test_hsigmoid_op.py 7.2 KB
Newer Older
W
weixing02 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
W
weixing02 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yancey1989 已提交
17 18
import unittest
import numpy as np
Y
Yancey1989 已提交
19
import math
W
weixing02 已提交
20
from op_test import OpTest
Y
Yancey1989 已提交
21

D
dzhwinter 已提交
22 23
np.random.seed(100)

Y
Yancey1989 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

def find_latest_set(num):
    return 1 + int(math.floor(math.log(num, 2)))


class CodeTable(object):
    def __init__(self, num_classes, code):
        self.c = num_classes + code

    def cal_index(self, bit):
        return (self.c >> (bit + 1)) - 1

    def get_length(self):
        return find_latest_set(self.c) - 1

    def cal_bit(self, bit):
        return self.c & (1 << bit)


43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
class CodeTableWithCustomTree(object):
    def __init__(self, ptable, pcode, index):
        self.ptable_ = ptable
        self.pcode_ = pcode
        self.index_ = index

    def cal_index(self, bit):
        return self.ptable_[self.index_][bit]

    def get_length(self):
        length = 0
        for ele in self.ptable_[self.index_]:

            if ele >= 0:
                length = length + 1
            else:
                return length
        return length

    def cal_bit(self, bit):
        return self.pcode_[self.index_][bit]


W
weixing02 已提交
66
def hsigmoid(x, w, label, bias, num_classes):
Y
Yancey1989 已提交
67 68 69 70 71 72
    batch_size = x.shape[0]
    code_length = find_latest_set(num_classes - 1)
    code_table = [0 for _ in range(code_length)]
    pre_output = np.zeros((batch_size, code_length))
    pre_sum = np.zeros((batch_size, 1))
    out = np.zeros((batch_size, 1)).astype("float32")
W
weixing02 已提交
73
    for i in range(batch_size):
74
        #print("\n leaf {leaf}: \n".format(leaf = label[i]))
W
weixing02 已提交
75
        code_table = CodeTable(num_classes, label[i])
Y
Yancey1989 已提交
76
        length = code_table.get_length()
W
weixing02 已提交
77
        for j in range(length):
Y
Yancey1989 已提交
78
            idx = code_table.cal_index(j)
79
            #print("index {index} ".format(index = j))
Y
Yancey1989 已提交
80
            pre_output[i][j] += bias[0][idx]
81 82
    for i in range(batch_size):
        code_table = CodeTable(num_classes, label[i])
W
weixing02 已提交
83
        length = code_table.get_length()
84 85 86
        for j in range(length):
            idx = code_table.cal_index(j)
            pre_output[i][j] += np.dot(w[idx], x[i])
Y
Yancey1989 已提交
87
    # clip[-40.0, 40.0]
W
weixing02 已提交
88
    pre_output = np.clip(pre_output, -40.0, 40.0)
Y
Yancey1989 已提交
89
    # out(i, 0) = \sum_j  bit(i, j) * preout(i, j)
W
weixing02 已提交
90
    for i in range(batch_size):
91
        #print("\n leaf {leaf}: \n".format(leaf = label[i]))
W
weixing02 已提交
92
        code_table = CodeTable(num_classes, label[i])
Y
Yancey1989 已提交
93 94
        length = code_table.get_length()
        sum = 0.0
W
weixing02 已提交
95
        for j in range(length):
96
            #print("bit {bit} ".format(bit = code_table.cal_bit(j)))
Y
Yancey1989 已提交
97 98 99 100 101 102 103
            if code_table.cal_bit(j):
                sum += pre_output[i][j]
        out[i] = -1.0 * sum
    # soft relu
    pre_output = np.log(1 + np.exp(pre_output))
    pre_sum = pre_output.sum(1).reshape((batch_size, 1))
    out += pre_sum
104
    return pre_output, out
Y
Yancey1989 已提交
105 106


107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
def hsigmoidWithCustomTree(x, w, ptable, pcode, label, bias, num_classes):
    batch_size = x.shape[0]
    code_length = len(ptable[0])
    code_table = [0 for _ in range(code_length)]
    pre_output = np.zeros((batch_size, code_length))
    pre_sum = np.zeros((batch_size, 1))
    out = np.zeros((batch_size, 1)).astype("float32")
    for i in range(batch_size):
        code_table = CodeTableWithCustomTree(ptable, pcode, i)
        length = code_table.get_length()
        for j in range(length):
            idx = code_table.cal_index(j)
            pre_output[i][j] += bias[0][idx]
    for i in range(batch_size):
        code_table = CodeTableWithCustomTree(ptable, pcode, i)
        length = code_table.get_length()
        for j in range(length):
            idx = code_table.cal_index(j)
            pre_output[i][j] += np.dot(w[idx], x[i])
    # clip[-40.0, 40.0]
    pre_output = np.clip(pre_output, -40.0, 40.0)
    # out(i, 0) = \sum_j  bit(i, j) * preout(i, j)
    for i in range(batch_size):
        code_table = CodeTableWithCustomTree(ptable, pcode, i)
        length = code_table.get_length()
        sum = 0.0
        for j in range(length):
            if code_table.cal_bit(j):
                sum += pre_output[i][j]
        out[i] = -1.0 * sum
    # soft relu
    pre_output = np.log(1 + np.exp(pre_output))
    pre_sum = pre_output.sum(1).reshape((batch_size, 1))
    out += pre_sum
    return pre_output, out


# class TestHSigmoidOp(OpTest):
#     def setUp(self):
#         self.op_type = "hierarchical_sigmoid"
#         num_classes = 6
#         feature_size = 8
#         batch_size = 7
#         x = np.random.random((batch_size, feature_size)).astype("float32")
#         w = np.random.random((num_classes - 1, feature_size)).astype("float32")
#         label = np.random.randint(0, num_classes, (batch_size, 1))
#         bias = np.random.random((1, num_classes - 1)).astype("float32")
#         self.attrs = {'num_classes': num_classes}
#         self.inputs = {'X': x, 'W': w, 'Label': label, 'Bias': bias}
#         pre_output, out = hsigmoid(x, w, label, bias, num_classes)
#         self.outputs = {'PreOut': pre_output, 'Out': out}

#     def test_check_output(self):
#         self.check_output()

#     def test_check_grad(self):
#         self.check_grad(['Bias', 'X', 'W'], ['Out'], no_grad_set=set('Label'))


class TestHSigmoidOpWithCostumTree(OpTest):
Y
Yancey1989 已提交
167
    def setUp(self):
Y
Yancey1989 已提交
168
        self.op_type = "hierarchical_sigmoid"
169
        num_classes = 6  #using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample
170
        feature_size = 8
G
guosheng 已提交
171
        batch_size = 4
172 173 174 175 176 177 178 179 180 181
        x = np.random.random((batch_size, feature_size)).astype("float32") * 10
        w = np.random.random(
            (num_classes - 1, feature_size)).astype("float32") * 10
        label = np.array([0, 1, 4, 5])
        ptable = np.array(
            [(0, 2, -1, -1, -1), (0, 1, 3, -1, -1), (0, 1, 4, -1, -1),
             (0, 2, -1, -1,
              -1)])  #np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
        pcode = np.array([(0, 0, -1, -1, -1), (1, 1, 1, -1, -1), (
            1, 0, 0, -1, -1), (0, 1, -1, -1, -1)])  #np.array to store 
Y
Yancey1989 已提交
182
        bias = np.random.random((1, num_classes - 1)).astype("float32")
Y
Yancey1989 已提交
183
        self.attrs = {'num_classes': num_classes}
184 185 186 187 188 189 190 191 192 193
        self.inputs = {
            'X': x,
            'W': w,
            'PTable': ptable,
            'PCode': pcode,
            'Label': label,
            'Bias': bias
        }
        pre_output, out = hsigmoidWithCustomTree(x, w, ptable, pcode, label,
                                                 bias, num_classes)
W
weixing02 已提交
194
        self.outputs = {'PreOut': pre_output, 'Out': out}
Y
Yancey1989 已提交
195 196

    def test_check_output(self):
197
        print("checking output in CostumTree")
Y
Yancey1989 已提交
198 199 200
        self.check_output()

    def test_check_grad(self):
201
        print("checking outputGrad in CostumTree")
G
guosheng 已提交
202
        self.check_grad(['Bias', 'X', 'W'], ['Out'], no_grad_set=set('Label'))
Y
Yancey1989 已提交
203 204 205 206


if __name__ == '__main__':
    unittest.main()