framework.py 68.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
Q
qiaolongfei 已提交
18
import contextlib
F
fengjiayi 已提交
19
import re
20
import six
21
import traceback
22

Y
Yu Yang 已提交
23
import numpy as np
Q
qiaolongfei 已提交
24

M
minqiyang 已提交
25
from .. import compat as cpt
26
from .proto import framework_pb2
27 28
try:
    from . import core
29
except ImportError as e:
30 31 32 33
    raise ImportError(
        """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
    if you encounters \"libmkldnn.so not found\" errors. If you have python
    installed in other directory, replace \"/usr/local/lib\" with your own
M
minqiyang 已提交
34
    directory. The original error is: \n""" + cpt.get_exception_message(e))
35
except Exception as e:
36
    raise e
37
from . import unique_name
Y
Yu Yang 已提交
38

39
__all__ = [
40 41
    'Program',
    'Operator',
F
fengjiayi 已提交
42
    'Parameter',
43 44 45
    'default_startup_program',
    'default_main_program',
    'program_guard',
X
xuwei06 已提交
46
    'get_var',
47
]
Y
Yu Yang 已提交
48

Q
qiaolongfei 已提交
49 50 51 52
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
53 54 55 56 57 58
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()


def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
59 60 61 62


def grad_var_name(var_name):
    """
63 64
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
65 66 67
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
68

69
def convert_np_dtype_to_dtype_(np_dtype):
70 71
    """
    Convert the data type in numpy to the data type in Paddle
72

73
    Args:
74
        np_dtype(np.dtype): the data type in numpy.
75

76 77
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
78 79

    """
80 81
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
82
        return core.VarDesc.VarType.FP32
83
    elif dtype == np.float64:
84
        return core.VarDesc.VarType.FP64
85
    elif dtype == np.float16:
86
        return core.VarDesc.VarType.FP16
87
    elif dtype == np.int32:
88
        return core.VarDesc.VarType.INT32
89
    elif dtype == np.int16:
90
        return core.VarDesc.VarType.INT16
91
    elif dtype == np.int64:
92
        return core.VarDesc.VarType.INT64
93
    elif dtype == np.bool:
94
        return core.VarDesc.VarType.BOOL
95 96
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
97 98
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
99
    else:
M
minqiyang 已提交
100
        raise ValueError("Not supported numpy dtype %s" % dtype)
101 102 103


def dtype_is_floating(dtype):
104 105 106
    """
    Check the data type is floating or not.
    Args:
107
        dtype(np.dtype|core.VarDesc.VarType): data type.
108 109 110 111 112
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
113
    if not isinstance(dtype, core.VarDesc.VarType):
114 115
        dtype = convert_np_dtype_to_dtype_(dtype)

116 117 118 119
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
120 121


Y
Yang Yang(Tony) 已提交
122
def _debug_string_(proto, throw_on_error=True):
123 124 125 126 127 128 129 130 131 132 133
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
134
    error_fields = list()
Y
Yang Yang(Tony) 已提交
135
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
136 137
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
138 139 140
    return proto.__str__()


Y
Yu Yang 已提交
141
class Variable(object):
142
    """
143 144 145
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
146
    two variables in different blocks could have the same name.
147

148 149
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
150

151
    Most of a Variable's member variables can be setted to be None. It mean
152
    it is not available or will be specified later.
153 154

    Args:
155
        block(Block): The block that the variable belongs to.
156 157
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
158 159
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
160
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
161
            Some kinds of variable do not contain shape, just set it to None.
162 163 164
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
165
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
166
            series data.
167
            Default: None
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
190 191
    """

Y
Yu Yang 已提交
192 193
    def __init__(self,
                 block,
Y
Yu Yang 已提交
194
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
195 196 197 198
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
199
                 capacity=None,
Q
QI JUN 已提交
200
                 persistable=None,
F
fengjiayi 已提交
201
                 error_clip=None,
Y
Yu Yang 已提交
202
                 stop_gradient=False,
F
fengjiayi 已提交
203
                 is_data=False,
Y
Yu Yang 已提交
204
                 **kwargs):
Y
Yu Yang 已提交
205
        self.block = block
F
fengjiayi 已提交
206
        self.error_clip = error_clip
Y
Yu Yang 已提交
207 208

        if name is None:
Y
Yu Yang 已提交
209
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
210
        is_new_var = False
M
minqiyang 已提交
211
        name = cpt.to_text(name)
M
minqiyang 已提交
212
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
213 214

        if self.desc is None:
M
minqiyang 已提交
215
            self.desc = self.block.desc.var(cpt.to_bytes(name))
Y
Yu Yang 已提交
216
            is_new_var = True
Y
Yu Yang 已提交
217

Y
Yu Yang 已提交
218 219 220 221 222 223 224 225
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
226
        if shape is not None:
Y
Yu Yang 已提交
227
            if is_new_var:
228
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
229 230 231 232 233 234 235 236
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
237
        if dtype is not None:
238
            if not isinstance(dtype, core.VarDesc.VarType):
239
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
240
            if is_new_var:
F
fengjiayi 已提交
241
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
242
            else:
F
fengjiayi 已提交
243
                old_dtype = self.dtype
Q
QI JUN 已提交
244
                if dtype != old_dtype:
Y
Yu Yang 已提交
245 246 247 248 249
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
250 251

        if lod_level is not None:
Y
Yu Yang 已提交
252
            if is_new_var:
253
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
254 255 256 257 258 259 260
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
261 262 263 264 265 266 267 268 269 270 271
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

272 273 274 275 276 277 278 279
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
280
        self.block.vars[name] = self
Y
Yu Yang 已提交
281
        self.op = None
Y
Yu Yang 已提交
282
        self.stop_gradient = stop_gradient
F
fengjiayi 已提交
283
        self.is_data = is_data
Y
Yu Yang 已提交
284

285
    def __str__(self):
Y
Yang Yang(Tony) 已提交
286 287
        return self.to_string(True)

F
update  
fengjiayi 已提交
288
    def to_string(self, throw_on_error, with_details=False):
289 290 291 292
        """
        Get debug string.

        Args:
293 294
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
295
            with_details(bool): more details about variables and parameters
296 297
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
298

299 300
        Returns:
            str: The debug string.
301
        """
F
update  
fengjiayi 已提交
302 303
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
304
        protostr = self.desc.serialize_to_string()
305
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
306 307 308 309
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
310 311
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
312
        return res_str
313 314 315

    __repr__ = __str__

W
Wu Yi 已提交
316
    def _set_desc(self, input):
317 318 319 320 321 322 323 324 325
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
326 327
        self.desc = input

328 329 330 331
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
332 333 334 335
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
336 337
    @property
    def name(self):
M
minqiyang 已提交
338
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
339

T
typhoonzero 已提交
340 341 342 343
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
344 345 346
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
347
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
348 349

    @property
F
fengjiayi 已提交
350 351
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
352 353 354

    @property
    def lod_level(self):
355
        return self.desc.lod_level()
Y
Yu Yang 已提交
356

Y
Yu Yang 已提交
357 358 359 360
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
361
    def _set_error_clip(self, error_clip):
362 363 364 365 366 367 368 369 370
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
371 372
        self.error_clip = error_clip

Y
Yu Yang 已提交
373

F
fengjiayi 已提交
374 375 376
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
377

378 379
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
380 381 382 383
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
384
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
385 386 387 388 389
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
390 391 392 393
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
394 395 396 397 398 399 400 401 402
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
403
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
404 405 406 407 408 409
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
410 411 412 413 414 415 416 417
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
418 419
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
420 421
        return self.op_proto_map[type]

422 423 424 425 426 427 428
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
            core.op_proto_and_checker_maker.kOpRoleVarAttrName()
        }

F
fengjiayi 已提交
429

Y
Yu Yang 已提交
430
class Operator(object):
431
    """
432 433 434 435 436 437 438
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
439
        type(str): The type of operator. Default None.
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
460
        Block.append_op or Block._prepend_op instead.
461 462 463 464 465 466 467 468 469 470

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
471
    """
472 473 474 475 476
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
        'listen_and_serv', 'parallel_do', 'save_combine', 'load_combine',
        'ncclInit', 'channel_create', 'channel_close', 'channel_send',
T
tangwei12 已提交
477
        'channel_recv', 'select', 'checkpoint_notify', 'gen_nccl_id'
478
    }
479

Y
Yu Yang 已提交
480 481
    def __init__(self,
                 block,
Y
Yu Yang 已提交
482
                 desc,
Y
Yu Yang 已提交
483 484 485 486 487
                 type=None,
                 inputs=None,
                 outputs=None,
                 attrs=None):
        self.block = block
Y
Yu Yang 已提交
488
        self.desc = desc
G
gongweibao 已提交
489 490 491 492 493
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
494 495 496 497
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
498 499
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
500 501 502

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
503 504
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
505

G
gongweibao 已提交
506 507
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
508

509 510 511 512
        callstack_var_name = op_maker.kOpCreationCallstackAttrName()
        op_attrs[callstack_var_name] = list(
            reversed(traceback.format_stack()))[1:]

F
fengjiayi 已提交
513 514 515 516 517
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
F
Update  
fengjiayi 已提交
518
        self.desc.set_type(type)
F
fengjiayi 已提交
519
        proto = OpProtoHolder.instance().get_op_proto(type)
520

Y
Yang Yang(Tony) 已提交
521 522
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
523
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
524 525
                    return True
            return False
Q
QI JUN 已提交
526

Y
Yang Yang(Tony) 已提交
527 528 529 530 531 532 533
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
534 535 536 537
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
538 539
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
540 541 542
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
543
                        if isinstance(arg, six.string_types):
Y
Yang Yu 已提交
544
                            in_arg_names.append(arg)
545 546
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
Y
Yang Yu 已提交
547
                        else:
M
minqiyang 已提交
548
                            in_arg_names.append(cpt.to_text(arg.name))
549
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
550 551
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
552

Y
Yu Yang 已提交
553
        if outputs is not None:
554 555 556 557 558 559 560
            given = set()
            need = set()
            for n in outputs:
                given.add(n)
            for m in proto.outputs:
                need.add(m.name)
            if not given == need:
C
caoying03 已提交
561 562
                raise ValueError(("Incorrect setting for output(s) of "
                                  "operator \"%s\". Need: [%s] Given: [%s]") %
563 564 565
                                 (type,
                                  ", ".join(six.binary_type(e) for e in need),
                                  ", ".join(six.binary_type(e) for e in given)))
566

F
fengjiayi 已提交
567
            for out_proto in proto.outputs:
568 569 570 571
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
572 573
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
574 575 576
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
577
                    out_arg_names.append(cpt.to_text(arg.name))
578 579
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
580

G
gongweibao 已提交
581 582
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
583
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
584
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
585
                attr_name = attr.name
G
gongweibao 已提交
586
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
587
                    continue
G
gongweibao 已提交
588
                attr_val = op_attrs[attr_name]
G
gongweibao 已提交
589 590
                self._update_desc_attr(attr_name, attr_val)

591
        self.desc.check_attrs()
592
        if self.has_kernel(type):
Q
QI JUN 已提交
593
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
594
            self.desc.infer_shape(self.block.desc)
F
fengjiayi 已提交
595

596 597 598
    def has_kernel(self, op_type):
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
599
    def to_string(self, throw_on_error):
600
        """
601 602
        Get debug string.

603
        Args:
604 605
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
606

607 608
        Returns:
            str: The debug string.
609 610

        """
611
        protostr = self.desc.serialize_to_string()
612
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
613 614 615 616
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
617 618 619

    __repr__ = __str__

F
fengjiayi 已提交
620 621 622 623 624
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
625
        """
626
        Get the input arguments according to the input parameter name.
627

628 629
        Args:
            name(str): The input parameter name.
630

631 632 633
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
634
        """
F
fengjiayi 已提交
635 636
        return self.desc.input(name)

T
typhoonzero 已提交
637
    def rename_input(self, old_name, new_name):
638 639 640 641 642 643 644 645 646 647
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
T
typhoonzero 已提交
648 649 650
        self.desc.rename_input(old_name, new_name)

    def rename_output(self, old_name, new_name):
651 652 653 654 655 656 657 658 659 660
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
T
typhoonzero 已提交
661 662
        self.desc.rename_output(old_name, new_name)

F
fengjiayi 已提交
663 664 665 666
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
667 668 669 670 671 672 673 674
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
675
    def output(self, name):
676
        """
677
        Get output arguments by the output parameter name.
678

679 680
        Args:
            name(str): The output parameter name.
681

682 683 684
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
685
        """
F
fengjiayi 已提交
686 687 688 689 690 691
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

692 693 694 695 696 697 698 699
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
700
    def has_attr(self, name):
701
        """
702 703
        Whether this Operator has the attribute with name or not.

704
        Args:
705
            name(str): the attribute name.
706

707 708
        Returns:
            bool: True if has this attribute.
709 710

        """
F
fengjiayi 已提交
711 712 713
        return self.desc.has_attr(name)

    def attr_type(self, name):
714
        """
715
        Get the type of attribute by attribute's name.
716

717 718
        Args:
            name(str): the attribute name.
719

720 721
        Returns:
            core.AttrType: the attribute type.
722
        """
F
fengjiayi 已提交
723 724
        return self.desc.attr_type(name)

Y
yuyang18 已提交
725
    def set_attr(self, name, val):
726 727 728 729 730 731 732 733 734 735
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
736 737 738 739 740 741 742 743 744 745 746 747 748
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
749 750
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
751 752
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
753
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
754 755 756 757 758
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            self.desc.set_attr(name, val)
Y
yuyang18 已提交
759

F
fengjiayi 已提交
760 761 762 763 764
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
765
        """
766 767
        Get the attribute by name.

768
        Args:
769
            name(str): the attribute name.
770

771 772
        Returns:
            bool|int|str|float|list: The attribute value. The return value
773 774
            can be any valid attribute type.
        """
F
fengjiayi 已提交
775
        return self.desc.attr(name)
Y
Yu Yang 已提交
776

G
gongweibao 已提交
777
    def block_attr_id(self, name):
778
        """
G
gongweibao 已提交
779
        Get the block attribute's id by name.
780

781 782
        Args:
            name(str): the attribute name.
783

784 785
        Returns:
            int: the block index.
786
        """
G
gongweibao 已提交
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
        return self.desc.block_attr_id(name)

    def block_attr(self, name):
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

        id = self.block_attr_id(name)
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

    def blocks_attr(self, name):
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
        for i in self.blocks_attr_ids(name):
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

    def blocks_attr_ids(self, name):
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

        return self.desc.blocks_attr_ids(name)
Y
Yu Yang 已提交
833

J
JiayiFeng 已提交
834
    def all_attrs(self):
F
fengjiayi 已提交
835
        """
836 837 838
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
839
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
840 841 842 843
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
844 845
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
F
fengjiayi 已提交
846
                attr_map[n] = self.block_attr(n)
G
gongweibao 已提交
847 848 849 850 851 852 853 854
                continue

            if attr_type == core.AttrType.BLOCKS:
                attr_map[n] = self.blocks_attr(n)
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
855 856
        return attr_map

Y
Yu Yang 已提交
857

Y
Yu Yang 已提交
858
class Block(object):
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
        use `Program.create_block()` to create a block.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
888
    def __init__(self, program, idx):
Y
Yu Yang 已提交
889
        self.desc = program.desc.block(idx)
890
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
891
        self.ops = list()  # operator list
Y
Yu Yang 已提交
892
        self.program = program
893
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
894

895
    def __str__(self):
Y
Yang Yang(Tony) 已提交
896 897
        return self.to_string(True)

F
fengjiayi 已提交
898 899
    def to_string(self, throw_on_error, with_details=False):
        """
900 901
        Get debug string.

F
fengjiayi 已提交
902 903
        Args:
            throw_on_error(bool): raise exception when self is not initialized
904
                when throw_on_error is True.
F
update  
fengjiayi 已提交
905
            with_details(bool): more details about variables and parameters
906 907
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
908

909 910
        Returns:
            str: The debug string.
F
fengjiayi 已提交
911 912 913 914
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
915
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
916 917
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
918
            for var in list(self.vars.values()):
F
fengjiayi 已提交
919
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
920
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
921
            for op in self.ops:
F
fengjiayi 已提交
922 923
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
924 925 926
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
927 928
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
929 930
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
931 932 933

    __repr__ = __str__

Y
Yu Yang 已提交
934 935
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
936
        return self.desc.parent
Y
Yu Yang 已提交
937

Y
Yu Yang 已提交
938 939 940 941
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
942
    def _set_forward_block_idx(self, idx):
943 944 945 946 947 948 949 950 951
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
952
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
953

Y
Yu Yang 已提交
954 955
    @property
    def idx(self):
Y
Yu Yang 已提交
956
        return self.desc.id
Y
Yu Yang 已提交
957

Q
Qiao Longfei 已提交
958
    def var(self, name):
959 960 961 962 963 964 965 966 967 968 969 970 971
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
972
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
973 974 975
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
976 977
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
978
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
979
        return v
Q
Qiao Longfei 已提交
980

W
Wu Yi 已提交
981
    def _var_recursive(self, name):
982 983 984 985 986 987 988 989 990 991 992 993 994
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
Y
Yu Yang 已提交
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))

        raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1021

Q
Qiao Longfei 已提交
1022
    def all_parameters(self):
1023
        return list(self.iter_parameters())
1024

1025
    def iter_parameters(self):
M
minqiyang 已提交
1026
        return (item[1] for item in six.iteritems(self.vars)
1027
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1028

Y
Yu Yang 已提交
1029
    def create_var(self, *args, **kwargs):
1030
        var = Variable(block=self, *args, **kwargs)
1031 1032
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1033
        return var
Y
Yu Yang 已提交
1034

Q
Qiao Longfei 已提交
1035 1036 1037
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1038
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1039 1040
        """
        Rename variable in vars and ops' inputs and outputs
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1053
        """
M
minqiyang 已提交
1054 1055
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1056

T
typhoonzero 已提交
1057
        if not self.has_var(name):
1058
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1059 1060
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1061
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1062 1063 1064 1065 1066 1067 1068
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1069
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1070 1071 1072 1073
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1074
        orig_var_type = v.type
M
minqiyang 已提交
1075
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1076
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1077
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1078
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1079 1080 1081 1082
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1083
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1084 1085 1086 1087 1088 1089 1090
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1091
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1092 1093
            var = Variable(
                self,
T
typhoonzero 已提交
1094
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1095 1096 1097 1098
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1099
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1100 1101 1102
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1103
        self._sync_with_cpp()
1104
        return var
T
typhoonzero 已提交
1105

W
Wu Yi 已提交
1106 1107
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1108
        self.desc._remove_var(cpt.to_bytes(name))
1109 1110
        del self.vars[name]

Y
Yu Yang 已提交
1111 1112
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1113
        param = Parameter(global_block, *args, **kwargs)
1114
        if 'initializer' in kwargs:
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1135
        return param
Y
Yu Yang 已提交
1136

Y
Yu Yang 已提交
1137
    def append_op(self, *args, **kwargs):
1138 1139 1140 1141 1142 1143
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1144
        op_desc = self.desc.append_op()
1145
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
Y
Yu Yang 已提交
1146 1147 1148
        self.ops.append(op)
        return op

W
Wu Yi 已提交
1149
    def _insert_op(self, index, *args, **kwargs):
1150 1151 1152 1153 1154 1155 1156 1157 1158
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1159 1160
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1161 1162 1163 1164
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1165
    def _remove_op(self, index):
1166 1167 1168 1169 1170 1171 1172 1173 1174
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1175 1176
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1177 1178
        del self.ops[index]

W
Wu Yi 已提交
1179
    def _slice_ops(self, start, end):
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1190
        return self.ops[start:end]
Y
Yancey1989 已提交
1191

W
Wu Yi 已提交
1192 1193
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
Y
Yu Yang 已提交
1194
        op = Operator(self, op_desc, *args, **kwargs)
Q
qiaolongfei 已提交
1195
        self.ops.insert(0, op)
Y
Yu Yang 已提交
1196 1197
        return op

W
Wu Yi 已提交
1198
    def _sync_with_cpp(self):
1199
        """
1200 1201
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1202
        """
Q
Qiao Longfei 已提交
1203 1204 1205 1206 1207
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1208
        # sync variables removed from c++ end
1209
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1210
            if not self.desc.find_var(cpt.to_bytes(var)):
1211 1212
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1213
        # sync operators from cpp
1214 1215 1216 1217
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1234 1235 1236 1237 1238

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1239
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1240 1241 1242 1243 1244 1245 1246

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1260 1261 1262 1263
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1264
    def _copy_param_info_from(self, other):
1265
        """
1266 1267
        Copy the information of parameters from the other block.

1268
        Args:
1269 1270 1271 1272 1273
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1274 1275 1276 1277 1278

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1279 1280
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1281
        for p in other.iter_parameters():
1282 1283 1284
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1285
                raise ValueError("_copy_param_info_from should be invoked with "
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1298
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1299
                error_clip=p.error_clip,
1300 1301 1302
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1303
    def _clone_variable(self, var):
1304 1305
        """
        Clone a variable into current block.
1306

1307 1308 1309 1310
        Args:
            var: the variable to be cloned.

        Returns:
1311
            Variable: the new  variable cloned from 'var' in current block.
1312 1313
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1314 1315 1316 1317 1318
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1319 1320
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1321
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1322 1323 1324 1325 1326 1327
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1328 1329
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1330 1331 1332 1333 1334 1335 1336
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1337 1338
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1339
        return ret_var
1340

Y
Yu Yang 已提交
1341 1342

class Program(object):
D
dzhwinter 已提交
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1354
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1355 1356

    Returns:
Y
yuyang18 已提交
1357
        A empty program.
D
dzhwinter 已提交
1358 1359

    Examples:
Y
yuyang18 已提交
1360 1361 1362 1363 1364 1365
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1366 1367 1368

    """

1369 1370
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1371 1372
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1373
        self._seed = 0
Y
yuyang18 已提交
1374
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1375
        self._op_role_var = []
T
tangwei12 已提交
1376 1377 1378 1379

        # for distribute
        self._is_distributed = False
        self._is_chief = False
T
tangwei12 已提交
1380
        self._slice_vars_and_attrs = []
T
tangwei12 已提交
1381 1382
        self._endpoints = []
        self._distributed_lookup_table = None
Y
yuyang18 已提交
1383 1384 1385

    @property
    def op_role(self):
Y
yuyang18 已提交
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1399 1400 1401 1402 1403 1404 1405 1406
        return self._current_role

    @op_role.setter
    def set_op_role(self, role):
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1407 1408 1409 1410 1411 1412 1413
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
1414 1415 1416 1417
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1418
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1419 1420

    @contextlib.contextmanager
1421
    def optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
1422 1423 1424 1425 1426 1427 1428
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
1429
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
1430 1431 1432 1433

        Examples:

            >>> p, g = backward(...)
1434
            >>> with program.optimized_guard([p,g]):
Y
yuyang18 已提交
1435 1436
            >>>     p = p - 0.001 * g
        """
Y
yuyang18 已提交
1437 1438
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
1439 1440 1441 1442
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
1443
        yield
Y
yuyang18 已提交
1444
        self._op_role_var = []
Y
yuyang18 已提交
1445
        self._current_role = OpRole.Forward
Y
Yu Yang 已提交
1446

1447
    def __str__(self):
Y
yuyang18 已提交
1448 1449 1450 1451 1452 1453 1454 1455 1456
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
1457 1458
        return self.to_string(True)

F
fengjiayi 已提交
1459 1460 1461
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
1462

F
fengjiayi 已提交
1463
        Args:
Y
yuyang18 已提交
1464 1465
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
1466

Y
yuyang18 已提交
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

        Returns
            (str): The debug string.

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
1487 1488
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1489 1490
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1491

1492
    def get_desc(self):
Y
yuyang18 已提交
1493 1494 1495 1496 1497 1498 1499
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
1500 1501
        return self.desc

1502
    def clone(self, for_test=False):
Y
yuyang18 已提交
1503 1504 1505
        """
        Create a new, duplicated program.

1506

Y
yuyang18 已提交
1507 1508 1509 1510
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
1511

Y
yuyang18 已提交
1512 1513 1514 1515
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
1516 1517 1518 1519 1520
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
1521 1522

        Args:
Y
yuyang18 已提交
1523 1524
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
1525

D
dzhwinter 已提交
1526
        Returns:
Y
yuyang18 已提交
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
1580 1581
        """
        if for_test:
1582
            p = self.inference_optimize(export_for_deployment=False)
1583
        else:
1584
            p = Program()
G
gongweibao 已提交
1585 1586
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
1587
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
1588 1589 1590
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
1591 1592 1593 1594

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
1595
            p._sync_with_cpp()
1596

W
Wu Yi 已提交
1597
        p._copy_param_info_from(self)
F
fengjiayi 已提交
1598
        p.copy_data_info_from(self)
Y
Yu Yang 已提交
1599
        return p
1600

1601
    def prune(self, targets):
Y
yuyang18 已提交
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
1617 1618 1619 1620 1621 1622
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
1623 1624
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
1625
                    # and we need to find the current op that generate this
1626 1627 1628 1629 1630 1631 1632 1633
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

1634
                    t = t.op
1635 1636 1637 1638
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
1639
                else:
1640 1641
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
1642 1643 1644 1645

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
1646 1647 1648
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1649
        res._sync_with_cpp()
1650 1651
        return res

1652
    def inference_optimize(self, export_for_deployment=True):
Y
yuyang18 已提交
1653
        """
F
fengjiayi 已提交
1654 1655 1656 1657 1658
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

1659
        3. change the :code:`is_test`
Y
yuyang18 已提交
1660 1661 1662
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

1663 1664 1665 1666
        Args:
            export_for_deployment(bool): remove the read ops that are added by py_reader
                                        for cpp inference library

Y
yuyang18 已提交
1667 1668 1669 1670 1671 1672
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
1673 1674
        # this is an alternative implement before
        # core.inference_optimize being fixed.
1675
        res = Program()
1676
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
1677 1678 1679 1680

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
        if export_for_deployment:
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
1691
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
1692 1693

        # change all `is_test` attributes to True
M
minqiyang 已提交
1694
        for i in six.moves.range(res.desc.num_blocks()):
1695
            block = res.desc.block(i)
M
minqiyang 已提交
1696
            for j in six.moves.range(block.op_size()):
1697 1698 1699
                op = block.op(j)
                if op.has_attr('is_test'):
                    op.set_attr('is_test', True)
M
minqiyang 已提交
1700 1701 1702
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1703
        res._sync_with_cpp()
1704 1705
        return res

1706 1707
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
1708 1709 1710 1711 1712 1713 1714
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
1715
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
1716 1717 1718 1719

        Returns:
            Program: A deserialized program desc.
        """
1720 1721
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
1722
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
1723
        p._sync_with_cpp()
1724
        return p
Y
Yu Yang 已提交
1725

D
dzhwinter 已提交
1726 1727
    @property
    def random_seed(self):
Y
yuyang18 已提交
1728 1729 1730 1731 1732 1733
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
1734 1735
        return self._seed

Q
qiaolongfei 已提交
1736 1737
    @property
    def num_blocks(self):
Y
yuyang18 已提交
1738 1739 1740
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
1741 1742
        return self.desc.num_blocks()

D
dzhwinter 已提交
1743 1744 1745 1746 1747 1748
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
1749
    def __repr__(self):
1750
        return self.__str__()
1751

Y
Yu Yang 已提交
1752
    def global_block(self):
Y
yuyang18 已提交
1753 1754 1755
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
1756 1757
        return self.blocks[0]

Q
Qiao Longfei 已提交
1758
    def block(self, index):
Y
yuyang18 已提交
1759 1760 1761 1762 1763 1764 1765 1766
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
1767 1768
        return self.blocks[index]

Y
Yu Yang 已提交
1769
    def current_block(self):
Y
yuyang18 已提交
1770 1771 1772 1773
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
1774 1775
        return self.blocks[self.current_block_idx]

F
update  
fengjiayi 已提交
1776
    def create_block(self, parent_idx=None):
Y
yuyang18 已提交
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
1787
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
1788 1789 1790
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
1791 1792 1793 1794 1795
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

    def rollback(self):
Y
yuyang18 已提交
1796 1797 1798 1799 1800
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
1801 1802
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
1803
    def _sync_with_cpp(self):
Y
yuyang18 已提交
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
1814 1815 1816
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
1817
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
1818

W
Wu Yi 已提交
1819
    def _copy_param_info_from(self, other):
1820
        """
1821
        Copy the information of parameters from other program.
D
dzhwinter 已提交
1822

Y
yuyang18 已提交
1823 1824 1825
        Notes: This is a very low level API. Users should not invoke it
        directly.

1826 1827 1828 1829 1830 1831 1832
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
1833
            raise TypeError("_copy_param_info_from should be invoked with "
1834 1835 1836
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
1837
            raise ValueError("_copy_param_info_from should be invoked with two "
1838
                             "program, with represent the same topology")
W
Wu Yi 已提交
1839
        self.global_block()._copy_param_info_from(other.global_block())
1840

F
fengjiayi 已提交
1841 1842 1843
    def copy_data_info_from(self, other):
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
1844

Y
yuyang18 已提交
1845 1846 1847
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
1848 1849 1850 1851 1852 1853 1854
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
1855
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
1856 1857 1858
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
1859
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
1860
                             "program, with represent the same topology")
1861
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
1862 1863 1864
            if var.is_data:
                self.global_block().var(var.name).is_data = True

1865
    def list_vars(self):
Y
yuyang18 已提交
1866 1867 1868 1869 1870 1871
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
1872
        for each_block in self.blocks:
1873
            for each_var in list(each_block.vars.values()):
1874 1875
                yield each_var

Y
Yu Yang 已提交
1876

Y
Yu Yang 已提交
1877
class Parameter(Variable):
1878
    """
1879
    Parameter is derived from Variable. A parameter is a persistable
1880
    Variable, and will be updated by optimizers after each iteration.
1881
    The training of a neural network is essentially the updating of
1882 1883
    its parameters.

1884
    Relative to a general Variable, a Parameter has several its own
1885 1886
    member variables:

1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
1899 1900
    """

Y
Yu Yang 已提交
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
1911 1912 1913

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
1914 1915 1916 1917
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

1918 1919
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
1920
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
1921

W
wanghaoshuang 已提交
1922
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
1923

F
fengjiayi 已提交
1924 1925 1926
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
1927 1928 1929
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
1930

F
update  
fengjiayi 已提交
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
1945
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
1946
            for attr_name in additional_attr:
1947 1948
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
1949 1950
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
1951 1952 1953 1954
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
1955

Y
Yu Yang 已提交
1956
# program is a global instance.
Y
Yu Yang 已提交
1957 1958
_main_program_ = Program()
_startup_program_ = Program()
1959

1960

1961
def default_startup_program():
Y
Yu Yang 已提交
1962
    """
Y
yuyang18 已提交
1963 1964 1965 1966 1967 1968 1969 1970 1971
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
1972

Y
Yu Yang 已提交
1973 1974 1975
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
1976
    return _startup_program_
1977

1978

1979
def default_main_program():
Y
Yu Yang 已提交
1980
    """
Y
yuyang18 已提交
1981 1982 1983 1984 1985 1986 1987 1988 1989
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
1990

Y
Yu Yang 已提交
1991 1992 1993
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
1994
    return _main_program_
Y
Yu Yang 已提交
1995 1996 1997 1998 1999


def switch_main_program(program):
    """
    Switch the main program to a new program.
2000

Y
Yu Yang 已提交
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
2015
    Switch the startup program to a new program
Y
Yu Yang 已提交
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


@contextlib.contextmanager
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
2031 2032 2033
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
2034

Y
Yu Yang 已提交
2035
    Examples:
Y
yuyang18 已提交
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
2046

Y
Yu Yang 已提交
2047
    Examples:
Y
yuyang18 已提交
2048 2049 2050 2051 2052 2053

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
2054

Y
Yu Yang 已提交
2055
    Args:
Y
yuyang18 已提交
2056
        main_program(Program): New main program inside `with` statement.
2057
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
2071 2072 2073 2074


def get_var(name, program=None):
    """
Y
yuyang18 已提交
2075
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
2076

X
xuwei06 已提交
2077 2078 2079
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
2080
        If None, default_global_program() will be used.
X
xuwei06 已提交
2081 2082 2083 2084 2085 2086 2087

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
2088
    assert isinstance(program, Program)
X
xuwei06 已提交
2089 2090

    return program.global_block().var(name)