allocator_facade.cc 40.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16
#include "paddle/fluid/memory/allocation/allocator_facade.h"

17
#include "gflags/gflags.h"
18
#include "paddle/fluid/memory/allocation/aligned_allocator.h"
19
#include "paddle/fluid/memory/allocation/allocator.h"
Y
Yu Yang 已提交
20
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
21
#include "paddle/fluid/memory/allocation/auto_growth_best_fit_allocator.h"
22
#include "paddle/fluid/memory/allocation/cpu_allocator.h"
23
#include "paddle/fluid/memory/allocation/naive_best_fit_allocator.h"
S
sneaxiy 已提交
24
#include "paddle/fluid/memory/allocation/retry_allocator.h"
S
sneaxiy 已提交
25
#include "paddle/fluid/platform/enforce.h"
26
#include "paddle/fluid/platform/place.h"
27

28
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
29
#include <shared_mutex>
30
#include "paddle/fluid/memory/allocation/cuda_allocator.h"
31
#include "paddle/fluid/memory/allocation/cuda_managed_allocator.h"
S
sneaxiy 已提交
32
#include "paddle/fluid/memory/allocation/pinned_allocator.h"
33
#include "paddle/fluid/memory/allocation/stream_safe_cuda_allocator.h"
34
#include "paddle/fluid/memory/allocation/thread_local_allocator.h"
35
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
36
#include "paddle/fluid/platform/device_context.h"
37
#include "paddle/phi/backends/gpu/gpu_context.h"
38 39

#ifdef PADDLE_WITH_CUDA
40
#include "paddle/fluid/platform/device/gpu/cuda/cuda_graph.h"
41
#endif
42

43 44 45 46 47
#if CUDA_VERSION >= 10020
#include "paddle/fluid/memory/allocation/cuda_virtual_mem_allocator.h"
#include "paddle/fluid/memory/allocation/virtual_memory_auto_growth_best_fit_allocator.h"
#include "paddle/fluid/platform/dynload/cuda_driver.h"
#endif
48
#endif
49

50
#ifdef PADDLE_WITH_XPU
51
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
52
#endif
53 54 55 56

#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/memory/allocation/npu_pinned_allocator.h"
#endif
57

J
jianghaicheng 已提交
58 59 60 61
#ifdef PADDLE_WITH_IPU
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
#endif

F
fwenguang 已提交
62 63 64 65
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

66 67 68 69 70
#ifdef PADDLE_WITH_CUSTOM_DEVICE
#include "paddle/fluid/memory/allocation/custom_allocator.h"
#include "paddle/fluid/platform/device/device_wrapper.h"
#endif

Z
Zeng Jinle 已提交
71
PADDLE_DEFINE_EXPORTED_int64(
72
    gpu_allocator_retry_time, 10000,
S
sneaxiy 已提交
73 74 75
    "The retry time (milliseconds) when allocator fails "
    "to allocate memory. No retry if this value is not greater than 0");

Z
Zeng Jinle 已提交
76 77 78 79
PADDLE_DEFINE_EXPORTED_bool(
    use_system_allocator, false,
    "Whether to use system allocator to allocate CPU and GPU memory. "
    "Only used for unittests.");
80

81 82 83
PADDLE_DEFINE_EXPORTED_bool(use_virtual_memory_auto_growth, false,
                            "Use VirtualMemoryAutoGrowthBestFitAllocator.");

84 85 86
// NOTE(Ruibiao): This FLAGS is just to be compatibled with
// the old single-stream CUDA allocator. It will be removed
// after StreamSafeCudaAllocator has been fully tested.
87
PADDLE_DEFINE_EXPORTED_bool(use_stream_safe_cuda_allocator, false,
88 89
                            "Enable StreamSafeCUDAAllocator");

90 91 92 93 94
PADDLE_DEFINE_EXPORTED_bool(use_cuda_managed_memory, false,
                            "Whether to use CUDAManagedAllocator to allocate "
                            "managed memory, only available for auto_growth "
                            "strategy");

95 96
DECLARE_string(allocator_strategy);

97 98 99 100
namespace paddle {
namespace memory {
namespace allocation {

101 102 103 104 105 106 107 108
#ifdef PADDLE_WITH_CUDA
class CUDAGraphAllocator
    : public Allocator,
      public std::enable_shared_from_this<CUDAGraphAllocator> {
 private:
  class PrivateAllocation : public Allocation {
   public:
    PrivateAllocation(CUDAGraphAllocator* allocator,
109
                      DecoratedAllocationPtr underlying_allocation)
F
From00 已提交
110 111 112
        : Allocation(
              underlying_allocation->ptr(), underlying_allocation->base_ptr(),
              underlying_allocation->size(), underlying_allocation->place()),
113 114 115 116 117
          allocator_(allocator->shared_from_this()),
          underlying_allocation_(std::move(underlying_allocation)) {}

   private:
    std::shared_ptr<Allocator> allocator_;
118
    DecoratedAllocationPtr underlying_allocation_;
119 120 121 122 123 124 125 126 127 128 129 130
  };

  explicit CUDAGraphAllocator(const std::shared_ptr<Allocator>& allocator)
      : underlying_allocator_(allocator) {}

 public:
  static std::shared_ptr<Allocator> Create(
      const std::shared_ptr<Allocator>& allocator) {
    return std::shared_ptr<Allocator>(new CUDAGraphAllocator(allocator));
  }

 protected:
131
  phi::Allocation* AllocateImpl(size_t size) {
132
    VLOG(10) << "Allocate " << size << " for CUDA Graph";
133 134 135
    return new PrivateAllocation(this,
                                 static_unique_ptr_cast<Allocation>(
                                     underlying_allocator_->Allocate(size)));
136 137
  }

138
  void FreeImpl(phi::Allocation* allocation) {
139 140 141 142 143 144 145 146 147
    VLOG(10) << "delete for CUDA Graph";
    delete allocation;
  }

 private:
  std::shared_ptr<Allocator> underlying_allocator_;
};
#endif

148 149 150 151 152 153 154 155
static bool IsCUDAGraphCapturing() {
#ifdef PADDLE_WITH_CUDA
  return UNLIKELY(platform::CUDAGraph::IsThisThreadCapturing());
#else
  return false;
#endif
}

Y
Yu Yang 已提交
156 157
class AllocatorFacadePrivate {
 public:
158 159
  using AllocatorMap = std::map<platform::Place, std::shared_ptr<Allocator>>;

160 161 162 163 164 165
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  using CUDAAllocatorMap =
      std::map<platform::CUDAPlace,
               std::map<gpuStream_t, std::shared_ptr<Allocator>>>;
#endif

166 167
  explicit AllocatorFacadePrivate(bool allow_free_idle_chunk = true) {
    strategy_ = GetAllocatorStrategy();
168 169
    is_stream_safe_cuda_allocator_used_ = false;

170
    switch (strategy_) {
171 172
      case AllocatorStrategy::kNaiveBestFit: {
        InitNaiveBestFitCPUAllocator();
J
jianghaicheng 已提交
173 174 175 176 177
#ifdef PADDLE_WITH_IPU
        for (int dev_id = 0; dev_id < platform::GetIPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitIPUAllocator(platform::IPUPlace(dev_id));
        }
#endif
178
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
179
        for (int dev_id = 0; dev_id < platform::GetGPUDeviceCount(); ++dev_id) {
180 181 182
          InitNaiveBestFitCUDAAllocator(platform::CUDAPlace(dev_id));
        }
        InitNaiveBestFitCUDAPinnedAllocator();
183
#endif
184 185 186 187 188
#ifdef PADDLE_WITH_XPU
        for (int dev_id = 0; dev_id < platform::GetXPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitXPUAllocator(platform::XPUPlace(dev_id));
        }
#endif
189 190 191 192
#ifdef PADDLE_WITH_ASCEND_CL
        for (int dev_id = 0; dev_id < platform::GetNPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitNPUAllocator(platform::NPUPlace(dev_id));
        }
193
        InitNaiveBestFitNPUPinnedAllocator();
F
fwenguang 已提交
194 195 196 197 198
#endif
#ifdef PADDLE_WITH_MLU
        for (int dev_id = 0; dev_id < platform::GetMLUDeviceCount(); ++dev_id) {
          InitNaiveBestFitMLUAllocator(platform::MLUPlace(dev_id));
        }
199 200
#endif
#ifdef PADDLE_WITH_CUSTOM_DEVICE
201
        auto device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
202 203
        for (const auto& dev_type : device_types) {
          for (size_t dev_id = 0;
204
               dev_id < phi::DeviceManager::GetDeviceCount(dev_type);
205 206 207 208 209
               ++dev_id) {
            InitNaiveBestFitCustomDeviceAllocator(
                platform::CustomPlace(dev_type, dev_id));
          }
        }
210
#endif
Z
Zeng Jinle 已提交
211 212
        break;
      }
213 214 215

      case AllocatorStrategy::kAutoGrowth: {
        InitNaiveBestFitCPUAllocator();
216 217
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
        allow_free_idle_chunk_ = allow_free_idle_chunk;
218 219 220 221 222
        for (int dev_id = 0; dev_id < platform::GetGPUDeviceCount(); ++dev_id) {
          InitAutoGrowthCUDAAllocator(platform::CUDAPlace(dev_id),
                                      allow_free_idle_chunk_);
        }

223 224 225 226 227 228 229 230 231 232 233 234 235
        // Note(Ruibiao): For GPU multi-stream case without CUDA graph
        // capturing, the 'allocators_' map(place -> Allocator) hold the
        // StreamSafeCUDAAllocator releate to defaultstream (i.e., the stream
        // directly got from DeviceContex), while the 'cuda_allocators_' map
        // (place -> map(stream -> Allocator)) hold the StreamSafeCUDAAllocator
        // releate to non-default stream (i.e., the stream users pass in). The
        // default stream Allocator is built in the structure of
        // AllocatorFacadePrivate, while the non-default stream is build in a
        // manner in GetAllocator function with 'create_if_not_found = ture'.
        // We make special treatment for the default stream for performance
        // reasons. Since most Alloc calls are for default stream in
        // application, treating it separately can avoid lots of overhead of
        // acquiring default stream and applying read-write lock.
236
        if (FLAGS_use_stream_safe_cuda_allocator) {
237 238 239 240
          if (LIKELY(!IsCUDAGraphCapturing())) {
            WrapStreamSafeCUDAAllocatorForDefault();
          }
          is_stream_safe_cuda_allocator_used_ = true;
241
        }
242

243 244
        InitNaiveBestFitCUDAPinnedAllocator();
#endif
245 246 247 248 249 250
#ifdef PADDLE_WITH_ASCEND_CL
        for (int dev_id = 0; dev_id < platform::GetNPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitNPUAllocator(platform::NPUPlace(dev_id));
        }
        InitNaiveBestFitNPUPinnedAllocator();
#endif
251 252 253 254
#ifdef PADDLE_WITH_XPU
        for (int dev_id = 0; dev_id < platform::GetXPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitXPUAllocator(platform::XPUPlace(dev_id));
        }
J
jianghaicheng 已提交
255 256 257 258 259
#endif
#ifdef PADDLE_WITH_IPU
        for (int dev_id = 0; dev_id < platform::GetIPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitIPUAllocator(platform::IPUPlace(dev_id));
        }
F
fwenguang 已提交
260 261 262 263 264
#endif
#ifdef PADDLE_WITH_MLU
        for (int dev_id = 0; dev_id < platform::GetMLUDeviceCount(); ++dev_id) {
          InitNaiveBestFitMLUAllocator(platform::MLUPlace(dev_id));
        }
265 266
#endif
#ifdef PADDLE_WITH_CUSTOM_DEVICE
267
        auto device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
268 269
        for (const auto& dev_type : device_types) {
          for (size_t dev_id = 0;
270
               dev_id < phi::DeviceManager::GetDeviceCount(dev_type);
271 272 273 274 275
               ++dev_id) {
            InitAutoGrowthCustomDeviceAllocator(
                platform::CustomPlace(dev_type, dev_id), allow_free_idle_chunk);
          }
        }
276
#endif
Z
Zeng Jinle 已提交
277 278
        break;
      }
279

280 281
      case AllocatorStrategy::kThreadLocal: {
        InitNaiveBestFitCPUAllocator();
282 283 284 285 286
#ifdef PADDLE_WITH_XPU
        for (int dev_id = 0; dev_id < platform::GetXPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitXPUAllocator(platform::XPUPlace(dev_id));
        }
#endif
J
jianghaicheng 已提交
287 288 289 290 291
#ifdef PADDLE_WITH_IPU
        for (int dev_id = 0; dev_id < platform::GetIPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitIPUAllocator(platform::IPUPlace(dev_id));
        }
#endif
292
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
293
        for (int dev_id = 0; dev_id < platform::GetGPUDeviceCount(); ++dev_id) {
294 295 296
          InitThreadLocalCUDAAllocator(platform::CUDAPlace(dev_id));
        }
        InitNaiveBestFitCUDAPinnedAllocator();
F
fwenguang 已提交
297 298 299 300 301
#endif
#ifdef PADDLE_WITH_MLU
        for (int dev_id = 0; dev_id < platform::GetMLUDeviceCount(); ++dev_id) {
          InitNaiveBestFitMLUAllocator(platform::MLUPlace(dev_id));
        }
302 303 304 305
#endif
        break;
      }

Z
Zeng Jinle 已提交
306
      default: {
307
        PADDLE_THROW(platform::errors::InvalidArgument(
308
            "Unsupported allocator strategy: %d", static_cast<int>(strategy_)));
Z
Zeng Jinle 已提交
309
      }
Y
Yu Yang 已提交
310
    }
Z
Zeng Jinle 已提交
311
    InitZeroSizeAllocators();
312
    InitSystemAllocators();
313 314 315 316 317 318

    if (FLAGS_gpu_allocator_retry_time > 0) {
      WrapCUDARetryAllocator(FLAGS_gpu_allocator_retry_time);
    }

    CheckAllocThreadSafe();
319 320

#ifdef PADDLE_WITH_CUDA
321 322 323
    // No need to wrap CUDAGraphAllocator for StreamSafeCUDAAllocator
    if (!is_stream_safe_cuda_allocator_used_ &&
        UNLIKELY(IsCUDAGraphCapturing())) {
324 325 326
      WrapCUDAGraphAllocator();
    }
#endif
Z
Zeng Jinle 已提交
327 328 329 330
  }

  inline const std::shared_ptr<Allocator>& GetAllocator(
      const platform::Place& place, size_t size) {
331
    VLOG(6) << "GetAllocator"
L
Leo Chen 已提交
332
            << " " << place << " " << size;
333 334
    const auto& allocators =
        (size > 0 ? (UNLIKELY(FLAGS_use_system_allocator) ? system_allocators_
335
                                                          : GetAllocatorMap())
336
                  : zero_size_allocators_);
Z
Zeng Jinle 已提交
337
    auto iter = allocators.find(place);
338 339 340
    PADDLE_ENFORCE_NE(iter, allocators.end(),
                      platform::errors::NotFound(
                          "No allocator found for the place, %s", place));
Z
Zeng Jinle 已提交
341
    return iter->second;
342 343
  }

344
  void* GetBasePtr(const std::shared_ptr<phi::Allocation>& allocation) {
345 346 347
    return static_cast<Allocation*>(allocation.get())->base_ptr();
  }

348 349 350 351 352
  bool IsStreamSafeCUDAAllocatorUsed() {
    return is_stream_safe_cuda_allocator_used_ &&
           LIKELY(FLAGS_use_system_allocator == false);
  }

353
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
354 355 356 357 358 359 360 361 362 363 364
  bool HasCUDAAllocator(const platform::CUDAPlace& place,
                        const gpuStream_t& stream) {
    auto it = cuda_allocators_.find(place);
    if (it == cuda_allocators_.end()) {
      return false;
    }
    const std::map<gpuStream_t, std::shared_ptr<Allocator>>& allocator_map =
        it->second;
    return allocator_map.find(stream) != allocator_map.end();
  }

365 366 367
  const std::shared_ptr<Allocator>& GetAllocator(
      const platform::CUDAPlace& place, const gpuStream_t& stream,
      bool create_if_not_found = false) {
368 369 370 371 372
    if (LIKELY(!IsCUDAGraphCapturing())) {
      if (stream == GetDefaultStream(place)) {
        VLOG(7) << "Get Allocator by passing in a default stream";
        return GetAllocator(place, /* A non-zero num to choose allocator_ */ 1);
      }
373 374 375
    }

    /* shared_lock_guard */ {
376 377 378
      std::shared_lock<std::shared_timed_mutex> lock_guard(
          cuda_allocator_mutex_);
      if (LIKELY(HasCUDAAllocator(place, stream))) {
379 380
        return cuda_allocators_[place][stream];
      } else {
381 382 383 384 385
        PADDLE_ENFORCE_NE(create_if_not_found, false,
                          platform::errors::NotFound(
                              "No allocator found for stream %s in place %s "
                              "with create_if_not_found = false",
                              stream, place));
386 387 388
      }
    }

389
    /* unique_lock_guard */ {
390 391 392 393
      std::unique_lock<std::shared_timed_mutex> lock_guard(
          cuda_allocator_mutex_);
      InitStreamSafeCUDAAllocator(place, stream);
      return cuda_allocators_[place][stream];
394
    }
395 396
  }

397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
  const std::shared_ptr<StreamSafeCUDAAllocator>
  GetDefaultStreamSafeCUDAAllocator(const platform::CUDAPlace& place) const {
    const auto iter = default_stream_safe_cuda_allocators_.find(place);
    PADDLE_ENFORCE_NE(
        iter, default_stream_safe_cuda_allocators_.end(),
        platform::errors::NotFound(
            "No StreamSafeCUDAAllocator found for the place, %s", place));
    return iter->second;
  }

  const gpuStream_t& GetDefaultStream(const platform::CUDAPlace& place) const {
    const std::shared_ptr<StreamSafeCUDAAllocator>& allocator =
        GetDefaultStreamSafeCUDAAllocator(place);
    return allocator->GetDefaultStream();
  }

  void SetDefaultStream(const platform::CUDAPlace& place,
                        const gpuStream_t& stream) {
    const std::shared_ptr<StreamSafeCUDAAllocator>& allocator =
        GetDefaultStreamSafeCUDAAllocator(place);
    allocator->SetDefaultStream(stream);
    VLOG(8) << "Set default stream to " << stream
            << " for StreamSafeCUDAAllocator(" << allocator.get() << ") in "
            << place;
  }

423
  void RecordStream(std::shared_ptr<phi::Allocation> allocation,
424
                    const gpuStream_t& stream) {
425 426 427 428 429 430
    std::shared_ptr<StreamSafeCUDAAllocation> stream_safe_cuda_allocation =
        std::dynamic_pointer_cast<StreamSafeCUDAAllocation>(allocation);
    if (stream_safe_cuda_allocation != nullptr) {
      stream_safe_cuda_allocation->RecordStream(stream);
    } else {
      VLOG(6) << "RecordStream for a non-StreamSafeCUDAAllocation";
431
    }
432 433
  }

434
  const gpuStream_t GetStream(
435
      const std::shared_ptr<phi::Allocation>& allocation) const {
436 437 438 439 440 441 442 443 444 445 446
    const std::shared_ptr<StreamSafeCUDAAllocation>
        stream_safe_cuda_allocation =
            std::dynamic_pointer_cast<StreamSafeCUDAAllocation>(allocation);
    if (stream_safe_cuda_allocation != nullptr) {
      return stream_safe_cuda_allocation->GetOwningStream();
    }

    VLOG(6) << "GetStream for a non-StreamSafeCUDAAllocation";
    return static_cast<phi::GPUContext*>(
               platform::DeviceContextPool::Instance().Get(allocation->place()))
        ->stream();
447 448 449 450 451 452 453 454 455 456
  }
#endif

 private:
  class ZeroSizeAllocator : public Allocator {
   public:
    explicit ZeroSizeAllocator(platform::Place place) : place_(place) {}
    bool IsAllocThreadSafe() const override { return true; }

   protected:
457
    phi::Allocation* AllocateImpl(size_t size) override {
458 459
      return new Allocation(nullptr, 0, place_);
    }
460
    void FreeImpl(phi::Allocation* allocation) override { delete allocation; }
461 462 463 464 465

   private:
    platform::Place place_;
  };

466
  const AllocatorMap& GetAllocatorMap() { return allocators_; }
467

468 469 470
  void InitNaiveBestFitCPUAllocator() {
    allocators_[platform::CPUPlace()] =
        std::make_shared<NaiveBestFitAllocator>(platform::CPUPlace());
Y
Yu Yang 已提交
471 472
  }

473
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
474 475 476
  void InitNaiveBestFitCUDAPinnedAllocator() {
    allocators_[platform::CUDAPinnedPlace()] =
        std::make_shared<NaiveBestFitAllocator>(platform::CUDAPinnedPlace());
477 478
  }

479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
  void InitNaiveBestFitCUDAAllocator(platform::CUDAPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }

  // Create a new CUDAAllocator or CUDAManagedAllocator for the given device
  std::shared_ptr<Allocator> CreateCUDAAllocator(platform::CUDAPlace p) {
    if (FLAGS_use_cuda_managed_memory) {
      PADDLE_ENFORCE_EQ(
          strategy_, AllocatorStrategy::kAutoGrowth,
          platform::errors::InvalidArgument(
              "CUDA managed memory is only implemented for auto_growth "
              "strategy, not support %s strategy.\n"
              "Please use auto_growth strategy by command `export "
              "FLAGS_allocator_strategy=\"auto_growth\"`, or disable managed "
              "memory by command `export FLAGS_use_cuda_managed_memory=false`",
              FLAGS_allocator_strategy));

      if (!platform::IsGPUManagedMemorySupported(p.device)) {
        PADDLE_THROW(platform::errors::Unavailable(
            "Failed to create CUDAManagedAllocator on GPU %d.\n\n"
            "You have enabled CUDA managed memory, but the gpu device does not "
            "support allocating managed memory.\n"
            "If you don't actually need to use managed memory, please disable "
            "it with command `export FLAGS_use_cuda_managed_memory=false`.\n"
503 504
            "Or you must use the gpu device that supports managed memory.",
            p.device));
505 506 507 508 509 510
      }
      return std::make_shared<CUDAManagedAllocator>(p);
    }
    return std::make_shared<CUDAAllocator>(p);
  }

511 512 513 514 515 516 517
  void InitStreamSafeCUDAAllocator(platform::CUDAPlace p, gpuStream_t stream) {
    PADDLE_ENFORCE_EQ(
        strategy_, AllocatorStrategy::kAutoGrowth,
        platform::errors::Unimplemented(
            "Only support auto-growth strategey for StreamSafeCUDAAllocator, "
            "the allocator strategy %d is unsupported for multi-stream",
            static_cast<int>(strategy_)));
518 519 520
    if (LIKELY(!HasCUDAAllocator(p, stream))) {
      VLOG(8) << "Init CUDA allocator for stream " << stream << " in place "
              << p;
521 522 523 524 525 526 527 528
      InitAutoGrowthCUDAAllocator(p, stream);
      WrapStreamSafeCUDAAllocator(p, stream);
      WrapCUDARetryAllocator(p, stream, FLAGS_gpu_allocator_retry_time);
    }
  }

  void InitAutoGrowthCUDAAllocator(platform::CUDAPlace p, gpuStream_t stream) {
#if defined(PADDLE_WITH_HIP)
529
    auto cuda_allocator = CreateCUDAAllocator(p);
530
    cuda_allocators_[p][stream] = std::make_shared<AutoGrowthBestFitAllocator>(
531
        cuda_allocator, platform::GpuMinChunkSize(), 0, allow_free_idle_chunk_);
532 533 534 535 536 537 538
#endif

#if defined(PADDLE_WITH_CUDA)
#if CUDA_VERSION >= 10020
    CUdevice device;
    int val;
    try {
539
      PADDLE_ENFORCE_GPU_SUCCESS(
540 541
          paddle::platform::dynload::cuDeviceGet(&device, p.GetDeviceId()));

542
      PADDLE_ENFORCE_GPU_SUCCESS(
543 544 545 546 547 548 549 550 551 552 553 554 555
          paddle::platform::dynload::cuDeviceGetAttribute(
              &val, CU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED,
              device));
    } catch (...) {
      val = 0;
    }

    if (val > 0 && FLAGS_use_virtual_memory_auto_growth) {
      auto cuda_allocator = std::make_shared<CUDAVirtualMemAllocator>(p);
      cuda_allocators_[p][stream] =
          std::make_shared<VirtualMemoryAutoGrowthBestFitAllocator>(
              cuda_allocator, platform::GpuMinChunkSize(), p);
    } else {
556
      auto cuda_allocator = CreateCUDAAllocator(p);
557 558 559 560 561 562
      cuda_allocators_[p][stream] =
          std::make_shared<AutoGrowthBestFitAllocator>(
              cuda_allocator, platform::GpuMinChunkSize(),
              allow_free_idle_chunk_);
    }
#else
563
    auto cuda_allocator = CreateCUDAAllocator(p);
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
    auto alignment = platform::GpuMinChunkSize();
    bool need_addr_align = true;
    // NOTE: sometimes, since cuda runtime can not be forked, calling any cuda
    // API in that case may got cuda error(3), i.e.,
    // cudaErrorInitializationError. And, the CUDAAllocator is only initialized
    // but not really used.
    // Here, the try-catch block is added to handle the case that
    // GetDeviceProperties() may failed in the multiple process(for example, in
    // dataloader with num_worker > 0)
    try {
      const auto& prop = platform::GetDeviceProperties(p.GetDeviceId());
      need_addr_align = prop.textureAlignment < alignment;
      VLOG(4) << "GetDeviceProperties ok, textureAlignment: "
              << prop.textureAlignment
              << ", set need_addr_align=" << need_addr_align;
    } catch (...) {
      need_addr_align = true;
      VLOG(4) << "GetDeviceProperties failed, set need_addr_align=true";
    }
    // The address returned is aligned already,
    // ref:
    // https://stackoverflow.com/questions/14082964/cuda-alignment-256bytes-seriously/14083295#14083295
    std::shared_ptr<Allocator> underlying_allocator{nullptr};
    if (need_addr_align) {
      VLOG(10) << "use AlignedAllocator with alignment: " << alignment;
      underlying_allocator =
          std::make_shared<AlignedAllocator>(underlying_allocator, alignment);
    } else {
      VLOG(10) << "not use AlignedAllocator with alignment: " << alignment;
      underlying_allocator = cuda_allocator;
    }

    cuda_allocators_[p][stream] = std::make_shared<AutoGrowthBestFitAllocator>(
        underlying_allocator, alignment, 0, allow_free_idle_chunk_);
#endif
#endif
600 601
  }

602
  // NOTE(Ruibiao): Old single-stream version, will be removed later
603 604
  void InitAutoGrowthCUDAAllocator(platform::CUDAPlace p,
                                   bool allow_free_idle_chunk) {
605
#if defined(PADDLE_WITH_HIP)
606
    auto cuda_allocator = CreateCUDAAllocator(p);
607 608 609 610 611 612 613 614 615
    allocators_[p] = std::make_shared<AutoGrowthBestFitAllocator>(
        cuda_allocator, platform::GpuMinChunkSize(), allow_free_idle_chunk);
#endif

#if defined(PADDLE_WITH_CUDA)
#if CUDA_VERSION >= 10020
    CUdevice device;
    int val;
    try {
616
      PADDLE_ENFORCE_GPU_SUCCESS(
617 618
          paddle::platform::dynload::cuDeviceGet(&device, p.GetDeviceId()));

619
      PADDLE_ENFORCE_GPU_SUCCESS(
620 621 622 623 624 625 626 627 628 629 630 631 632
          paddle::platform::dynload::cuDeviceGetAttribute(
              &val, CU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED,
              device));
    } catch (...) {
      val = 0;
    }

    if (val > 0 && FLAGS_use_virtual_memory_auto_growth) {
      auto cuda_allocator = std::make_shared<CUDAVirtualMemAllocator>(p);
      allocators_[p] =
          std::make_shared<VirtualMemoryAutoGrowthBestFitAllocator>(
              cuda_allocator, platform::GpuMinChunkSize(), p);
    } else {
633
      auto cuda_allocator = CreateCUDAAllocator(p);
634 635 636 637 638
      allocators_[p] = std::make_shared<AutoGrowthBestFitAllocator>(
          cuda_allocator, platform::GpuMinChunkSize(), allow_free_idle_chunk);
    }

#else
639
    auto cuda_allocator = CreateCUDAAllocator(p);
L
Leo Chen 已提交
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
    auto alignment = platform::GpuMinChunkSize();
    bool need_addr_align = true;
    // NOTE: sometimes, since cuda runtime can not be forked, calling any cuda
    // API in that case may got cuda error(3), i.e.,
    // cudaErrorInitializationError. And, the CUDAAllocator is only initialized
    // but not really used.
    // Here, the try-catch block is added to handle the case that
    // GetDeviceProperties() may failed in the multiple process(for example, in
    // dataloader with num_worker > 0)
    try {
      const auto& prop = platform::GetDeviceProperties(p.GetDeviceId());
      need_addr_align = prop.textureAlignment < alignment;
      VLOG(4) << "GetDeviceProperties ok, textureAlignment: "
              << prop.textureAlignment
              << ", set need_addr_align=" << need_addr_align;
    } catch (...) {
      need_addr_align = true;
      VLOG(4) << "GetDeviceProperties failed, set need_addr_align=true";
    }
    // The address returned is aligned already,
    // ref:
    // https://stackoverflow.com/questions/14082964/cuda-alignment-256bytes-seriously/14083295#14083295
    std::shared_ptr<Allocator> underlying_allocator{nullptr};
    if (need_addr_align) {
      VLOG(10) << "use AlignedAllocator with alignment: " << alignment;
      underlying_allocator =
          std::make_shared<AlignedAllocator>(underlying_allocator, alignment);
    } else {
      VLOG(10) << "not use AlignedAllocator with alignment: " << alignment;
      underlying_allocator = cuda_allocator;
    }
671
    allocators_[p] = std::make_shared<AutoGrowthBestFitAllocator>(
L
Leo Chen 已提交
672
        underlying_allocator, alignment, 0, allow_free_idle_chunk);
673 674
#endif
#endif
S
sneaxiy 已提交
675
  }
676 677 678 679 680 681

  void InitThreadLocalCUDAAllocator(platform::CUDAPlace p) {
    allocators_[p] = std::make_shared<ThreadLocalCUDAAllocator>(p);
  }

  void WrapStreamSafeCUDAAllocator(platform::CUDAPlace p, gpuStream_t stream) {
682 683 684 685
    std::shared_ptr<Allocator>& allocator = cuda_allocators_[p][stream];
    allocator = std::make_shared<StreamSafeCUDAAllocator>(
        allocator, p, stream,
        /* in_cuda_graph_capturing = */ !allow_free_idle_chunk_);
686 687
  }

688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
  void WrapStreamSafeCUDAAllocatorForDefault() {
    for (auto& pair : allocators_) {
      auto& place = pair.first;
      if (platform::is_gpu_place(place)) {
        std::shared_ptr<StreamSafeCUDAAllocator>&& allocator =
            std::make_shared<StreamSafeCUDAAllocator>(
                pair.second, place, /* default_stream = */ nullptr,
                /* in_cuda_graph_capturing = */ !allow_free_idle_chunk_);
        pair.second = allocator;

        // NOTE(Ruibiao): A tricky implement to give StreamSafeCUDAAllocator an
        // ability to interact with the outside world, i.e., change default
        // stream from outside
        default_stream_safe_cuda_allocators_[place] = allocator;
        VLOG(8) << "WrapStreamSafeCUDAAllocator for " << place
                << ", allocator address = " << pair.second.get();
      }
    }
  }

708 709 710 711 712 713
  void WrapCUDARetryAllocator(platform::CUDAPlace p, gpuStream_t stream,
                              size_t retry_time) {
    PADDLE_ENFORCE_GT(
        retry_time, 0,
        platform::errors::InvalidArgument(
            "Retry time should be larger than 0, but got %d", retry_time));
714
    std::shared_ptr<Allocator>& allocator = cuda_allocators_[p][stream];
715 716 717
    allocator = std::make_shared<RetryAllocator>(allocator, retry_time);
  }

718 719 720 721 722 723 724 725 726
#ifdef PADDLE_WITH_CUDA
  void WrapCUDAGraphAllocator() {
    for (auto& item : allocators_) {
      auto& allocator = item.second;
      allocator = CUDAGraphAllocator::Create(allocator);
    }
  }
#endif

727 728 729 730 731 732 733 734 735
  static void CheckCUDAAllocThreadSafe(const CUDAAllocatorMap& allocators) {
    for (auto& place_pair : allocators) {
      for (auto& stream_pair : place_pair.second) {
        PADDLE_ENFORCE_EQ(stream_pair.second->IsAllocThreadSafe(), true,
                          platform::errors::InvalidArgument(
                              "Public allocators must be thread safe"));
      }
    }
  }
736
#endif
S
sneaxiy 已提交
737

738 739 740 741 742 743
#ifdef PADDLE_WITH_XPU
  void InitNaiveBestFitXPUAllocator(platform::XPUPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }
#endif

J
jianghaicheng 已提交
744 745 746 747 748 749
#ifdef PADDLE_WITH_IPU
  void InitNaiveBestFitIPUAllocator(platform::IPUPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }
#endif

F
fwenguang 已提交
750 751 752 753 754 755
#ifdef PADDLE_WITH_MLU
  void InitNaiveBestFitMLUAllocator(platform::MLUPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }
#endif

756 757 758 759
#ifdef PADDLE_WITH_ASCEND_CL
  void InitNaiveBestFitNPUAllocator(platform::NPUPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }
760 761 762 763 764

  void InitNaiveBestFitNPUPinnedAllocator() {
    allocators_[platform::NPUPinnedPlace()] =
        std::make_shared<paddle::memory::allocation::NPUPinnedAllocator>();
  }
765 766
#endif

767 768 769 770 771 772 773 774 775 776
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  void InitNaiveBestFitCustomDeviceAllocator(platform::CustomPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }

  void InitAutoGrowthCustomDeviceAllocator(platform::CustomPlace p,
                                           bool allow_free_idle_chunk) {
    auto custom_allocator =
        std::make_shared<paddle::memory::allocation::CustomAllocator>(p);
    allocators_[p] = std::make_shared<AutoGrowthBestFitAllocator>(
777
        custom_allocator, phi::DeviceManager::GetMinChunkSize(p),
778 779 780 781
        allow_free_idle_chunk);
  }
#endif

782 783 784 785 786 787 788 789
  void InitSystemAllocators() {
    if (!system_allocators_.empty()) return;
    system_allocators_[platform::CPUPlace()] = std::make_shared<CPUAllocator>();
#ifdef PADDLE_WITH_XPU
    int device_count = platform::GetXPUDeviceCount();
    for (int i = 0; i < device_count; ++i) {
      platform::XPUPlace p(i);
      system_allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
Z
Zeng Jinle 已提交
790
    }
791
#endif
J
jianghaicheng 已提交
792 793 794 795 796 797 798
#ifdef PADDLE_WITH_IPU
    int device_count = platform::GetIPUDeviceCount();
    for (int i = 0; i < device_count; ++i) {
      platform::IPUPlace p(i);
      system_allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
    }
#endif
799 800 801
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    system_allocators_[platform::CUDAPinnedPlace()] =
        std::make_shared<CPUPinnedAllocator>();
802
    int device_count = platform::GetGPUDeviceCount();
803 804
    for (int i = 0; i < device_count; ++i) {
      platform::CUDAPlace p(i);
805
      system_allocators_[p] = CreateCUDAAllocator(p);
806
    }
F
fwenguang 已提交
807 808 809 810
#endif
#ifdef PADDLE_WITH_MLU
    int device_count = platform::GetMLUDeviceCount();
    for (int i = 0; i < device_count; ++i) {
811
      platform::MLUPlace p(i);
F
fwenguang 已提交
812 813
      system_allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
    }
814 815
#endif
  }
Z
Zeng Jinle 已提交
816 817

  void InitZeroSizeAllocators() {
818
    if (!zero_size_allocators_.empty()) return;
Z
Zeng Jinle 已提交
819 820
    std::vector<platform::Place> places;
    places.emplace_back(platform::CPUPlace());
821
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
822
    int device_count = platform::GetGPUDeviceCount();
Z
Zeng Jinle 已提交
823 824 825 826 827
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::CUDAPlace(dev_id));
    }
    places.emplace_back(platform::CUDAPinnedPlace());
#endif
828 829 830 831 832 833
#ifdef PADDLE_WITH_XPU
    int device_count = platform::GetXPUDeviceCount();
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::XPUPlace(dev_id));
    }
#endif
834 835 836 837 838 839
#ifdef PADDLE_WITH_ASCEND_CL
    int device_count = platform::GetNPUDeviceCount();
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::NPUPlace(dev_id));
    }
#endif
J
jianghaicheng 已提交
840 841 842 843 844 845
#ifdef PADDLE_WITH_IPU
    int device_count = platform::GetIPUDeviceCount();
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::IPUPlace(dev_id));
    }
#endif
F
fwenguang 已提交
846 847 848 849 850 851
#ifdef PADDLE_WITH_MLU
    int device_count = platform::GetMLUDeviceCount();
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::MLUPlace(dev_id));
    }
#endif
852
#ifdef PADDLE_WITH_CUSTOM_DEVICE
853
    auto device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
854 855
    for (const auto& dev_type : device_types) {
      for (size_t dev_id = 0;
856
           dev_id < phi::DeviceManager::GetDeviceCount(dev_type); dev_id++) {
857 858 859 860
        places.emplace_back(platform::CustomPlace(dev_type, dev_id));
      }
    }
#endif
Z
Zeng Jinle 已提交
861 862 863

    for (auto& p : places) {
      zero_size_allocators_[p] = std::make_shared<ZeroSizeAllocator>(p);
Y
Yu Yang 已提交
864 865
    }
  }
Z
Zeng Jinle 已提交
866

867 868 869 870 871
  static void CheckAllocThreadSafe(const AllocatorMap& allocators) {
    for (auto& pair : allocators) {
      PADDLE_ENFORCE_EQ(pair.second->IsAllocThreadSafe(), true,
                        platform::errors::InvalidArgument(
                            "Public allocators must be thread safe"));
872
    }
873
  }
874

875 876 877 878
  void CheckAllocThreadSafe() const {
    CheckAllocThreadSafe(allocators_);
    CheckAllocThreadSafe(zero_size_allocators_);
    CheckAllocThreadSafe(system_allocators_);
879
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
880
    if (is_stream_safe_cuda_allocator_used_) {
881 882 883
      CheckCUDAAllocThreadSafe(cuda_allocators_);
    }
#endif
884 885 886
  }

  void WrapCUDARetryAllocator(size_t retry_time) {
887 888 889 890
    PADDLE_ENFORCE_GT(
        retry_time, 0,
        platform::errors::InvalidArgument(
            "Retry time should be larger than 0, but got %d", retry_time));
891 892 893 894 895 896 897
    for (auto& pair : allocators_) {
      if (platform::is_gpu_place(pair.first)) {
        pair.second = std::make_shared<RetryAllocator>(pair.second, retry_time);
      }
    }
  }

898 899
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  // a standalone CUDA allocator to support multi-stream GC in new executor
900 901
  std::map<platform::Place, std::shared_ptr<StreamSafeCUDAAllocator>>
      default_stream_safe_cuda_allocators_;
902
  CUDAAllocatorMap cuda_allocators_;
903
  std::shared_timed_mutex cuda_allocator_mutex_;
904 905
#endif
  AllocatorStrategy strategy_;
906
  AllocatorMap allocators_;
907 908
  static AllocatorMap zero_size_allocators_;
  static AllocatorMap system_allocators_;
909
  bool allow_free_idle_chunk_;
910
  bool is_stream_safe_cuda_allocator_used_;
911
};
912 913 914 915
AllocatorFacadePrivate::AllocatorMap
    AllocatorFacadePrivate::zero_size_allocators_;
AllocatorFacadePrivate::AllocatorMap AllocatorFacadePrivate::system_allocators_;

Y
Refine  
Yu Yang 已提交
916
// Pimpl. Make interface clean.
917
AllocatorFacade::AllocatorFacade() : m_(new AllocatorFacadePrivate()) {}
918 919 920
// delete m_ may cause core dump when the destructor of python in conflict with
// cpp.
AllocatorFacade::~AllocatorFacade() {}
921 922

AllocatorFacade& AllocatorFacade::Instance() {
923 924 925 926 927 928
  static AllocatorFacade* instance = new AllocatorFacade;
  return *instance;
}

AllocatorFacadePrivate* AllocatorFacade::GetPrivate() const {
#ifdef PADDLE_WITH_CUDA
929
  if (UNLIKELY(IsCUDAGraphCapturing())) {
930 931 932 933 934 935 936 937 938 939 940
    auto id = platform::CUDAGraph::CapturingID();
    auto iter = cuda_graph_map_.find(id);
    PADDLE_ENFORCE_NE(
        iter, cuda_graph_map_.end(),
        platform::errors::PermissionDenied(
            "No memory pool is prepared for CUDA Graph capturing."));
    VLOG(10) << "Choose CUDA Graph memory pool";
    return iter->second.get();
  }
#endif
  return m_;
941 942
}

943 944
const std::shared_ptr<Allocator>& AllocatorFacade::GetAllocator(
    const platform::Place& place) {
945 946
  return GetPrivate()->GetAllocator(
      place, /* A non-zero num to choose allocator_ */ 1);
947 948
}

949
void* AllocatorFacade::GetBasePtr(
950
    const std::shared_ptr<phi::Allocation>& allocation) {
951 952 953 954 955 956 957 958 959 960
  PADDLE_ENFORCE_EQ(GetAllocatorStrategy(), AllocatorStrategy::kAutoGrowth,
                    paddle::platform::errors::Unimplemented(
                        "GetBasePtr() is only implemented for auto_growth "
                        "strategy, not support allocator strategy: %d",
                        static_cast<int>(GetAllocatorStrategy())));
  PADDLE_ENFORCE_EQ(platform::is_gpu_place(allocation->place()), true,
                    paddle::platform::errors::Unimplemented(
                        "GetBasePtr() is only implemented for CUDAPlace(), not "
                        "suppot place: %s",
                        allocation->place()));
961
  return GetPrivate()->GetBasePtr(allocation);
962 963
}

964 965
const std::shared_ptr<Allocator>& AllocatorFacade::GetZeroAllocator(
    const platform::Place& place) {
966
  return GetPrivate()->GetAllocator(place, /* zero size */ 0);
967 968
}

969
std::shared_ptr<phi::Allocation> AllocatorFacade::AllocShared(
970
    const platform::Place& place, size_t size) {
971
  return std::shared_ptr<phi::Allocation>(Alloc(place, size));
972 973
}

974 975
AllocationPtr AllocatorFacade::Alloc(const platform::Place& place,
                                     size_t size) {
976
  return GetPrivate()->GetAllocator(place, size)->Allocate(size);
977 978
}

W
Wilber 已提交
979
uint64_t AllocatorFacade::Release(const platform::Place& place) {
980 981
  return GetPrivate()
      ->GetAllocator(place, /* A non-zero num to choose allocator_ */ 1)
982 983 984
      ->Release(place);
}

985 986
std::shared_ptr<phi::Allocation> AllocatorFacade::AllocShared(
    const platform::Place& place, size_t size, const phi::Stream& stream) {
987
  return std::shared_ptr<phi::Allocation>(Alloc(place, size, stream));
988 989
}

990 991
AllocationPtr AllocatorFacade::Alloc(const platform::Place& place, size_t size,
                                     const phi::Stream& stream) {
992
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
993 994 995 996 997
  AllocatorFacadePrivate* m = GetPrivate();
  if (!m->IsStreamSafeCUDAAllocatorUsed()) {
    VLOG(6) << "Warning: StreamSafeCUDAAllocator is not used!";
    return Alloc(place, size);
  }
998

999 1000 1001
  platform::CUDAPlace p(place.GetDeviceId());
  if (LIKELY(size > 0 && FLAGS_use_system_allocator == false)) {
    gpuStream_t s = reinterpret_cast<gpuStream_t>(stream.id());
1002
    return m->GetAllocator(p, s, /* create_if_not_found = */ true)
1003 1004
        ->Allocate(size);
  } else {
1005
    return m->GetAllocator(p, size)->Allocate(size);
1006 1007 1008 1009 1010 1011
  }
#else
  PADDLE_THROW(platform::errors::PreconditionNotMet("Not compiled with GPU."));
#endif
}

1012 1013 1014
bool AllocatorFacade::InSameStream(
    const std::shared_ptr<phi::Allocation>& allocation,
    const phi::Stream& stream) {
1015
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1016 1017 1018 1019
  gpuStream_t s = reinterpret_cast<gpuStream_t>(stream.id());
  return s == GetStream(allocation);
#else
  PADDLE_THROW(platform::errors::PreconditionNotMet("Not compiled with GPU."));
1020
#endif
1021 1022
}

1023 1024 1025 1026
bool AllocatorFacade::IsStreamSafeCUDAAllocatorUsed() {
  return GetPrivate()->IsStreamSafeCUDAAllocatorUsed();
}

1027
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1028 1029
uint64_t AllocatorFacade::Release(const platform::CUDAPlace& place,
                                  const gpuStream_t& stream) {
1030 1031 1032 1033 1034 1035 1036
  AllocatorFacadePrivate* m = GetPrivate();
  if (!m->IsStreamSafeCUDAAllocatorUsed()) {
    VLOG(6) << "Warning: StreamSafeCUDAAllocator is not used!";
    return Release(place);
  }

  return m->GetAllocator(place, stream)->Release(place);
1037 1038
}

1039
void AllocatorFacade::RecordStream(std::shared_ptr<phi::Allocation> allocation,
1040
                                   const gpuStream_t& stream) {
1041
  GetPrivate()->RecordStream(allocation, stream);
1042 1043
}

1044 1045
const std::shared_ptr<Allocator>& AllocatorFacade::GetAllocator(
    const platform::Place& place, const gpuStream_t& stream) {
1046 1047 1048 1049 1050
  AllocatorFacadePrivate* m = GetPrivate();

  if (!m->IsStreamSafeCUDAAllocatorUsed()) {
    VLOG(6) << "Warning: StreamSafeCUDAAllocator is not used!";
    return GetAllocator(place);
1051
  }
1052 1053 1054 1055 1056 1057

  if (platform::is_gpu_place(place) && FLAGS_use_system_allocator == false) {
    return m->GetAllocator(place, stream,
                           /*create_if_not_found=*/true);
  }
  return m->GetAllocator(place, /* A non-zero num to choose allocator_ */ 1);
1058 1059
}

1060
const gpuStream_t AllocatorFacade::GetStream(
1061
    const std::shared_ptr<phi::Allocation>& allocation) const {
1062
  return GetPrivate()->GetStream(allocation);
1063 1064
}

1065 1066
void AllocatorFacade::SetDefaultStream(const platform::CUDAPlace& place,
                                       const gpuStream_t& stream) {
1067 1068
  if (m_->IsStreamSafeCUDAAllocatorUsed()) {
    m_->SetDefaultStream(place, stream);
1069 1070 1071
  }
}

1072 1073
#ifdef PADDLE_WITH_CUDA
void AllocatorFacade::PrepareMemoryPoolForCUDAGraph(CUDAGraphID id) {
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
  PADDLE_ENFORCE_EQ(GetAllocatorStrategy(), AllocatorStrategy::kAutoGrowth,
                    platform::errors::InvalidArgument(
                        "CUDA Graph is only supported when the "
                        "FLAGS_allocator_strategy=\"auto_growth\", but got "
                        "FLAGS_allocator_strategy=\"%s\"",
                        FLAGS_allocator_strategy));
  auto& allocator = cuda_graph_map_[id];
  PADDLE_ENFORCE_EQ(
      allocator.get(), nullptr,
      platform::errors::InvalidArgument(
          "The memory pool of the CUDA Graph with ID %d have been prepared.",
          id));
  allocator.reset(new AllocatorFacadePrivate(/*allow_free_idle_chunk=*/false));
1087

1088
  VLOG(10) << "Prepare memory pool for CUDA Graph with ID " << id;
1089 1090 1091
}

void AllocatorFacade::RemoveMemoryPoolOfCUDAGraph(CUDAGraphID id) {
1092 1093 1094 1095 1096 1097
  auto iter = cuda_graph_map_.find(id);
  PADDLE_ENFORCE_NE(iter, cuda_graph_map_.end(),
                    platform::errors::InvalidArgument(
                        "Cannot find CUDA Graph with ID = %d", id));
  cuda_graph_map_.erase(iter);
  VLOG(10) << "Remove memory pool of CUDA Graph with ID " << id;
1098 1099
}
#endif
1100
#endif
1101 1102 1103
}  // namespace allocation
}  // namespace memory
}  // namespace paddle