test_hsigmoid_op.py 3.6 KB
Newer Older
W
weixing02 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yancey1989 已提交
15 16 17
import unittest
import numpy as np
from op_test import OpTest
Y
Yancey1989 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
import math


def find_latest_set(num):
    return 1 + int(math.floor(math.log(num, 2)))


class CodeTable(object):
    def __init__(self, num_classes, code):
        self.c = num_classes + code

    def cal_index(self, bit):
        return (self.c >> (bit + 1)) - 1

    def get_length(self):
        return find_latest_set(self.c) - 1

    def cal_bit(self, bit):
        return self.c & (1 << bit)


def hsigmoid(x, w, ids, bias, num_classes):
    # code length = 
    # initialize pre out with dims={batch_size, code_length}
    batch_size = x.shape[0]
    code_length = find_latest_set(num_classes - 1)
    code_table = [0 for _ in range(code_length)]
    pre_output = np.zeros((batch_size, code_length))
    pre_sum = np.zeros((batch_size, 1))
    out = np.zeros((batch_size, 1)).astype("float32")
    # pre_out += code(bias)
    for i in xrange(batch_size):
        code_table = CodeTable(num_classes, ids[i])
        length = code_table.get_length()
        for j in xrange(length):
            idx = code_table.cal_index(j)
            pre_output[i][j] += bias[0][idx]
    # pre_out += code(w) * x
    for i in xrange(batch_size):
        for j in xrange(batch_size):
            code_table = CodeTable(num_classes, ids[j])
            length = code_table.get_length()
            for k in xrange(length):
                idx = code_table.cal_index(k)
                sum = 0.0
                for l in xrange(x.shape[1]):
                    sum += w[i][idx][l] * x[j][l]
                pre_output[j][k] += sum
    # clip[-40.0, 40.0]
    np.clip(pre_output, -40.0, 40.0)
    # out(i, 0) = \sum_j  bit(i, j) * preout(i, j)
    for i in xrange(batch_size):
        code_table = CodeTable(num_classes, ids[i])
        length = code_table.get_length()
        sum = 0.0
        for j in xrange(length):
            if code_table.cal_bit(j):
                sum += pre_output[i][j]
        out[i] = -1.0 * sum
    # soft relu
    np.clip(pre_output, -40.0, 40.0)
    pre_output = np.log(1 + np.exp(pre_output))
    pre_sum = pre_output.sum(1).reshape((batch_size, 1))
    out += pre_sum
    return out
Y
Yancey1989 已提交
83 84 85 86


class TestHSigmoidOp(OpTest):
    def setUp(self):
Y
Yancey1989 已提交
87
        self.op_type = "hierarchical_sigmoid"
Y
Yancey1989 已提交
88 89 90 91
        num_classes = 6
        embded_size = 10
        batch_size = 5
        x = np.random.random((batch_size, embded_size)).astype("float32")
Y
Yancey1989 已提交
92
        w = np.random.random(
Y
Yancey1989 已提交
93
            (batch_size, num_classes - 1, embded_size)).astype("float32")
Y
Yancey1989 已提交
94
        ids = np.random.randint(0, num_classes, batch_size)
Y
Yancey1989 已提交
95
        bias = np.random.random((1, num_classes - 1)).astype("float32")
Y
Yancey1989 已提交
96
        self.inputs = {'X': x, 'W': w, 'Ids': ids, 'Bias': bias}
Y
Yancey1989 已提交
97
        self.attrs = {'num_classes': num_classes}
Y
Yancey1989 已提交
98 99
        out = hsigmoid(x, w, ids, bias, num_classes)
        self.outputs = {'Out': out}
Y
Yancey1989 已提交
100 101 102 103 104

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
Y
Yancey1989 已提交
105
        self.check_grad(['X', 'W', 'Bias'], 'Out', no_grad_set=set('Ids'))
Y
Yancey1989 已提交
106 107 108 109


if __name__ == '__main__':
    unittest.main()