allocator_facade.cc 30.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16
#include "paddle/fluid/memory/allocation/allocator_facade.h"

17
#include "gflags/gflags.h"
18
#include "paddle/fluid/memory/allocation/aligned_allocator.h"
19
#include "paddle/fluid/memory/allocation/allocator.h"
Y
Yu Yang 已提交
20
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
21
#include "paddle/fluid/memory/allocation/auto_growth_best_fit_allocator.h"
22
#include "paddle/fluid/memory/allocation/cpu_allocator.h"
23
#include "paddle/fluid/memory/allocation/naive_best_fit_allocator.h"
S
sneaxiy 已提交
24
#include "paddle/fluid/memory/allocation/retry_allocator.h"
S
sneaxiy 已提交
25
#include "paddle/fluid/platform/enforce.h"
26
#include "paddle/fluid/platform/place.h"
27

28
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
29
#include "paddle/fluid/memory/allocation/cuda_allocator.h"
S
sneaxiy 已提交
30
#include "paddle/fluid/memory/allocation/pinned_allocator.h"
31
#include "paddle/fluid/memory/allocation/stream_safe_cuda_allocator.h"
32
#include "paddle/fluid/memory/allocation/thread_local_allocator.h"
33
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
34 35

#ifdef PADDLE_WITH_CUDA
36
#include "paddle/fluid/platform/device/gpu/cuda/cuda_graph.h"
37
#endif
38

39 40 41 42 43
#if CUDA_VERSION >= 10020
#include "paddle/fluid/memory/allocation/cuda_virtual_mem_allocator.h"
#include "paddle/fluid/memory/allocation/virtual_memory_auto_growth_best_fit_allocator.h"
#include "paddle/fluid/platform/dynload/cuda_driver.h"
#endif
44
#endif
45

46
#ifdef PADDLE_WITH_XPU
47
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
48
#endif
49 50 51 52

#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/memory/allocation/npu_pinned_allocator.h"
#endif
53

Z
Zeng Jinle 已提交
54
PADDLE_DEFINE_EXPORTED_int64(
55
    gpu_allocator_retry_time, 10000,
S
sneaxiy 已提交
56 57 58
    "The retry time (milliseconds) when allocator fails "
    "to allocate memory. No retry if this value is not greater than 0");

Z
Zeng Jinle 已提交
59 60 61 62
PADDLE_DEFINE_EXPORTED_bool(
    use_system_allocator, false,
    "Whether to use system allocator to allocate CPU and GPU memory. "
    "Only used for unittests.");
63

64 65 66
PADDLE_DEFINE_EXPORTED_bool(use_virtual_memory_auto_growth, false,
                            "Use VirtualMemoryAutoGrowthBestFitAllocator.");

67 68 69 70 71 72
// NOTE(Ruibiao): This FLAGS is just to be compatibled with
// the old single-stream CUDA allocator. It will be removed
// after StreamSafeCudaAllocator has been fully tested.
PADDLE_DEFINE_EXPORTED_bool(use_stream_safe_cuda_allocator, true,
                            "Enable StreamSafeCUDAAllocator");

73 74
DECLARE_string(allocator_strategy);

75 76 77 78
namespace paddle {
namespace memory {
namespace allocation {

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
#ifdef PADDLE_WITH_CUDA
class CUDAGraphAllocator
    : public Allocator,
      public std::enable_shared_from_this<CUDAGraphAllocator> {
 private:
  class PrivateAllocation : public Allocation {
   public:
    PrivateAllocation(CUDAGraphAllocator* allocator,
                      AllocationPtr underlying_allocation)
        : Allocation(underlying_allocation->ptr(),
                     underlying_allocation->size(),
                     underlying_allocation->place()),
          allocator_(allocator->shared_from_this()),
          underlying_allocation_(std::move(underlying_allocation)) {}

   private:
    std::shared_ptr<Allocator> allocator_;
    AllocationPtr underlying_allocation_;
  };

  explicit CUDAGraphAllocator(const std::shared_ptr<Allocator>& allocator)
      : underlying_allocator_(allocator) {}

 public:
  static std::shared_ptr<Allocator> Create(
      const std::shared_ptr<Allocator>& allocator) {
    return std::shared_ptr<Allocator>(new CUDAGraphAllocator(allocator));
  }

 protected:
  Allocation* AllocateImpl(size_t size) {
    VLOG(10) << "Allocate " << size << " for CUDA Graph";
    return new PrivateAllocation(this, underlying_allocator_->Allocate(size));
  }

  void FreeImpl(Allocation* allocation) {
    VLOG(10) << "delete for CUDA Graph";
    delete allocation;
  }

 private:
  std::shared_ptr<Allocator> underlying_allocator_;
};
#endif

Y
Yu Yang 已提交
124 125
class AllocatorFacadePrivate {
 public:
126 127
  using AllocatorMap = std::map<platform::Place, std::shared_ptr<Allocator>>;

128 129 130 131 132 133
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  using CUDAAllocatorMap =
      std::map<platform::CUDAPlace,
               std::map<gpuStream_t, std::shared_ptr<Allocator>>>;
#endif

134 135 136
  explicit AllocatorFacadePrivate(bool allow_free_idle_chunk = true) {
    strategy_ = GetAllocatorStrategy();
    switch (strategy_) {
137 138
      case AllocatorStrategy::kNaiveBestFit: {
        InitNaiveBestFitCPUAllocator();
139
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
140 141 142 143 144
        if (FLAGS_use_stream_safe_cuda_allocator) {
          LOG(WARNING) << "FLAGS_use_stream_safe_cuda_allocator is invalid for "
                          "naive_best_fit strategy";
          FLAGS_use_stream_safe_cuda_allocator = false;
        }
145
        for (int dev_id = 0; dev_id < platform::GetGPUDeviceCount(); ++dev_id) {
146 147 148
          InitNaiveBestFitCUDAAllocator(platform::CUDAPlace(dev_id));
        }
        InitNaiveBestFitCUDAPinnedAllocator();
149
#endif
150 151 152 153 154
#ifdef PADDLE_WITH_XPU
        for (int dev_id = 0; dev_id < platform::GetXPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitXPUAllocator(platform::XPUPlace(dev_id));
        }
#endif
155 156 157 158
#ifdef PADDLE_WITH_ASCEND_CL
        for (int dev_id = 0; dev_id < platform::GetNPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitNPUAllocator(platform::NPUPlace(dev_id));
        }
159
        InitNaiveBestFitNPUPinnedAllocator();
160
#endif
Z
Zeng Jinle 已提交
161 162
        break;
      }
163 164 165

      case AllocatorStrategy::kAutoGrowth: {
        InitNaiveBestFitCPUAllocator();
166 167 168 169 170
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
        allow_free_idle_chunk_ = allow_free_idle_chunk;
        if (FLAGS_use_stream_safe_cuda_allocator) {
          // TODO(Ruibiao): Support multi-stream allocator for other strategies
          default_stream_ = nullptr;
171
          for (int dev_id = 0; dev_id < platform::GetGPUDeviceCount();
172 173 174 175 176
               ++dev_id) {
            InitStreamSafeCUDAAllocator(platform::CUDAPlace(dev_id),
                                        default_stream_);
          }
        } else {
177
          for (int dev_id = 0; dev_id < platform::GetGPUDeviceCount();
178 179 180 181 182 183 184
               ++dev_id) {
            InitAutoGrowthCUDAAllocator(platform::CUDAPlace(dev_id),
                                        allow_free_idle_chunk_);
          }
        }
        InitNaiveBestFitCUDAPinnedAllocator();
#endif
185 186 187 188
#ifdef PADDLE_WITH_XPU
        for (int dev_id = 0; dev_id < platform::GetXPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitXPUAllocator(platform::XPUPlace(dev_id));
        }
189
#endif
Z
Zeng Jinle 已提交
190 191
        break;
      }
192

193 194
      case AllocatorStrategy::kThreadLocal: {
        InitNaiveBestFitCPUAllocator();
195 196 197 198 199
#ifdef PADDLE_WITH_XPU
        for (int dev_id = 0; dev_id < platform::GetXPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitXPUAllocator(platform::XPUPlace(dev_id));
        }
#endif
200
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
201 202 203 204 205 206
        if (FLAGS_use_stream_safe_cuda_allocator) {
          LOG(WARNING) << "FLAGS_use_stream_safe_cuda_allocator is invalid for "
                          "thread_local strategy";
          FLAGS_use_stream_safe_cuda_allocator = false;
        }

207
        for (int dev_id = 0; dev_id < platform::GetGPUDeviceCount(); ++dev_id) {
208 209 210 211 212 213 214
          InitThreadLocalCUDAAllocator(platform::CUDAPlace(dev_id));
        }
        InitNaiveBestFitCUDAPinnedAllocator();
#endif
        break;
      }

Z
Zeng Jinle 已提交
215
      default: {
216
        PADDLE_THROW(platform::errors::InvalidArgument(
217
            "Unsupported allocator strategy: %d", static_cast<int>(strategy_)));
Z
Zeng Jinle 已提交
218
      }
Y
Yu Yang 已提交
219
    }
Z
Zeng Jinle 已提交
220
    InitZeroSizeAllocators();
221
    InitSystemAllocators();
222 223 224 225 226 227

    if (FLAGS_gpu_allocator_retry_time > 0) {
      WrapCUDARetryAllocator(FLAGS_gpu_allocator_retry_time);
    }

    CheckAllocThreadSafe();
Z
Zeng Jinle 已提交
228 229 230 231
  }

  inline const std::shared_ptr<Allocator>& GetAllocator(
      const platform::Place& place, size_t size) {
232
    VLOG(6) << "GetAllocator"
L
Leo Chen 已提交
233
            << " " << place << " " << size;
234 235
    const auto& allocators =
        (size > 0 ? (UNLIKELY(FLAGS_use_system_allocator) ? system_allocators_
236
                                                          : GetAllocatorMap())
237
                  : zero_size_allocators_);
Z
Zeng Jinle 已提交
238
    auto iter = allocators.find(place);
239 240 241
    PADDLE_ENFORCE_NE(iter, allocators.end(),
                      platform::errors::NotFound(
                          "No allocator found for the place, %s", place));
Z
Zeng Jinle 已提交
242
    return iter->second;
243 244
  }

245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  const std::shared_ptr<Allocator>& GetAllocator(
      const platform::CUDAPlace& place, const gpuStream_t& stream,
      bool create_if_not_found = false) {
    auto place_it = cuda_allocators_.find(place);
    PADDLE_ENFORCE_NE(place_it, cuda_allocators_.end(),
                      platform::errors::NotFound(
                          "No allocator found for the place %s", place));

    const std::map<gpuStream_t, std::shared_ptr<Allocator>>& allocator_map =
        place_it->second;
    auto stream_it = allocator_map.find(stream);
    if (stream_it == allocator_map.end()) {
      if (create_if_not_found) {
        InitStreamSafeCUDAAllocator(place, stream);
        return cuda_allocators_[place][stream];
      } else {
        PADDLE_THROW(platform::errors::NotFound(
            "No allocator found for stream %s in place %s", stream, place));
      }
    }
    return stream_it->second;
  }

  gpuStream_t GetDefaultStream() { return default_stream_; }

  void RecordStream(Allocation* allocation, const gpuStream_t& stream) {
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(allocation->place()), true,
        platform::errors::InvalidArgument(
            "Not allow to record stream for an allocation with place %s",
            allocation->place()));
    dynamic_cast<StreamSafeCUDAAllocation*>(allocation)->RecordStream(stream);
  }

#ifdef PADDLE_WITH_CUDA
  void PrepareMemoryPoolForCUDAGraph(CUDAGraphID id) {
    PADDLE_ENFORCE_EQ(strategy_, AllocatorStrategy::kAutoGrowth,
                      platform::errors::InvalidArgument(
                          "CUDA Graph is only supported when the "
                          "FLAGS_allocator_strategy=\"auto_growth\", but got "
                          "FLAGS_allocator_strategy=\"%s\"",
                          FLAGS_allocator_strategy));
    auto& allocator = cuda_graph_allocator_map_[id];
    PADDLE_ENFORCE_EQ(
        allocator.get(), nullptr,
        platform::errors::InvalidArgument(
            "The memory pool of the CUDA Graph with ID %d have been prepared.",
            id));
    allocator.reset(
        new AllocatorFacadePrivate(/*allow_free_idle_chunk=*/false));
    for (auto& item : allocator->allocators_) {
      auto& old_allocator = item.second;
      old_allocator = CUDAGraphAllocator::Create(old_allocator);
299
    }
300 301 302 303 304 305 306 307 308 309 310
    VLOG(10) << "Prepare memory pool for CUDA Graph with ID " << id;
  }

  void RemoveMemoryPoolOfCUDAGraph(CUDAGraphID id) {
    auto iter = cuda_graph_allocator_map_.find(id);
    PADDLE_ENFORCE_NE(iter, cuda_graph_allocator_map_.end(),
                      platform::errors::InvalidArgument(
                          "Cannot find CUDA Graph with ID = %d", id));
    cuda_graph_allocator_map_.erase(iter);
    VLOG(10) << "Remove memory pool of CUDA Graph with ID " << id;
  }
311
#endif
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
#endif

 private:
  class ZeroSizeAllocator : public Allocator {
   public:
    explicit ZeroSizeAllocator(platform::Place place) : place_(place) {}
    bool IsAllocThreadSafe() const override { return true; }

   protected:
    Allocation* AllocateImpl(size_t size) override {
      return new Allocation(nullptr, 0, place_);
    }
    void FreeImpl(Allocation* allocation) override { delete allocation; }

   private:
    platform::Place place_;
  };

  const AllocatorMap& GetAllocatorMap() {
#ifdef PADDLE_WITH_CUDA
    if (UNLIKELY(platform::CUDAGraph::IsCapturing())) {
      auto id = platform::CUDAGraph::CapturingID();
      auto iter = cuda_graph_allocator_map_.find(id);
      PADDLE_ENFORCE_NE(
          iter, cuda_graph_allocator_map_.end(),
          platform::errors::PermissionDenied(
              "No memory pool is prepared for CUDA Graph capturing."));
      return iter->second->allocators_;
    } else {
      return allocators_;
342
    }
343 344
#else
    return allocators_;
345 346 347
#endif
  }

348 349 350
  void InitNaiveBestFitCPUAllocator() {
    allocators_[platform::CPUPlace()] =
        std::make_shared<NaiveBestFitAllocator>(platform::CPUPlace());
Y
Yu Yang 已提交
351 352
  }

353
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
354 355 356
  void InitNaiveBestFitCUDAPinnedAllocator() {
    allocators_[platform::CUDAPinnedPlace()] =
        std::make_shared<NaiveBestFitAllocator>(platform::CUDAPinnedPlace());
357 358
  }

359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
  void InitStreamSafeCUDAAllocator(platform::CUDAPlace p, gpuStream_t stream) {
    PADDLE_ENFORCE_EQ(
        strategy_, AllocatorStrategy::kAutoGrowth,
        platform::errors::Unimplemented(
            "Only support auto-growth strategey for StreamSafeCUDAAllocator, "
            "the allocator strategy %d is unsupported for multi-stream",
            static_cast<int>(strategy_)));
    VLOG(9) << "Init CUDA allocator for stream " << stream << " in place " << p;
    std::lock_guard<SpinLock> lock_guard(cuda_allocators_lock_);
    try {
      GetAllocator(p, stream);
      VLOG(9) << "Other thread had build a allocator for stream " << stream
              << " in place " << p;
    } catch (platform::EnforceNotMet&) {
      InitAutoGrowthCUDAAllocator(p, stream);
      WrapStreamSafeCUDAAllocator(p, stream);
      WrapCUDARetryAllocator(p, stream, FLAGS_gpu_allocator_retry_time);
    } catch (...) {
      throw;
    }
  }

381 382
  void InitNaiveBestFitCUDAAllocator(platform::CUDAPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
383
  }
Y
Yu Yang 已提交
384

385 386 387 388 389 390 391 392 393 394 395 396
  void InitAutoGrowthCUDAAllocator(platform::CUDAPlace p, gpuStream_t stream) {
#if defined(PADDLE_WITH_HIP)
    auto cuda_allocator = std::make_shared<CUDAAllocator>(p);
    cuda_allocators_[p][stream] = std::make_shared<AutoGrowthBestFitAllocator>(
        cuda_allocator, platform::GpuMinChunkSize(), allow_free_idle_chunk_);
#endif

#if defined(PADDLE_WITH_CUDA)
#if CUDA_VERSION >= 10020
    CUdevice device;
    int val;
    try {
397
      PADDLE_ENFORCE_GPU_SUCCESS(
398 399
          paddle::platform::dynload::cuDeviceGet(&device, p.GetDeviceId()));

400
      PADDLE_ENFORCE_GPU_SUCCESS(
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
          paddle::platform::dynload::cuDeviceGetAttribute(
              &val, CU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED,
              device));
    } catch (...) {
      val = 0;
    }

    if (val > 0 && FLAGS_use_virtual_memory_auto_growth) {
      auto cuda_allocator = std::make_shared<CUDAVirtualMemAllocator>(p);
      cuda_allocators_[p][stream] =
          std::make_shared<VirtualMemoryAutoGrowthBestFitAllocator>(
              cuda_allocator, platform::GpuMinChunkSize(), p);
    } else {
      auto cuda_allocator = std::make_shared<CUDAAllocator>(p);
      cuda_allocators_[p][stream] =
          std::make_shared<AutoGrowthBestFitAllocator>(
              cuda_allocator, platform::GpuMinChunkSize(),
              allow_free_idle_chunk_);
    }
#else
    auto cuda_allocator = std::make_shared<CUDAAllocator>(p);
    auto alignment = platform::GpuMinChunkSize();
    bool need_addr_align = true;
    // NOTE: sometimes, since cuda runtime can not be forked, calling any cuda
    // API in that case may got cuda error(3), i.e.,
    // cudaErrorInitializationError. And, the CUDAAllocator is only initialized
    // but not really used.
    // Here, the try-catch block is added to handle the case that
    // GetDeviceProperties() may failed in the multiple process(for example, in
    // dataloader with num_worker > 0)
    try {
      const auto& prop = platform::GetDeviceProperties(p.GetDeviceId());
      need_addr_align = prop.textureAlignment < alignment;
      VLOG(4) << "GetDeviceProperties ok, textureAlignment: "
              << prop.textureAlignment
              << ", set need_addr_align=" << need_addr_align;
    } catch (...) {
      need_addr_align = true;
      VLOG(4) << "GetDeviceProperties failed, set need_addr_align=true";
    }
    // The address returned is aligned already,
    // ref:
    // https://stackoverflow.com/questions/14082964/cuda-alignment-256bytes-seriously/14083295#14083295
    std::shared_ptr<Allocator> underlying_allocator{nullptr};
    if (need_addr_align) {
      VLOG(10) << "use AlignedAllocator with alignment: " << alignment;
      underlying_allocator =
          std::make_shared<AlignedAllocator>(underlying_allocator, alignment);
    } else {
      VLOG(10) << "not use AlignedAllocator with alignment: " << alignment;
      underlying_allocator = cuda_allocator;
    }

    cuda_allocators_[p][stream] = std::make_shared<AutoGrowthBestFitAllocator>(
        underlying_allocator, alignment, 0, allow_free_idle_chunk_);
#endif
#endif
458 459
  }

460
  // NOTE(Ruibiao): Old single-stream version, will be removed later
461 462
  void InitAutoGrowthCUDAAllocator(platform::CUDAPlace p,
                                   bool allow_free_idle_chunk) {
463 464 465 466 467 468 469 470 471 472 473
#if defined(PADDLE_WITH_HIP)
    auto cuda_allocator = std::make_shared<CUDAAllocator>(p);
    allocators_[p] = std::make_shared<AutoGrowthBestFitAllocator>(
        cuda_allocator, platform::GpuMinChunkSize(), allow_free_idle_chunk);
#endif

#if defined(PADDLE_WITH_CUDA)
#if CUDA_VERSION >= 10020
    CUdevice device;
    int val;
    try {
474
      PADDLE_ENFORCE_GPU_SUCCESS(
475 476
          paddle::platform::dynload::cuDeviceGet(&device, p.GetDeviceId()));

477
      PADDLE_ENFORCE_GPU_SUCCESS(
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
          paddle::platform::dynload::cuDeviceGetAttribute(
              &val, CU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED,
              device));
    } catch (...) {
      val = 0;
    }

    if (val > 0 && FLAGS_use_virtual_memory_auto_growth) {
      auto cuda_allocator = std::make_shared<CUDAVirtualMemAllocator>(p);
      allocators_[p] =
          std::make_shared<VirtualMemoryAutoGrowthBestFitAllocator>(
              cuda_allocator, platform::GpuMinChunkSize(), p);
    } else {
      auto cuda_allocator = std::make_shared<CUDAAllocator>(p);
      allocators_[p] = std::make_shared<AutoGrowthBestFitAllocator>(
          cuda_allocator, platform::GpuMinChunkSize(), allow_free_idle_chunk);
    }

#else
497
    auto cuda_allocator = std::make_shared<CUDAAllocator>(p);
L
Leo Chen 已提交
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
    auto alignment = platform::GpuMinChunkSize();
    bool need_addr_align = true;
    // NOTE: sometimes, since cuda runtime can not be forked, calling any cuda
    // API in that case may got cuda error(3), i.e.,
    // cudaErrorInitializationError. And, the CUDAAllocator is only initialized
    // but not really used.
    // Here, the try-catch block is added to handle the case that
    // GetDeviceProperties() may failed in the multiple process(for example, in
    // dataloader with num_worker > 0)
    try {
      const auto& prop = platform::GetDeviceProperties(p.GetDeviceId());
      need_addr_align = prop.textureAlignment < alignment;
      VLOG(4) << "GetDeviceProperties ok, textureAlignment: "
              << prop.textureAlignment
              << ", set need_addr_align=" << need_addr_align;
    } catch (...) {
      need_addr_align = true;
      VLOG(4) << "GetDeviceProperties failed, set need_addr_align=true";
    }
    // The address returned is aligned already,
    // ref:
    // https://stackoverflow.com/questions/14082964/cuda-alignment-256bytes-seriously/14083295#14083295
    std::shared_ptr<Allocator> underlying_allocator{nullptr};
    if (need_addr_align) {
      VLOG(10) << "use AlignedAllocator with alignment: " << alignment;
      underlying_allocator =
          std::make_shared<AlignedAllocator>(underlying_allocator, alignment);
    } else {
      VLOG(10) << "not use AlignedAllocator with alignment: " << alignment;
      underlying_allocator = cuda_allocator;
    }
529
    allocators_[p] = std::make_shared<AutoGrowthBestFitAllocator>(
L
Leo Chen 已提交
530
        underlying_allocator, alignment, 0, allow_free_idle_chunk);
531 532
#endif
#endif
S
sneaxiy 已提交
533
  }
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564

  void InitThreadLocalCUDAAllocator(platform::CUDAPlace p) {
    allocators_[p] = std::make_shared<ThreadLocalCUDAAllocator>(p);
  }

  void WrapStreamSafeCUDAAllocator(platform::CUDAPlace p, gpuStream_t stream) {
    const std::shared_ptr<Allocator>& underlying_allocator =
        GetAllocator(p, stream);
    cuda_allocators_[p][stream] = std::make_shared<StreamSafeCUDAAllocator>(
        underlying_allocator, p, stream);
  }

  void WrapCUDARetryAllocator(platform::CUDAPlace p, gpuStream_t stream,
                              size_t retry_time) {
    PADDLE_ENFORCE_GT(
        retry_time, 0,
        platform::errors::InvalidArgument(
            "Retry time should be larger than 0, but got %d", retry_time));
    std::shared_ptr<Allocator> allocator = GetAllocator(p, stream);
    allocator = std::make_shared<RetryAllocator>(allocator, retry_time);
  }

  static void CheckCUDAAllocThreadSafe(const CUDAAllocatorMap& allocators) {
    for (auto& place_pair : allocators) {
      for (auto& stream_pair : place_pair.second) {
        PADDLE_ENFORCE_EQ(stream_pair.second->IsAllocThreadSafe(), true,
                          platform::errors::InvalidArgument(
                              "Public allocators must be thread safe"));
      }
    }
  }
565
#endif
S
sneaxiy 已提交
566

567 568 569 570 571 572
#ifdef PADDLE_WITH_XPU
  void InitNaiveBestFitXPUAllocator(platform::XPUPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }
#endif

573 574 575 576
#ifdef PADDLE_WITH_ASCEND_CL
  void InitNaiveBestFitNPUAllocator(platform::NPUPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }
577 578 579 580 581

  void InitNaiveBestFitNPUPinnedAllocator() {
    allocators_[platform::NPUPinnedPlace()] =
        std::make_shared<paddle::memory::allocation::NPUPinnedAllocator>();
  }
582 583
#endif

584 585 586 587 588 589 590 591
  void InitSystemAllocators() {
    if (!system_allocators_.empty()) return;
    system_allocators_[platform::CPUPlace()] = std::make_shared<CPUAllocator>();
#ifdef PADDLE_WITH_XPU
    int device_count = platform::GetXPUDeviceCount();
    for (int i = 0; i < device_count; ++i) {
      platform::XPUPlace p(i);
      system_allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
Z
Zeng Jinle 已提交
592
    }
593 594 595 596
#endif
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    system_allocators_[platform::CUDAPinnedPlace()] =
        std::make_shared<CPUPinnedAllocator>();
597
    int device_count = platform::GetGPUDeviceCount();
598 599 600 601 602 603
    for (int i = 0; i < device_count; ++i) {
      platform::CUDAPlace p(i);
      system_allocators_[p] = std::make_shared<CUDAAllocator>(p);
    }
#endif
  }
Z
Zeng Jinle 已提交
604 605

  void InitZeroSizeAllocators() {
606
    if (!zero_size_allocators_.empty()) return;
Z
Zeng Jinle 已提交
607 608
    std::vector<platform::Place> places;
    places.emplace_back(platform::CPUPlace());
609
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
610
    int device_count = platform::GetGPUDeviceCount();
Z
Zeng Jinle 已提交
611 612 613 614 615
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::CUDAPlace(dev_id));
    }
    places.emplace_back(platform::CUDAPinnedPlace());
#endif
616 617 618 619 620 621
#ifdef PADDLE_WITH_XPU
    int device_count = platform::GetXPUDeviceCount();
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::XPUPlace(dev_id));
    }
#endif
622 623 624 625 626 627
#ifdef PADDLE_WITH_ASCEND_CL
    int device_count = platform::GetNPUDeviceCount();
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::NPUPlace(dev_id));
    }
#endif
Z
Zeng Jinle 已提交
628 629 630

    for (auto& p : places) {
      zero_size_allocators_[p] = std::make_shared<ZeroSizeAllocator>(p);
Y
Yu Yang 已提交
631 632
    }
  }
Z
Zeng Jinle 已提交
633

634 635 636 637 638
  static void CheckAllocThreadSafe(const AllocatorMap& allocators) {
    for (auto& pair : allocators) {
      PADDLE_ENFORCE_EQ(pair.second->IsAllocThreadSafe(), true,
                        platform::errors::InvalidArgument(
                            "Public allocators must be thread safe"));
639
    }
640
  }
641

642 643 644 645
  void CheckAllocThreadSafe() const {
    CheckAllocThreadSafe(allocators_);
    CheckAllocThreadSafe(zero_size_allocators_);
    CheckAllocThreadSafe(system_allocators_);
646 647 648 649 650
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    if (FLAGS_use_stream_safe_cuda_allocator) {
      CheckCUDAAllocThreadSafe(cuda_allocators_);
    }
#endif
651 652
  }

653
  // NOTE(Ruibiao): Old single-stream version, will be removed later
654
  void WrapCUDARetryAllocator(size_t retry_time) {
655 656 657 658
    PADDLE_ENFORCE_GT(
        retry_time, 0,
        platform::errors::InvalidArgument(
            "Retry time should be larger than 0, but got %d", retry_time));
659 660 661 662 663 664 665
    for (auto& pair : allocators_) {
      if (platform::is_gpu_place(pair.first)) {
        pair.second = std::make_shared<RetryAllocator>(pair.second, retry_time);
      }
    }
  }

666 667 668 669 670
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  // a standalone CUDA allocator to support multi-stream GC in new executor
  CUDAAllocatorMap cuda_allocators_;
  gpuStream_t default_stream_;
  SpinLock cuda_allocators_lock_;
671 672 673
#ifdef PADDLE_WITH_CUDA
  std::unordered_map<CUDAGraphID, std::unique_ptr<AllocatorFacadePrivate>>
      cuda_graph_allocator_map_;
674
#endif
675 676
#endif
  AllocatorStrategy strategy_;
677
  AllocatorMap allocators_;
678 679
  static AllocatorMap zero_size_allocators_;
  static AllocatorMap system_allocators_;
680
  bool allow_free_idle_chunk_;
681
};
682 683 684 685
AllocatorFacadePrivate::AllocatorMap
    AllocatorFacadePrivate::zero_size_allocators_;
AllocatorFacadePrivate::AllocatorMap AllocatorFacadePrivate::system_allocators_;

Y
Refine  
Yu Yang 已提交
686
// Pimpl. Make interface clean.
687
AllocatorFacade::AllocatorFacade() : m_(new AllocatorFacadePrivate()) {}
688 689 690
// delete m_ may cause core dump when the destructor of python in conflict with
// cpp.
AllocatorFacade::~AllocatorFacade() {}
691 692 693 694 695 696

AllocatorFacade& AllocatorFacade::Instance() {
  static AllocatorFacade instance;
  return instance;
}

697 698 699 700 701 702 703 704 705 706 707 708
const std::shared_ptr<Allocator>& AllocatorFacade::GetAllocator(
    const platform::Place& place) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (FLAGS_use_stream_safe_cuda_allocator && platform::is_gpu_place(place) &&
      FLAGS_use_system_allocator == false) {
    return m_->GetAllocator(BOOST_GET_CONST(platform::CUDAPlace, place),
                            m_->GetDefaultStream());
  }
#endif
  return m_->GetAllocator(place, /* A non-zero num to choose allocator_ */ 1);
}

709
std::shared_ptr<Allocation> AllocatorFacade::AllocShared(
710 711
    const platform::Place& place, size_t size) {
  return std::shared_ptr<Allocation>(Alloc(place, size));
712 713
}

714 715
AllocationPtr AllocatorFacade::Alloc(const platform::Place& place,
                                     size_t size) {
716 717 718 719 720 721 722
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (FLAGS_use_stream_safe_cuda_allocator && platform::is_gpu_place(place) &&
      size > 0 && FLAGS_use_system_allocator == false) {
    return Alloc(BOOST_GET_CONST(platform::CUDAPlace, place), size,
                 m_->GetDefaultStream());
  }
#endif
723
  return m_->GetAllocator(place, size)->Allocate(size);
724 725
}

W
Wilber 已提交
726
uint64_t AllocatorFacade::Release(const platform::Place& place) {
727 728 729 730 731 732 733
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (FLAGS_use_stream_safe_cuda_allocator && platform::is_gpu_place(place) &&
      FLAGS_use_system_allocator == false) {
    return Release(BOOST_GET_CONST(platform::CUDAPlace, place),
                   m_->GetDefaultStream());
  }
#endif
W
Wilber 已提交
734
  return m_->GetAllocator(place, /* A non-zero num to choose allocator_ */ 1)
735 736 737
      ->Release(place);
}

738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
std::shared_ptr<Allocation> AllocatorFacade::AllocShared(
    const platform::CUDAPlace& place, size_t size, const gpuStream_t& stream) {
  PADDLE_ENFORCE_EQ(
      FLAGS_use_stream_safe_cuda_allocator, true,
      platform::errors::Unimplemented(
          "StreamSafeCUDAAllocator is disabled, you should not call this "
          "multi-stream 'AllocaShared' function. "
          "To enable it, you can enter 'export "
          "FLAGS_use_stream_safe_cuda_allocator=true' in the terminal."));
  return std::shared_ptr<Allocation>(Alloc(place, size, stream));
}

AllocationPtr AllocatorFacade::Alloc(const platform::CUDAPlace& place,
                                     size_t size, const gpuStream_t& stream) {
  PADDLE_ENFORCE_EQ(
      FLAGS_use_stream_safe_cuda_allocator, true,
      platform::errors::Unimplemented(
          "StreamSafeCUDAAllocator is disabled, you should not call this "
          "multi-stream 'Alloca' function. "
          "To enable it, you can enter 'export "
          "FLAGS_use_stream_safe_cuda_allocator=true' in the terminal."));
  if (LIKELY(size > 0 && FLAGS_use_system_allocator == false)) {
    return m_->GetAllocator(place, stream, /* creat_if_not_found = */ true)
        ->Allocate(size);
  } else {
    return m_->GetAllocator(place, size)->Allocate(size);
  }
}

uint64_t AllocatorFacade::Release(const platform::CUDAPlace& place,
                                  const gpuStream_t& stream) {
  PADDLE_ENFORCE_EQ(
      FLAGS_use_stream_safe_cuda_allocator, true,
      platform::errors::Unimplemented(
          "StreamSafeCUDAAllocator is disabled, you should not call this "
          "multi-stream 'Release' function. "
          "To enable it, you can enter 'export "
          "FLAGS_use_stream_safe_cuda_allocator=true' in the terminal."));
  return m_->GetAllocator(place, stream)->Release(place);
}

void AllocatorFacade::RecordStream(Allocation* allocation,
                                   const gpuStream_t& stream) {
  PADDLE_ENFORCE_EQ(
      FLAGS_use_stream_safe_cuda_allocator, true,
      platform::errors::Unimplemented(
          "StreamSafeCUDAAllocator is disabled, you should not call this "
          "'RecordStream' function. "
          "To enable it, you can enter 'export "
          "FLAGS_use_stream_safe_cuda_allocator=true' in the terminal."));
  m_->RecordStream(allocation, stream);
790 791
}

792 793 794 795 796 797 798 799 800
#ifdef PADDLE_WITH_CUDA
void AllocatorFacade::PrepareMemoryPoolForCUDAGraph(CUDAGraphID id) {
  return m_->PrepareMemoryPoolForCUDAGraph(id);
}

void AllocatorFacade::RemoveMemoryPoolOfCUDAGraph(CUDAGraphID id) {
  return m_->RemoveMemoryPoolOfCUDAGraph(id);
}
#endif
801
#endif
802 803 804
}  // namespace allocation
}  // namespace memory
}  // namespace paddle