test_hsigmoid_op.py 7.1 KB
Newer Older
W
weixing02 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
W
weixing02 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yancey1989 已提交
17 18
import unittest
import numpy as np
Y
Yancey1989 已提交
19
import math
J
JiabinYang 已提交
20 21 22
# import paddle.fluid as fluid
# import paddle.fluid.core as core
# from op_builder import OpBuilder
W
weixing02 已提交
23
from op_test import OpTest
Y
Yancey1989 已提交
24

D
dzhwinter 已提交
25 26
np.random.seed(100)

Y
Yancey1989 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

def find_latest_set(num):
    return 1 + int(math.floor(math.log(num, 2)))


class CodeTable(object):
    def __init__(self, num_classes, code):
        self.c = num_classes + code

    def cal_index(self, bit):
        return (self.c >> (bit + 1)) - 1

    def get_length(self):
        return find_latest_set(self.c) - 1

    def cal_bit(self, bit):
        return self.c & (1 << bit)


46 47 48 49 50 51 52 53 54 55 56
class CodeTableWithCustomTree(object):
    def __init__(self, ptable, pcode, index):
        self.ptable_ = ptable
        self.pcode_ = pcode
        self.index_ = index

    def cal_index(self, bit):
        return self.ptable_[self.index_][bit]

    def get_length(self):
        length = 0
J
JiabinYang 已提交
57
        for ele in self.ptable_[self.index_]:  # find the first -1 to stop trace
58 59 60 61 62 63 64 65 66 67 68

            if ele >= 0:
                length = length + 1
            else:
                return length
        return length

    def cal_bit(self, bit):
        return self.pcode_[self.index_][bit]


W
weixing02 已提交
69
def hsigmoid(x, w, label, bias, num_classes):
Y
Yancey1989 已提交
70 71 72 73 74 75
    batch_size = x.shape[0]
    code_length = find_latest_set(num_classes - 1)
    code_table = [0 for _ in range(code_length)]
    pre_output = np.zeros((batch_size, code_length))
    pre_sum = np.zeros((batch_size, 1))
    out = np.zeros((batch_size, 1)).astype("float32")
W
weixing02 已提交
76
    for i in range(batch_size):
W
weixing02 已提交
77
        code_table = CodeTable(num_classes, label[i])
Y
Yancey1989 已提交
78
        length = code_table.get_length()
W
weixing02 已提交
79
        for j in range(length):
Y
Yancey1989 已提交
80 81
            idx = code_table.cal_index(j)
            pre_output[i][j] += bias[0][idx]
82 83
    for i in range(batch_size):
        code_table = CodeTable(num_classes, label[i])
W
weixing02 已提交
84
        length = code_table.get_length()
85 86 87
        for j in range(length):
            idx = code_table.cal_index(j)
            pre_output[i][j] += np.dot(w[idx], x[i])
Y
Yancey1989 已提交
88
    # clip[-40.0, 40.0]
W
weixing02 已提交
89
    pre_output = np.clip(pre_output, -40.0, 40.0)
Y
Yancey1989 已提交
90
    # out(i, 0) = \sum_j  bit(i, j) * preout(i, j)
W
weixing02 已提交
91
    for i in range(batch_size):
W
weixing02 已提交
92
        code_table = CodeTable(num_classes, label[i])
Y
Yancey1989 已提交
93 94
        length = code_table.get_length()
        sum = 0.0
W
weixing02 已提交
95
        for j in range(length):
Y
Yancey1989 已提交
96 97 98 99 100 101 102
            if code_table.cal_bit(j):
                sum += pre_output[i][j]
        out[i] = -1.0 * sum
    # soft relu
    pre_output = np.log(1 + np.exp(pre_output))
    pre_sum = pre_output.sum(1).reshape((batch_size, 1))
    out += pre_sum
103
    return pre_output, out
Y
Yancey1989 已提交
104 105


106 107 108 109
def hsigmoidWithCustomTree(x, w, ptable, pcode, label, bias, num_classes):
    batch_size = x.shape[0]
    code_length = len(ptable[0])
    code_table = [0 for _ in range(code_length)]
J
JiabinYang 已提交
110
    # init pre_out with shape [N, code_length]
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    pre_output = np.zeros((batch_size, code_length))
    pre_sum = np.zeros((batch_size, 1))
    out = np.zeros((batch_size, 1)).astype("float32")
    for i in range(batch_size):
        code_table = CodeTableWithCustomTree(ptable, pcode, i)
        length = code_table.get_length()
        for j in range(length):
            idx = code_table.cal_index(j)
            pre_output[i][j] += bias[0][idx]
    for i in range(batch_size):
        code_table = CodeTableWithCustomTree(ptable, pcode, i)
        length = code_table.get_length()
        for j in range(length):
            idx = code_table.cal_index(j)
            pre_output[i][j] += np.dot(w[idx], x[i])
    # clip[-40.0, 40.0]
    pre_output = np.clip(pre_output, -40.0, 40.0)
    # out(i, 0) = \sum_j  bit(i, j) * preout(i, j)
    for i in range(batch_size):
        code_table = CodeTableWithCustomTree(ptable, pcode, i)
        length = code_table.get_length()
        sum = 0.0
        for j in range(length):
            if code_table.cal_bit(j):
                sum += pre_output[i][j]
        out[i] = -1.0 * sum
    # soft relu
    pre_output = np.log(1 + np.exp(pre_output))
    pre_sum = pre_output.sum(1).reshape((batch_size, 1))
    out += pre_sum
    return pre_output, out


J
JiabinYang 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
class TestHSigmoidOp(OpTest):
    def setUp(self):
        self.op_type = "hierarchical_sigmoid"
        num_classes = 6
        feature_size = 8
        batch_size = 4
        x = np.random.random((batch_size, feature_size)).astype("float32") * 2
        w = np.random.random(
            (num_classes - 1, feature_size)).astype("float32") * 2
        label = np.random.randint(0, num_classes, (batch_size, 1))
        bias = np.random.random((1, num_classes - 1)).astype("float32")
        self.attrs = {'num_classes': num_classes}
        self.inputs = {'X': x, 'W': w, 'Label': label, 'Bias': bias}
        pre_output, out = hsigmoid(x, w, label, bias, num_classes)
        self.outputs = {'PreOut': pre_output, 'Out': out}
159

J
JiabinYang 已提交
160 161
    def test_check_output(self):
        self.check_output()
162

J
JiabinYang 已提交
163 164
    def test_check_grad(self):
        self.check_grad(['Bias', 'X', 'W'], ['Out'], no_grad_set=set('Label'))
165 166 167


class TestHSigmoidOpWithCostumTree(OpTest):
Y
Yancey1989 已提交
168
    def setUp(self):
Y
Yancey1989 已提交
169
        self.op_type = "hierarchical_sigmoid"
170
        num_classes = 6  #using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample
171
        feature_size = 8
G
guosheng 已提交
172
        batch_size = 4
J
JiabinYang 已提交
173
        x = np.random.random((batch_size, feature_size)).astype("float32") * 2
174
        w = np.random.random(
J
JiabinYang 已提交
175
            (num_classes - 1, feature_size)).astype("float32") * 2
176 177 178 179 180 181 182
        label = np.array([0, 1, 4, 5])
        ptable = np.array(
            [(0, 2, -1, -1, -1), (0, 1, 3, -1, -1), (0, 1, 4, -1, -1),
             (0, 2, -1, -1,
              -1)])  #np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
        pcode = np.array([(0, 0, -1, -1, -1), (1, 1, 1, -1, -1), (
            1, 0, 0, -1, -1), (0, 1, -1, -1, -1)])  #np.array to store 
Y
Yancey1989 已提交
183
        bias = np.random.random((1, num_classes - 1)).astype("float32")
Y
Yancey1989 已提交
184
        self.attrs = {'num_classes': num_classes}
185 186 187 188 189 190 191 192 193 194
        self.inputs = {
            'X': x,
            'W': w,
            'PTable': ptable,
            'PCode': pcode,
            'Label': label,
            'Bias': bias
        }
        pre_output, out = hsigmoidWithCustomTree(x, w, ptable, pcode, label,
                                                 bias, num_classes)
W
weixing02 已提交
195
        self.outputs = {'PreOut': pre_output, 'Out': out}
Y
Yancey1989 已提交
196 197

    def test_check_output(self):
198
        print("checking output in CostumTree")
Y
Yancey1989 已提交
199 200 201
        self.check_output()

    def test_check_grad(self):
202
        print("checking outputGrad in CostumTree")
G
guosheng 已提交
203
        self.check_grad(['Bias', 'X', 'W'], ['Out'], no_grad_set=set('Label'))
Y
Yancey1989 已提交
204 205 206 207


if __name__ == '__main__':
    unittest.main()