 47 48
#if CUDA_VERSION >= 10020
#include "paddle/fluid/memory/allocation/cuda_virtual_mem_allocator.h"
#include "paddle/fluid/memory/allocation/virtual_memory_auto_growth_best_fit_allocator.h"
#include "paddle/fluid/platform/dynload/cuda_driver.h"
#endif
49
#endif
50

51
#ifdef PADDLE_WITH_XPU
52
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
53
#endif
54 55 56 57

#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/memory/allocation/npu_pinned_allocator.h"
#endif
58

J
jianghaicheng 已提交
59 60 61 62
#ifdef PADDLE_WITH_IPU
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
#endif

F
fwenguang 已提交
63 64 65 66
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

67 68 69 70 71
#ifdef PADDLE_WITH_CUSTOM_DEVICE
#include "paddle/fluid/memory/allocation/custom_allocator.h"
#include "paddle/fluid/platform/device/device_wrapper.h"
#endif

Z
Zeng Jinle 已提交
72
PADDLE_DEFINE_EXPORTED_int64(
73
    gpu_allocator_retry_time, 10000,
S
sneaxiy 已提交
74 75 76
    "The retry time (milliseconds) when allocator fails "
    "to allocate memory. No retry if this value is not greater than 0");

Z
Zeng Jinle 已提交
77 78 79 80
PADDLE_DEFINE_EXPORTED_bool(
    use_system_allocator, false,
    "Whether to use system allocator to allocate CPU and GPU memory. "
    "Only used for unittests.");
81

82 83 84
PADDLE_DEFINE_EXPORTED_bool(use_virtual_memory_auto_growth, false,
                            "Use VirtualMemoryAutoGrowthBestFitAllocator.");

85 86 87
// NOTE(Ruibiao): This FLAGS is just to be compatibled with
// the old single-stream CUDA allocator. It will be removed
// after StreamSafeCudaAllocator has been fully tested.
88
PADDLE_DEFINE_EXPORTED_bool(use_stream_safe_cuda_allocator, true,
89 90
                            "Enable StreamSafeCUDAAllocator");

91 92 93 94 95
PADDLE_DEFINE_EXPORTED_bool(use_cuda_managed_memory, false,
                            "Whether to use CUDAManagedAllocator to allocate "
                            "managed memory, only available for auto_growth "
                            "strategy");

96 97
DECLARE_string(allocator_strategy);

98 99 100 101
namespace paddle {
namespace memory {
namespace allocation {

102 103 104 105 106 107 108 109
#ifdef PADDLE_WITH_CUDA
class CUDAGraphAllocator
    : public Allocator,
      public std::enable_shared_from_this<CUDAGraphAllocator> {
 private:
  class PrivateAllocation : public Allocation {
   public:
    PrivateAllocation(CUDAGraphAllocator* allocator,
110
                      DecoratedAllocationPtr underlying_allocation)
F
From00 已提交
111 112 113
        : Allocation(
              underlying_allocation->ptr(), underlying_allocation->base_ptr(),
              underlying_allocation->size(), underlying_allocation->place()),
114 115 116 117 118
          allocator_(allocator->shared_from_this()),
          underlying_allocation_(std::move(underlying_allocation)) {}

   private:
    std::shared_ptr<Allocator> allocator_;
119
    DecoratedAllocationPtr underlying_allocation_;
120 121 122 123 124 125 126 127 128 129 130 131
  };

  explicit CUDAGraphAllocator(const std::shared_ptr<Allocator>& allocator)
      : underlying_allocator_(allocator) {}

 public:
  static std::shared_ptr<Allocator> Create(
      const std::shared_ptr<Allocator>& allocator) {
    return std::shared_ptr<Allocator>(new CUDAGraphAllocator(allocator));
  }

 protected:
132
  phi::Allocation* AllocateImpl(size_t size) {
133
    VLOG(10) << "Allocate " << size << " for CUDA Graph";
134 135 136
    return new PrivateAllocation(this,
                                 static_unique_ptr_cast<Allocation>(
                                     underlying_allocator_->Allocate(size)));
137 138
  }

139
  void FreeImpl(phi::Allocation* allocation) {
140 141 142 143 144 145 146 147 148
    VLOG(10) << "delete for CUDA Graph";
    delete allocation;
  }

 private:
  std::shared_ptr<Allocator> underlying_allocator_;
};
#endif

149 150 151 152 153 154 155 156
static bool IsCUDAGraphCapturing() {
#ifdef PADDLE_WITH_CUDA
  return UNLIKELY(platform::CUDAGraph::IsThisThreadCapturing());
#else
  return false;
#endif
}

Y
Yu Yang 已提交
157 158
class AllocatorFacadePrivate {
 public:
159 160
  using AllocatorMap = std::map<platform::Place, std::shared_ptr<Allocator>>;

161 162 163 164 165 166
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  using CUDAAllocatorMap =
      std::map<platform::CUDAPlace,
               std::map<gpuStream_t, std::shared_ptr<Allocator>>>;
#endif

167 168
  explicit AllocatorFacadePrivate(bool allow_free_idle_chunk = true) {
    strategy_ = GetAllocatorStrategy();
169 170
    is_stream_safe_cuda_allocator_used_ = false;

171
    switch (strategy_) {
172 173
      case AllocatorStrategy::kNaiveBestFit: {
        InitNaiveBestFitCPUAllocator();
J
jianghaicheng 已提交
174 175 176 177 178
#ifdef PADDLE_WITH_IPU
        for (int dev_id = 0; dev_id < platform::GetIPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitIPUAllocator(platform::IPUPlace(dev_id));
        }
#endif
179
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
180
        for (int dev_id = 0; dev_id < platform::GetGPUDeviceCount(); ++dev_id) {
181 182 183
          InitNaiveBestFitCUDAAllocator(platform::CUDAPlace(dev_id));
        }
        InitNaiveBestFitCUDAPinnedAllocator();
184
#endif
185 186 187 188 189
#ifdef PADDLE_WITH_XPU
        for (int dev_id = 0; dev_id < platform::GetXPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitXPUAllocator(platform::XPUPlace(dev_id));
        }
#endif
190 191 192 193
#ifdef PADDLE_WITH_ASCEND_CL
        for (int dev_id = 0; dev_id < platform::GetNPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitNPUAllocator(platform::NPUPlace(dev_id));
        }
194
        InitNaiveBestFitNPUPinnedAllocator();
F
fwenguang 已提交
195 196 197 198 199
#endif
#ifdef PADDLE_WITH_MLU
        for (int dev_id = 0; dev_id < platform::GetMLUDeviceCount(); ++dev_id) {
          InitNaiveBestFitMLUAllocator(platform::MLUPlace(dev_id));
        }
200 201
#endif
#ifdef PADDLE_WITH_CUSTOM_DEVICE
202
        auto device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
203 204
        for (const auto& dev_type : device_types) {
          for (size_t dev_id = 0;
205
               dev_id < phi::DeviceManager::GetDeviceCount(dev_type);
206 207 208 209 210
               ++dev_id) {
            InitNaiveBestFitCustomDeviceAllocator(
                platform::CustomPlace(dev_type, dev_id));
          }
        }
211
#endif
Z
Zeng Jinle 已提交
212 213
        break;
      }
214 215 216

      case AllocatorStrategy::kAutoGrowth: {
        InitNaiveBestFitCPUAllocator();
217 218
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
        allow_free_idle_chunk_ = allow_free_idle_chunk;
219 220 221 222 223
        for (int dev_id = 0; dev_id < platform::GetGPUDeviceCount(); ++dev_id) {
          InitAutoGrowthCUDAAllocator(platform::CUDAPlace(dev_id),
                                      allow_free_idle_chunk_);
        }

224 225 226 227 228 229 230 231 232 233 234 235 236
        // Note(Ruibiao): For GPU multi-stream case without CUDA graph
        // capturing, the 'allocators_' map(place -> Allocator) hold the
        // StreamSafeCUDAAllocator releate to defaultstream (i.e., the stream
        // directly got from DeviceContex), while the 'cuda_allocators_' map
        // (place -> map(stream -> Allocator)) hold the StreamSafeCUDAAllocator
        // releate to non-default stream (i.e., the stream users pass in). The
        // default stream Allocator is built in the structure of
        // AllocatorFacadePrivate, while the non-default stream is build in a
        // manner in GetAllocator function with 'create_if_not_found = ture'.
        // We make special treatment for the default stream for performance
        // reasons. Since most Alloc calls are for default stream in
        // application, treating it separately can avoid lots of overhead of
        // acquiring default stream and applying read-write lock.
237
        if (FLAGS_use_stream_safe_cuda_allocator) {
238 239 240 241
          if (LIKELY(!IsCUDAGraphCapturing())) {
            WrapStreamSafeCUDAAllocatorForDefault();
          }
          is_stream_safe_cuda_allocator_used_ = true;
242
        }
243

244 245
        InitNaiveBestFitCUDAPinnedAllocator();
#endif
246 247 248 249 250 251
#ifdef PADDLE_WITH_ASCEND_CL
        for (int dev_id = 0; dev_id < platform::GetNPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitNPUAllocator(platform::NPUPlace(dev_id));
        }
        InitNaiveBestFitNPUPinnedAllocator();
#endif
252 253 254 255
#ifdef PADDLE_WITH_XPU
        for (int dev_id = 0; dev_id < platform::GetXPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitXPUAllocator(platform::XPUPlace(dev_id));
        }
J
jianghaicheng 已提交
256 257 258 259 260
#endif
#ifdef PADDLE_WITH_IPU
        for (int dev_id = 0; dev_id < platform::GetIPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitIPUAllocator(platform::IPUPlace(dev_id));
        }
F
fwenguang 已提交
261 262 263 264 265
#endif
#ifdef PADDLE_WITH_MLU
        for (int dev_id = 0; dev_id < platform::GetMLUDeviceCount(); ++dev_id) {
          InitNaiveBestFitMLUAllocator(platform::MLUPlace(dev_id));
        }
266 267
#endif
#ifdef PADDLE_WITH_CUSTOM_DEVICE
268
        auto device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
269 270
        for (const auto& dev_type : device_types) {
          for (size_t dev_id = 0;
271
               dev_id < phi::DeviceManager::GetDeviceCount(dev_type);
272 273 274 275 276
               ++dev_id) {
            InitAutoGrowthCustomDeviceAllocator(
                platform::CustomPlace(dev_type, dev_id), allow_free_idle_chunk);
          }
        }
277
#endif
Z
Zeng Jinle 已提交
278 279
        break;
      }
280

281 282
      case AllocatorStrategy::kThreadLocal: {
        InitNaiveBestFitCPUAllocator();
283 284 285 286 287
#ifdef PADDLE_WITH_XPU
        for (int dev_id = 0; dev_id < platform::GetXPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitXPUAllocator(platform::XPUPlace(dev_id));
        }
#endif
J
jianghaicheng 已提交
288 289 290 291 292
#ifdef PADDLE_WITH_IPU
        for (int dev_id = 0; dev_id < platform::GetIPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitIPUAllocator(platform::IPUPlace(dev_id));
        }
#endif
293
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
294
        for (int dev_id = 0; dev_id < platform::GetGPUDeviceCount(); ++dev_id) {
295 296 297
          InitThreadLocalCUDAAllocator(platform::CUDAPlace(dev_id));
        }
        InitNaiveBestFitCUDAPinnedAllocator();
F
fwenguang 已提交
298 299 300 301 302
#endif
#ifdef PADDLE_WITH_MLU
        for (int dev_id = 0; dev_id < platform::GetMLUDeviceCount(); ++dev_id) {
          InitNaiveBestFitMLUAllocator(platform::MLUPlace(dev_id));
        }
303 304 305 306
#endif
        break;
      }

Z
Zeng Jinle 已提交
307
      default: {
308
        PADDLE_THROW(platform::errors::InvalidArgument(
309
            "Unsupported allocator strategy: %d", static_cast<int>(strategy_)));
Z
Zeng Jinle 已提交
310
      }
Y
Yu Yang 已提交
311
    }
Z
Zeng Jinle 已提交
312
    InitZeroSizeAllocators();
313
    InitSystemAllocators();
314 315 316 317 318

    if (FLAGS_gpu_allocator_retry_time > 0) {
      WrapCUDARetryAllocator(FLAGS_gpu_allocator_retry_time);
    }

319 320
    WrapStatAllocator();

321
    CheckAllocThreadSafe();
322 323

#ifdef PADDLE_WITH_CUDA
324 325 326
    // No need to wrap CUDAGraphAllocator for StreamSafeCUDAAllocator
    if (!is_stream_safe_cuda_allocator_used_ &&
        UNLIKELY(IsCUDAGraphCapturing())) {
327 328 329
      WrapCUDAGraphAllocator();
    }
#endif
Z
Zeng Jinle 已提交
330 331 332 333
  }

  inline const std::shared_ptr<Allocator>& GetAllocator(
      const platform::Place& place, size_t size) {
334
    VLOG(6) << "GetAllocator"
L
Leo Chen 已提交
335
            << " " << place << " " << size;
336 337
    const auto& allocators =
        (size > 0 ? (UNLIKELY(FLAGS_use_system_allocator) ? system_allocators_
338
                                                          : GetAllocatorMap())
339
                  : zero_size_allocators_);
Z
Zeng Jinle 已提交
340
    auto iter = allocators.find(place);
341 342 343
    PADDLE_ENFORCE_NE(iter, allocators.end(),
                      platform::errors::NotFound(
                          "No allocator found for the place, %s", place));
Z
Zeng Jinle 已提交
344
    return iter->second;
345 346
  }

347
  void* GetBasePtr(const std::shared_ptr<phi::Allocation>& allocation) {
348 349 350
    return static_cast<Allocation*>(allocation.get())->base_ptr();
  }

351 352 353 354 355
  bool IsStreamSafeCUDAAllocatorUsed() {
    return is_stream_safe_cuda_allocator_used_ &&
           LIKELY(FLAGS_use_system_allocator == false);
  }

356
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
357
  bool HasCUDAAllocator(const platform::CUDAPlace& place, gpuStream_t stream) {
358 359 360 361 362 363 364 365 366
    auto it = cuda_allocators_.find(place);
    if (it == cuda_allocators_.end()) {
      return false;
    }
    const std::map<gpuStream_t, std::shared_ptr<Allocator>>& allocator_map =
        it->second;
    return allocator_map.find(stream) != allocator_map.end();
  }

367
  const std::shared_ptr<Allocator>& GetAllocator(
368
      const platform::CUDAPlace& place, gpuStream_t stream,
369
      bool create_if_not_found = false) {
370 371 372 373 374
    if (LIKELY(!IsCUDAGraphCapturing())) {
      if (stream == GetDefaultStream(place)) {
        VLOG(7) << "Get Allocator by passing in a default stream";
        return GetAllocator(place, /* A non-zero num to choose allocator_ */ 1);
      }
375 376 377
    }

    /* shared_lock_guard */ {
378 379 380
      std::shared_lock<std::shared_timed_mutex> lock_guard(
          cuda_allocator_mutex_);
      if (LIKELY(HasCUDAAllocator(place, stream))) {
381 382
        return cuda_allocators_[place][stream];
      } else {
383 384 385 386 387
        PADDLE_ENFORCE_NE(create_if_not_found, false,
                          platform::errors::NotFound(
                              "No allocator found for stream %s in place %s "
                              "with create_if_not_found = false",
                              stream, place));
388 389 390
      }
    }

391
    /* unique_lock_guard */ {
392 393 394 395
      std::unique_lock<std::shared_timed_mutex> lock_guard(
          cuda_allocator_mutex_);
      InitStreamSafeCUDAAllocator(place, stream);
      return cuda_allocators_[place][stream];
396
    }
397 398
  }

399 400 401 402 403 404 405 406 407 408
  const std::shared_ptr<StreamSafeCUDAAllocator>
  GetDefaultStreamSafeCUDAAllocator(const platform::CUDAPlace& place) const {
    const auto iter = default_stream_safe_cuda_allocators_.find(place);
    PADDLE_ENFORCE_NE(
        iter, default_stream_safe_cuda_allocators_.end(),
        platform::errors::NotFound(
            "No StreamSafeCUDAAllocator found for the place, %s", place));
    return iter->second;
  }

409
  gpuStream_t GetDefaultStream(const platform::CUDAPlace& place) const {
410 411 412 413 414
    const std::shared_ptr<StreamSafeCUDAAllocator>& allocator =
        GetDefaultStreamSafeCUDAAllocator(place);
    return allocator->GetDefaultStream();
  }

415
  void SetDefaultStream(const platform::CUDAPlace& place, gpuStream_t stream) {
416 417 418 419 420 421 422 423
    const std::shared_ptr<StreamSafeCUDAAllocator>& allocator =
        GetDefaultStreamSafeCUDAAllocator(place);
    allocator->SetDefaultStream(stream);
    VLOG(8) << "Set default stream to " << stream
            << " for StreamSafeCUDAAllocator(" << allocator.get() << ") in "
            << place;
  }

424
  void RecordStream(std::shared_ptr<phi::Allocation> allocation,
425
                    gpuStream_t stream) {
426 427 428 429 430 431
    std::shared_ptr<StreamSafeCUDAAllocation> stream_safe_cuda_allocation =
        std::dynamic_pointer_cast<StreamSafeCUDAAllocation>(allocation);
    if (stream_safe_cuda_allocation != nullptr) {
      stream_safe_cuda_allocation->RecordStream(stream);
    } else {
      VLOG(6) << "RecordStream for a non-StreamSafeCUDAAllocation";
432
    }
433 434
  }

435
  gpuStream_t GetStream(
436
      const std::shared_ptr<phi::Allocation>& allocation) const {
437 438 439 440 441 442 443 444 445 446 447
    const std::shared_ptr<StreamSafeCUDAAllocation>
        stream_safe_cuda_allocation =
            std::dynamic_pointer_cast<StreamSafeCUDAAllocation>(allocation);
    if (stream_safe_cuda_allocation != nullptr) {
      return stream_safe_cuda_allocation->GetOwningStream();
    }

    VLOG(6) << "GetStream for a non-StreamSafeCUDAAllocation";
    return static_cast<phi::GPUContext*>(
               platform::DeviceContextPool::Instance().Get(allocation->place()))
        ->stream();
448 449 450 451 452 453 454 455 456 457
  }
#endif

 private:
  class ZeroSizeAllocator : public Allocator {
   public:
    explicit ZeroSizeAllocator(platform::Place place) : place_(place) {}
    bool IsAllocThreadSafe() const override { return true; }

   protected:
458
    phi::Allocation* AllocateImpl(size_t size) override {
459 460
      return new Allocation(nullptr, 0, place_);
    }
461
    void FreeImpl(phi::Allocation* allocation) override { delete allocation; }
462 463 464 465 466

   private:
    platform::Place place_;
  };

467
  const AllocatorMap& GetAllocatorMap() { return allocators_; }
468

469 470 471
  void InitNaiveBestFitCPUAllocator() {
    allocators_[platform::CPUPlace()] =
        std::make_shared<NaiveBestFitAllocator>(platform::CPUPlace());
Y
Yu Yang 已提交
472 473
  }

474
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
475 476 477
  void InitNaiveBestFitCUDAPinnedAllocator() {
    allocators_[platform::CUDAPinnedPlace()] =
        std::make_shared<NaiveBestFitAllocator>(platform::CUDAPinnedPlace());
478 479
  }

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
  void InitNaiveBestFitCUDAAllocator(platform::CUDAPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }

  // Create a new CUDAAllocator or CUDAManagedAllocator for the given device
  std::shared_ptr<Allocator> CreateCUDAAllocator(platform::CUDAPlace p) {
    if (FLAGS_use_cuda_managed_memory) {
      PADDLE_ENFORCE_EQ(
          strategy_, AllocatorStrategy::kAutoGrowth,
          platform::errors::InvalidArgument(
              "CUDA managed memory is only implemented for auto_growth "
              "strategy, not support %s strategy.\n"
              "Please use auto_growth strategy by command `export "
              "FLAGS_allocator_strategy=\"auto_growth\"`, or disable managed "
              "memory by command `export FLAGS_use_cuda_managed_memory=false`",
              FLAGS_allocator_strategy));

      if (!platform::IsGPUManagedMemorySupported(p.device)) {
        PADDLE_THROW(platform::errors::Unavailable(
            "Failed to create CUDAManagedAllocator on GPU %d.\n\n"
            "You have enabled CUDA managed memory, but the gpu device does not "
            "support allocating managed memory.\n"
            "If you don't actually need to use managed memory, please disable "
            "it with command `export FLAGS_use_cuda_managed_memory=false`.\n"
504 505
            "Or you must use the gpu device that supports managed memory.",
            p.device));
506 507 508 509 510 511
      }
      return std::make_shared<CUDAManagedAllocator>(p);
    }
    return std::make_shared<CUDAAllocator>(p);
  }

512 513 514 515 516 517 518
  void InitStreamSafeCUDAAllocator(platform::CUDAPlace p, gpuStream_t stream) {
    PADDLE_ENFORCE_EQ(
        strategy_, AllocatorStrategy::kAutoGrowth,
        platform::errors::Unimplemented(
            "Only support auto-growth strategey for StreamSafeCUDAAllocator, "
            "the allocator strategy %d is unsupported for multi-stream",
            static_cast<int>(strategy_)));
519 520 521
    if (LIKELY(!HasCUDAAllocator(p, stream))) {
      VLOG(8) << "Init CUDA allocator for stream " << stream << " in place "
              << p;
522 523 524
      InitAutoGrowthCUDAAllocator(p, stream);
      WrapStreamSafeCUDAAllocator(p, stream);
      WrapCUDARetryAllocator(p, stream, FLAGS_gpu_allocator_retry_time);
525
      WrapStatAllocator(p, stream);
526 527 528 529 530
    }
  }

  void InitAutoGrowthCUDAAllocator(platform::CUDAPlace p, gpuStream_t stream) {
#if defined(PADDLE_WITH_HIP)
531
    auto cuda_allocator = CreateCUDAAllocator(p);
532
    cuda_allocators_[p][stream] = std::make_shared<AutoGrowthBestFitAllocator>(
533
        cuda_allocator, platform::GpuMinChunkSize(), 0, allow_free_idle_chunk_);
534 535 536 537 538 539 540
#endif

#if defined(PADDLE_WITH_CUDA)
#if CUDA_VERSION >= 10020
    CUdevice device;
    int val;
    try {
541
      PADDLE_ENFORCE_GPU_SUCCESS(
542 543
          paddle::platform::dynload::cuDeviceGet(&device, p.GetDeviceId()));

544
      PADDLE_ENFORCE_GPU_SUCCESS(
545 546 547 548 549 550 551 552 553 554 555 556 557
          paddle::platform::dynload::cuDeviceGetAttribute(
              &val, CU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED,
              device));
    } catch (...) {
      val = 0;
    }

    if (val > 0 && FLAGS_use_virtual_memory_auto_growth) {
      auto cuda_allocator = std::make_shared<CUDAVirtualMemAllocator>(p);
      cuda_allocators_[p][stream] =
          std::make_shared<VirtualMemoryAutoGrowthBestFitAllocator>(
              cuda_allocator, platform::GpuMinChunkSize(), p);
    } else {
558
      auto cuda_allocator = CreateCUDAAllocator(p);
559 560 561 562 563 564
      cuda_allocators_[p][stream] =
          std::make_shared<AutoGrowthBestFitAllocator>(
              cuda_allocator, platform::GpuMinChunkSize(),
              allow_free_idle_chunk_);
    }
#else
565
    auto cuda_allocator = CreateCUDAAllocator(p);
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
    auto alignment = platform::GpuMinChunkSize();
    bool need_addr_align = true;
    // NOTE: sometimes, since cuda runtime can not be forked, calling any cuda
    // API in that case may got cuda error(3), i.e.,
    // cudaErrorInitializationError. And, the CUDAAllocator is only initialized
    // but not really used.
    // Here, the try-catch block is added to handle the case that
    // GetDeviceProperties() may failed in the multiple process(for example, in
    // dataloader with num_worker > 0)
    try {
      const auto& prop = platform::GetDeviceProperties(p.GetDeviceId());
      need_addr_align = prop.textureAlignment < alignment;
      VLOG(4) << "GetDeviceProperties ok, textureAlignment: "
              << prop.textureAlignment
              << ", set need_addr_align=" << need_addr_align;
    } catch (...) {
      need_addr_align = true;
      VLOG(4) << "GetDeviceProperties failed, set need_addr_align=true";
    }
    // The address returned is aligned already,
    // ref:
    // https://stackoverflow.com/questions/14082964/cuda-alignment-256bytes-seriously/14083295#14083295
    std::shared_ptr<Allocator> underlying_allocator{nullptr};
    if (need_addr_align) {
      VLOG(10) << "use AlignedAllocator with alignment: " << alignment;
      underlying_allocator =
          std::make_shared<AlignedAllocator>(underlying_allocator, alignment);
    } else {
      VLOG(10) << "not use AlignedAllocator with alignment: " << alignment;
      underlying_allocator = cuda_allocator;
    }

    cuda_allocators_[p][stream] = std::make_shared<AutoGrowthBestFitAllocator>(
        underlying_allocator, alignment, 0, allow_free_idle_chunk_);
#endif
#endif
602 603
  }

604
  // NOTE(Ruibiao): Old single-stream version, will be removed later
605 606
  void InitAutoGrowthCUDAAllocator(platform::CUDAPlace p,
                                   bool allow_free_idle_chunk) {
607
#if defined(PADDLE_WITH_HIP)
608
    auto cuda_allocator = CreateCUDAAllocator(p);
609 610 611 612 613 614 615 616 617
    allocators_[p] = std::make_shared<AutoGrowthBestFitAllocator>(
        cuda_allocator, platform::GpuMinChunkSize(), allow_free_idle_chunk);
#endif

#if defined(PADDLE_WITH_CUDA)
#if CUDA_VERSION >= 10020
    CUdevice device;
    int val;
    try {
618
      PADDLE_ENFORCE_GPU_SUCCESS(
619 620
          paddle::platform::dynload::cuDeviceGet(&device, p.GetDeviceId()));

621
      PADDLE_ENFORCE_GPU_SUCCESS(
622 623 624 625 626 627 628 629 630 631 632 633 634
          paddle::platform::dynload::cuDeviceGetAttribute(
              &val, CU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED,
              device));
    } catch (...) {
      val = 0;
    }

    if (val > 0 && FLAGS_use_virtual_memory_auto_growth) {
      auto cuda_allocator = std::make_shared<CUDAVirtualMemAllocator>(p);
      allocators_[p] =
          std::make_shared<VirtualMemoryAutoGrowthBestFitAllocator>(
              cuda_allocator, platform::GpuMinChunkSize(), p);
    } else {
635
      auto cuda_allocator = CreateCUDAAllocator(p);
636 637 638 639 640
      allocators_[p] = std::make_shared<AutoGrowthBestFitAllocator>(
          cuda_allocator, platform::GpuMinChunkSize(), allow_free_idle_chunk);
    }

#else
641
    auto cuda_allocator = CreateCUDAAllocator(p);
L
Leo Chen 已提交
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
    auto alignment = platform::GpuMinChunkSize();
    bool need_addr_align = true;
    // NOTE: sometimes, since cuda runtime can not be forked, calling any cuda
    // API in that case may got cuda error(3), i.e.,
    // cudaErrorInitializationError. And, the CUDAAllocator is only initialized
    // but not really used.
    // Here, the try-catch block is added to handle the case that
    // GetDeviceProperties() may failed in the multiple process(for example, in
    // dataloader with num_worker > 0)
    try {
      const auto& prop = platform::GetDeviceProperties(p.GetDeviceId());
      need_addr_align = prop.textureAlignment < alignment;
      VLOG(4) << "GetDeviceProperties ok, textureAlignment: "
              << prop.textureAlignment
              << ", set need_addr_align=" << need_addr_align;
    } catch (...) {
      need_addr_align = true;
      VLOG(4) << "GetDeviceProperties failed, set need_addr_align=true";
    }
    // The address returned is aligned already,
    // ref:
    // https://stackoverflow.com/questions/14082964/cuda-alignment-256bytes-seriously/14083295#14083295
    std::shared_ptr<Allocator> underlying_allocator{nullptr};
    if (need_addr_align) {
      VLOG(10) << "use AlignedAllocator with alignment: " << alignment;
      underlying_allocator =
          std::make_shared<AlignedAllocator>(underlying_allocator, alignment);
    } else {
      VLOG(10) << "not use AlignedAllocator with alignment: " << alignment;
      underlying_allocator = cuda_allocator;
    }
673
    allocators_[p] = std::make_shared<AutoGrowthBestFitAllocator>(
L
Leo Chen 已提交
674
        underlying_allocator, alignment, 0, allow_free_idle_chunk);
675 676
#endif
#endif
S
sneaxiy 已提交
677
  }
678 679 680 681 682 683

  void InitThreadLocalCUDAAllocator(platform::CUDAPlace p) {
    allocators_[p] = std::make_shared<ThreadLocalCUDAAllocator>(p);
  }

  void WrapStreamSafeCUDAAllocator(platform::CUDAPlace p, gpuStream_t stream) {
684 685 686 687
    std::shared_ptr<Allocator>& allocator = cuda_allocators_[p][stream];
    allocator = std::make_shared<StreamSafeCUDAAllocator>(
        allocator, p, stream,
        /* in_cuda_graph_capturing = */ !allow_free_idle_chunk_);
688 689
  }

690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
  void WrapStreamSafeCUDAAllocatorForDefault() {
    for (auto& pair : allocators_) {
      auto& place = pair.first;
      if (platform::is_gpu_place(place)) {
        std::shared_ptr<StreamSafeCUDAAllocator>&& allocator =
            std::make_shared<StreamSafeCUDAAllocator>(
                pair.second, place, /* default_stream = */ nullptr,
                /* in_cuda_graph_capturing = */ !allow_free_idle_chunk_);
        pair.second = allocator;

        // NOTE(Ruibiao): A tricky implement to give StreamSafeCUDAAllocator an
        // ability to interact with the outside world, i.e., change default
        // stream from outside
        default_stream_safe_cuda_allocators_[place] = allocator;
        VLOG(8) << "WrapStreamSafeCUDAAllocator for " << place
                << ", allocator address = " << pair.second.get();
      }
    }
  }

710 711 712 713 714 715
  void WrapCUDARetryAllocator(platform::CUDAPlace p, gpuStream_t stream,
                              size_t retry_time) {
    PADDLE_ENFORCE_GT(
        retry_time, 0,
        platform::errors::InvalidArgument(
            "Retry time should be larger than 0, but got %d", retry_time));
716
    std::shared_ptr<Allocator>& allocator = cuda_allocators_[p][stream];
717 718 719
    allocator = std::make_shared<RetryAllocator>(allocator, retry_time);
  }

720 721 722 723 724
  void WrapStatAllocator(platform::CUDAPlace p, gpuStream_t stream) {
    std::shared_ptr<Allocator>& allocator = cuda_allocators_[p][stream];
    allocator = std::make_shared<StatAllocator>(allocator);
  }

725 726 727 728 729 730 731 732 733
#ifdef PADDLE_WITH_CUDA
  void WrapCUDAGraphAllocator() {
    for (auto& item : allocators_) {
      auto& allocator = item.second;
      allocator = CUDAGraphAllocator::Create(allocator);
    }
  }
#endif

734 735 736 737 738 739 740 741 742
  static void CheckCUDAAllocThreadSafe(const CUDAAllocatorMap& allocators) {
    for (auto& place_pair : allocators) {
      for (auto& stream_pair : place_pair.second) {
        PADDLE_ENFORCE_EQ(stream_pair.second->IsAllocThreadSafe(), true,
                          platform::errors::InvalidArgument(
                              "Public allocators must be thread safe"));
      }
    }
  }
743
#endif
S
sneaxiy 已提交
744

745 746 747 748 749 750
#ifdef PADDLE_WITH_XPU
  void InitNaiveBestFitXPUAllocator(platform::XPUPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }
#endif

J
jianghaicheng 已提交
751 752 753 754 755 756
#ifdef PADDLE_WITH_IPU
  void InitNaiveBestFitIPUAllocator(platform::IPUPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }
#endif

F
fwenguang 已提交
757 758 759 760 761 762
#ifdef PADDLE_WITH_MLU
  void InitNaiveBestFitMLUAllocator(platform::MLUPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }
#endif

763 764 765 766
#ifdef PADDLE_WITH_ASCEND_CL
  void InitNaiveBestFitNPUAllocator(platform::NPUPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }
767 768 769 770 771

  void InitNaiveBestFitNPUPinnedAllocator() {
    allocators_[platform::NPUPinnedPlace()] =
        std::make_shared<paddle::memory::allocation::NPUPinnedAllocator>();
  }
772 773
#endif

774 775 776 777 778 779 780 781 782 783
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  void InitNaiveBestFitCustomDeviceAllocator(platform::CustomPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }

  void InitAutoGrowthCustomDeviceAllocator(platform::CustomPlace p,
                                           bool allow_free_idle_chunk) {
    auto custom_allocator =
        std::make_shared<paddle::memory::allocation::CustomAllocator>(p);
    allocators_[p] = std::make_shared<AutoGrowthBestFitAllocator>(
784
        custom_allocator, phi::DeviceManager::GetMinChunkSize(p),
785 786 787 788
        allow_free_idle_chunk);
  }
#endif

789 790 791 792 793 794 795 796
  void InitSystemAllocators() {
    if (!system_allocators_.empty()) return;
    system_allocators_[platform::CPUPlace()] = std::make_shared<CPUAllocator>();
#ifdef PADDLE_WITH_XPU
    int device_count = platform::GetXPUDeviceCount();
    for (int i = 0; i < device_count; ++i) {
      platform::XPUPlace p(i);
      system_allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
Z
Zeng Jinle 已提交
797
    }
798
#endif
J
jianghaicheng 已提交
799 800 801 802 803 804 805
#ifdef PADDLE_WITH_IPU
    int device_count = platform::GetIPUDeviceCount();
    for (int i = 0; i < device_count; ++i) {
      platform::IPUPlace p(i);
      system_allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
    }
#endif
806 807 808
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    system_allocators_[platform::CUDAPinnedPlace()] =
        std::make_shared<CPUPinnedAllocator>();
809
    int device_count = platform::GetGPUDeviceCount();
810 811
    for (int i = 0; i < device_count; ++i) {
      platform::CUDAPlace p(i);
812
      system_allocators_[p] = CreateCUDAAllocator(p);
813
    }
F
fwenguang 已提交
814 815 816 817
#endif
#ifdef PADDLE_WITH_MLU
    int device_count = platform::GetMLUDeviceCount();
    for (int i = 0; i < device_count; ++i) {
818
      platform::MLUPlace p(i);
F
fwenguang 已提交
819 820
      system_allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
    }
821 822
#endif
  }
Z
Zeng Jinle 已提交
823 824

  void InitZeroSizeAllocators() {
825
    if (!zero_size_allocators_.empty()) return;
Z
Zeng Jinle 已提交
826 827
    std::vector<platform::Place> places;
    places.emplace_back(platform::CPUPlace());
828
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
829
    int device_count = platform::GetGPUDeviceCount();
Z
Zeng Jinle 已提交
830 831 832 833 834
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::CUDAPlace(dev_id));
    }
    places.emplace_back(platform::CUDAPinnedPlace());
#endif
835 836 837 838 839 840
#ifdef PADDLE_WITH_XPU
    int device_count = platform::GetXPUDeviceCount();
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::XPUPlace(dev_id));
    }
#endif
841 842 843 844 845 846
#ifdef PADDLE_WITH_ASCEND_CL
    int device_count = platform::GetNPUDeviceCount();
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::NPUPlace(dev_id));
    }
#endif
J
jianghaicheng 已提交
847 848 849 850 851 852
#ifdef PADDLE_WITH_IPU
    int device_count = platform::GetIPUDeviceCount();
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::IPUPlace(dev_id));
    }
#endif
F
fwenguang 已提交
853 854 855 856 857 858
#ifdef PADDLE_WITH_MLU
    int device_count = platform::GetMLUDeviceCount();
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::MLUPlace(dev_id));
    }
#endif
859
#ifdef PADDLE_WITH_CUSTOM_DEVICE
860
    auto device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
861 862
    for (const auto& dev_type : device_types) {
      for (size_t dev_id = 0;
863
           dev_id < phi::DeviceManager::GetDeviceCount(dev_type); dev_id++) {
864 865 866 867
        places.emplace_back(platform::CustomPlace(dev_type, dev_id));
      }
    }
#endif
Z
Zeng Jinle 已提交
868 869 870

    for (auto& p : places) {
      zero_size_allocators_[p] = std::make_shared<ZeroSizeAllocator>(p);
Y
Yu Yang 已提交
871 872
    }
  }
Z
Zeng Jinle 已提交
873

874 875 876 877 878
  static void CheckAllocThreadSafe(const AllocatorMap& allocators) {
    for (auto& pair : allocators) {
      PADDLE_ENFORCE_EQ(pair.second->IsAllocThreadSafe(), true,
                        platform::errors::InvalidArgument(
                            "Public allocators must be thread safe"));
879
    }
880
  }
881

882 883 884 885
  void CheckAllocThreadSafe() const {
    CheckAllocThreadSafe(allocators_);
    CheckAllocThreadSafe(zero_size_allocators_);
    CheckAllocThreadSafe(system_allocators_);
886
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
887
    if (is_stream_safe_cuda_allocator_used_) {
888 889 890
      CheckCUDAAllocThreadSafe(cuda_allocators_);
    }
#endif
891 892 893
  }

  void WrapCUDARetryAllocator(size_t retry_time) {
894 895 896 897
    PADDLE_ENFORCE_GT(
        retry_time, 0,
        platform::errors::InvalidArgument(
            "Retry time should be larger than 0, but got %d", retry_time));
898 899 900 901 902 903 904
    for (auto& pair : allocators_) {
      if (platform::is_gpu_place(pair.first)) {
        pair.second = std::make_shared<RetryAllocator>(pair.second, retry_time);
      }
    }
  }

905 906 907 908 909 910 911 912 913
  void WrapStatAllocator() {
    for (auto& pair : allocators_) {
      // Now memory stats is only supported for GPU
      if (platform::is_gpu_place(pair.first)) {
        pair.second = std::make_shared<StatAllocator>(pair.second);
      }
    }
  }

914 915
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  // a standalone CUDA allocator to support multi-stream GC in new executor
916 917
  std::map<platform::Place, std::shared_ptr<StreamSafeCUDAAllocator>>
      default_stream_safe_cuda_allocators_;
918
  CUDAAllocatorMap cuda_allocators_;
919
  std::shared_timed_mutex cuda_allocator_mutex_;
920 921
#endif
  AllocatorStrategy strategy_;
922
  AllocatorMap allocators_;
923 924
  static AllocatorMap zero_size_allocators_;
  static AllocatorMap system_allocators_;
925
  bool allow_free_idle_chunk_;
926
  bool is_stream_safe_cuda_allocator_used_;
927
};
928 929 930 931
AllocatorFacadePrivate::AllocatorMap
    AllocatorFacadePrivate::zero_size_allocators_;
AllocatorFacadePrivate::AllocatorMap AllocatorFacadePrivate::system_allocators_;

Y
Refine  
Yu Yang 已提交
932
// Pimpl. Make interface clean.
933
AllocatorFacade::AllocatorFacade() : m_(new AllocatorFacadePrivate()) {}
934 935 936
// delete m_ may cause core dump when the destructor of python in conflict with
// cpp.
AllocatorFacade::~AllocatorFacade() {}
937 938

AllocatorFacade& AllocatorFacade::Instance() {
939 940 941 942 943 944
  static AllocatorFacade* instance = new AllocatorFacade;
  return *instance;
}

AllocatorFacadePrivate* AllocatorFacade::GetPrivate() const {
#ifdef PADDLE_WITH_CUDA
945
  if (UNLIKELY(IsCUDAGraphCapturing())) {
946 947 948 949 950 951 952 953 954 955 956
    auto id = platform::CUDAGraph::CapturingID();
    auto iter = cuda_graph_map_.find(id);
    PADDLE_ENFORCE_NE(
        iter, cuda_graph_map_.end(),
        platform::errors::PermissionDenied(
            "No memory pool is prepared for CUDA Graph capturing."));
    VLOG(10) << "Choose CUDA Graph memory pool";
    return iter->second.get();
  }
#endif
  return m_;
957 958
}

959 960
const std::shared_ptr<Allocator>& AllocatorFacade::GetAllocator(
    const platform::Place& place) {
961 962
  return GetPrivate()->GetAllocator(
      place, /* A non-zero num to choose allocator_ */ 1);
963 964
}

965
void* AllocatorFacade::GetBasePtr(
966
    const std::shared_ptr<phi::Allocation>& allocation) {
967 968 969 970 971 972 973 974 975 976
  PADDLE_ENFORCE_EQ(GetAllocatorStrategy(), AllocatorStrategy::kAutoGrowth,
                    paddle::platform::errors::Unimplemented(
                        "GetBasePtr() is only implemented for auto_growth "
                        "strategy, not support allocator strategy: %d",
                        static_cast<int>(GetAllocatorStrategy())));
  PADDLE_ENFORCE_EQ(platform::is_gpu_place(allocation->place()), true,
                    paddle::platform::errors::Unimplemented(
                        "GetBasePtr() is only implemented for CUDAPlace(), not "
                        "suppot place: %s",
                        allocation->place()));
977
  return GetPrivate()->GetBasePtr(allocation);
978 979
}

980 981
const std::shared_ptr<Allocator>& AllocatorFacade::GetZeroAllocator(
    const platform::Place& place) {
982
  return GetPrivate()->GetAllocator(place, /* zero size */ 0);
983 984
}

985
std::shared_ptr<phi::Allocation> AllocatorFacade::AllocShared(
986
    const platform::Place& place, size_t size) {
987
  return std::shared_ptr<phi::Allocation>(Alloc(place, size));
988 989
}

990 991
AllocationPtr AllocatorFacade::Alloc(const platform::Place& place,
                                     size_t size) {
992
  return GetPrivate()->GetAllocator(place, size)->Allocate(size);
993 994
}

W
Wilber 已提交
995
uint64_t AllocatorFacade::Release(const platform::Place& place) {
996 997
  return GetPrivate()
      ->GetAllocator(place, /* A non-zero num to choose allocator_ */ 1)
998 999 1000
      ->Release(place);
}

1001 1002
std::shared_ptr<phi::Allocation> AllocatorFacade::AllocShared(
    const platform::Place& place, size_t size, const phi::Stream& stream) {
1003
  return std::shared_ptr<phi::Allocation>(Alloc(place, size, stream));
1004 1005
}

1006 1007
AllocationPtr AllocatorFacade::Alloc(const platform::Place& place, size_t size,
                                     const phi::Stream& stream) {
1008
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1009 1010 1011 1012 1013
  AllocatorFacadePrivate* m = GetPrivate();
  if (!m->IsStreamSafeCUDAAllocatorUsed()) {
    VLOG(6) << "Warning: StreamSafeCUDAAllocator is not used!";
    return Alloc(place, size);
  }
1014

1015 1016 1017
  platform::CUDAPlace p(place.GetDeviceId());
  if (LIKELY(size > 0 && FLAGS_use_system_allocator == false)) {
    gpuStream_t s = reinterpret_cast<gpuStream_t>(stream.id());
1018
    return m->GetAllocator(p, s, /* create_if_not_found = */ true)
1019 1020
        ->Allocate(size);
  } else {
1021
    return m->GetAllocator(p, size)->Allocate(size);
1022 1023 1024 1025 1026 1027
  }
#else
  PADDLE_THROW(platform::errors::PreconditionNotMet("Not compiled with GPU."));
#endif
}

1028 1029 1030
bool AllocatorFacade::InSameStream(
    const std::shared_ptr<phi::Allocation>& allocation,
    const phi::Stream& stream) {
1031
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1032 1033 1034 1035
  gpuStream_t s = reinterpret_cast<gpuStream_t>(stream.id());
  return s == GetStream(allocation);
#else
  PADDLE_THROW(platform::errors::PreconditionNotMet("Not compiled with GPU."));
1036
#endif
1037 1038
}

1039 1040 1041 1042
bool AllocatorFacade::IsStreamSafeCUDAAllocatorUsed() {
  return GetPrivate()->IsStreamSafeCUDAAllocatorUsed();
}

1043
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1044
uint64_t AllocatorFacade::Release(const platform::CUDAPlace& place,
1045
                                  gpuStream_t stream) {
1046 1047 1048 1049 1050 1051 1052
  AllocatorFacadePrivate* m = GetPrivate();
  if (!m->IsStreamSafeCUDAAllocatorUsed()) {
    VLOG(6) << "Warning: StreamSafeCUDAAllocator is not used!";
    return Release(place);
  }

  return m->GetAllocator(place, stream)->Release(place);
1053 1054
}

1055
void AllocatorFacade::RecordStream(std::shared_ptr<phi::Allocation> allocation,
1056
                                   gpuStream_t stream) {
1057
  GetPrivate()->RecordStream(allocation, stream);
1058 1059
}

1060
const std::shared_ptr<Allocator>& AllocatorFacade::GetAllocator(
1061
    const platform::Place& place, gpuStream_t stream) {
1062 1063 1064 1065 1066
  AllocatorFacadePrivate* m = GetPrivate();

  if (!m->IsStreamSafeCUDAAllocatorUsed()) {
    VLOG(6) << "Warning: StreamSafeCUDAAllocator is not used!";
    return GetAllocator(place);
1067
  }
1068 1069 1070 1071 1072 1073

  if (platform::is_gpu_place(place) && FLAGS_use_system_allocator == false) {
    return m->GetAllocator(place, stream,
                           /*create_if_not_found=*/true);
  }
  return m->GetAllocator(place, /* A non-zero num to choose allocator_ */ 1);
1074 1075
}

1076
gpuStream_t AllocatorFacade::GetStream(
1077
    const std::shared_ptr<phi::Allocation>& allocation) const {
1078
  return GetPrivate()->GetStream(allocation);
1079 1080
}

1081
void AllocatorFacade::SetDefaultStream(const platform::CUDAPlace& place,
1082
                                       gpuStream_t stream) {
1083 1084
  if (m_->IsStreamSafeCUDAAllocatorUsed()) {
    m_->SetDefaultStream(place, stream);
1085 1086 1087
  }
}

1088 1089
#ifdef PADDLE_WITH_CUDA
void AllocatorFacade::PrepareMemoryPoolForCUDAGraph(CUDAGraphID id) {
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
  PADDLE_ENFORCE_EQ(GetAllocatorStrategy(), AllocatorStrategy::kAutoGrowth,
                    platform::errors::InvalidArgument(
                        "CUDA Graph is only supported when the "
                        "FLAGS_allocator_strategy=\"auto_growth\", but got "
                        "FLAGS_allocator_strategy=\"%s\"",
                        FLAGS_allocator_strategy));
  auto& allocator = cuda_graph_map_[id];
  PADDLE_ENFORCE_EQ(
      allocator.get(), nullptr,
      platform::errors::InvalidArgument(
          "The memory pool of the CUDA Graph with ID %d have been prepared.",
          id));
  allocator.reset(new AllocatorFacadePrivate(/*allow_free_idle_chunk=*/false));
1103

1104
  VLOG(10) << "Prepare memory pool for CUDA Graph with ID " << id;
1105 1106 1107
}

void AllocatorFacade::RemoveMemoryPoolOfCUDAGraph(CUDAGraphID id) {
1108 1109 1110 1111 1112 1113
  auto iter = cuda_graph_map_.find(id);
  PADDLE_ENFORCE_NE(iter, cuda_graph_map_.end(),
                    platform::errors::InvalidArgument(
                        "Cannot find CUDA Graph with ID = %d", id));
  cuda_graph_map_.erase(iter);
  VLOG(10) << "Remove memory pool of CUDA Graph with ID " << id;
1114 1115
}
#endif
1116
#endif
1117 1118 1119
}  // namespace allocation
}  // namespace memory
}  // namespace paddle